RESUMEN
Liver cancers, including hepatocellular carcinoma (HCC), are the sixth most common cancer and the third leading cause of cancer-related death worldwide, representing a global public health problem. This study evaluated nine patients with HCC. Six of the cases involved hepatic explants, and three involved hepatic segmentectomy for tumor resection. Eight out of nine tumors were HCC, with one being a combined hepatocellular-cholangiocarcinoma tumor. Conventional markers of hepatocellular differentiation (Hep Par-1, arginase, pCEA, and glutamine synthetase) were positive in all patients, while markers of hepatic precursor cells (CK19, CK7, EpCAM, and CD56) were negative in most patients, and when positive, they were detected in small, isolated foci. Based on in silico analysis of HCC tumors from The Cancer Genome Atlas database, we found that Hedgehog (HH) pathway components (GLI1, GLI2, GLI3 and GAS1) have high connectivity values (module membership > 0.7) and are strongly correlated with each other and with other genes in biologically relevant modules for HCC. We further validated this finding by analyzing the gene expression of HH components (PTCH1, GLI1, GLI2 and GLI3) in our samples through qPCR, as well as by immunohistochemical analysis. Additionally, we conducted a chemosensitivity analysis using primary HCC cultures treated with a panel of 18 drugs that affect the HH pathway and/or HCC. Most HCC samples were sensitive to sunitinib. Our results offer a comprehensive view of the molecular landscape of HCC, highlighting the significance of the HH pathway and providing insight into focused treatments for HCC.
Asunto(s)
Carcinoma Hepatocelular , Proteínas Hedgehog , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Transducción de Señal , Sunitinib/farmacología , Sunitinib/uso terapéutico , Adulto , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli2 con Dedos de Zinc/genéticaRESUMEN
Glioblastoma (GBM) aggressiveness is partly driven by the reactivation of signaling pathways such as Sonic hedgehog (SHH) and the interaction with its microenvironment. SHH pathway activation is one of the phenomena behind the glial transformation in response to tumor growth. The reactivation of the SHH signaling cascade during GBM-astrocyte interaction is highly relevant to understanding the mechanisms used by the tumor to modulate the adjacent stroma. The role of reactive astrocytes considering SHH signaling during GBM progression is investigated using a 3D in vitro model. T98G GBM spheroids displayed significant downregulation of SHH (61.4 ± 9.3%), GLI-1 (6.5 ± 3.7%), Ki-67 (33.7 ± 8.1%), and mutant MTp53 (21.3 ± 10.6%) compared to the CONTROL group when incubated with conditioned medium of reactive astrocytes (CM-AST). The SHH pathway inhibitor, GANT-61, significantly reduced previous markers (SHH = 43.0 ± 12.1%; GLI-1 = 9.5 ± 3.4%; Ki-67 = 31.9 ± 4.6%; MTp53 = 6.5 ± 7.5%) compared to the CONTROL, and a synergistic effect could be observed between GANT-61 and CM-AST. The volume (2.0 ± 0.2 × 107 µm³), cell viability (80.4 ± 3.2%), and migration (41 ± 10%) of GBM spheroids were significantly reduced in the presence of GANT-61 and CM-AST when compared to CM-AST after 72 h (volume = 2.3 ± 0.4 × 107 µm³; viability = 92.2 ± 6.5%; migration = 102.5 ± 14.6%). Results demonstrated that factors released by reactive astrocytes promoted a neuroprotective effect preventing GBM progression using a 3D in vitro model potentiated by SHH pathway inhibition.
Asunto(s)
Astrocitos , Movimiento Celular , Proliferación Celular , Glioblastoma , Esferoides Celulares , Proteína p53 Supresora de Tumor , Proteína con Dedos de Zinc GLI1 , Humanos , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Astrocitos/metabolismo , Medios de Cultivo Condicionados/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Esferoides Celulares/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Regulación hacia Abajo , Línea Celular Tumoral , Piridinas/farmacología , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Mutación , Pirimidinas/farmacologíaRESUMEN
The involvement of LncRNA SOX2-overlapping transcript (SOX2-OT), SOX2, and GLI-1 transcription factors in cancer has been well documented. Nonetheless, it is still unknown whether co-expressed SOX2-OT/SOX2 or SOX2-OT/SOX2/GLI-1 axes are epigenetically/transcriptionally involved in terms of resistance to oncology therapy and in poorer clinical outcomes for patients with lung cancer. We evaluated the role of SOX2-OT/SOX2 and SOX2-OT/SOX2/GLI-1 axes using RT-qPCR, western blot, immunofluorescence analyses, gene silencing, cellular cytotoxic, and ChIP-qPCR assays on human cell lines, solid lung malignant tumors, and normal lung tissue. We detected that the SOX2-OT/SOX2/GLI-1 axis promotes resistance to tyrosine kinase inhibitor (TKI)-erlotinib and cisplatin-based therapy. Evidence from this study show that SOX2-OT modulates the expression/activation of EGFR-pathway members AKT/ERK. Further, both SOX2-OT and GLI-1 genes are epigenetically regulated at their promoter sequences, in an LncRNA SOX2-OT-dependent manner, mainly through modifying the enrichment of the activation histone mark H3K4me3/H3K27Ac, versus the repressive histone mark H3K9me3/H3K27me3. In addition, we identified that inhibition of SOX2-OT and reduced expression of SOX2/GLI-1 sensitizes lung cancer cells to EGFR/TKI-erlotinib or cisplatin-based treatment. Finally, we show that high co-expression of SOX2-OT/SOX2 transcripts and SOX2/GLI-1 proteins appears to correlate with a poor clinical prognosis and lung malignant phenotype. Collectively, these results present evidence that LncRNA SOX2-OT modulates an orchestrated resistance mechanism, promoting poor prognosis and human lung malignancy through genetic, epigenetic, and post-translational mechanisms.
Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXB1/genética , Proteína con Dedos de Zinc GLI1/genética , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos , Epigénesis Genética , Clorhidrato de Erlotinib/farmacología , Histonas , Humanos , Neoplasias Pulmonares/diagnóstico , PronósticoRESUMEN
The purpose of this study was to evaluate the expression of Hedgehog (HH) signaling molecules (SHH and GLI-1) by cancer-associated fibroblasts (CAF) in oral squamous cell carcinoma (OSCC). Immunohistochemistry was used to detect molecular HH signaling and CAF-related protein expression, including α-SMA and S100A4, in 70 samples of human OSCC. The colocalization of α-SMA and S100A4 with SHH was also evaluated by double-staining. In vitro study was performed using primary normal oral fibroblast (NOF) and CAF through immunofluorescence and Western Blot for CAF-proteins, SHH, and GLI-1. Forty-five cases (64.28%) were positive for α-SMA exclusively in tumor stroma, and S100A4 was identified in the cytoplasm of CAFs in 94.28% (n = 66) of the cases. With respect to stromal cells, 64 (91.43%) OSCC cases were positive for SHH, and 31 were positive for GLI-1 (44.29%); positive correlations were found between SHH and α-SMA (p < 0.0001, φ = 0.51), as well as between SHH and S100A4 (p = 0.087, φ = 0.94). Protein expression of SHH and GLI-1 was observed in primary CAFs and NOFs. Although SHH was found to be localized in the cellular cytoplasm of both cell types, GLI-1 was present only in the nuclei of CAF. Our results indicate that CAFs are not only potential sources of HH ligands in tumor stroma, but may also respond to HH signaling through nuclear GLI-1 activation. We further observed that elevated SHH expression by OSCC cells was associated with higher CAF density, reinforcing the chemoattractant role played by these molecules.
Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias de la Boca/metabolismo , Transducción de Señal , Biomarcadores , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Inmunohistoquímica , Ligandos , Neoplasias de la Boca/etiología , Neoplasias de la Boca/patología , Unión Proteica , Transporte de Proteínas , Células del Estroma/metabolismo , Células del Estroma/patología , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismoRESUMEN
Due to its importance in the pathogenesis of oral squamous cell carcinoma (OSCC), the Hedgehog (HH) pathway is considered a potential therapeutic target. We investigated the effects of GANT61, a GLI inhibitor, on HH gene expression, as well as on metastatic OSCC cell proliferation and death. Following culture in DMEM medium, cytotoxicity of GANT61 against different tumor and non-tumor cell types was assessed by alamarBlue assays. Cytotoxicity analysis revealed that the metastatic HSC3 cell line was the most sensitive (IC50: 36 µM) to the tested compound. The compound's effects on the expression of HH pathways components were analyzed by qPCR and Western blot; cell viability was analyzed by trypan blue assay and flow cytometry were used to investigate cell cycle phase, morphology, and death patterns in HSC3 cells. A significant reduction in mRNA levels of the GLI1 transcription factor was found after 12 h of treatment withGANT61. Protein expression levels of other HH pathway components (PTCH1, SHH, and Gli1) and HSC3 cell viability also decreased after 24 h of treatment. Cell cycle analysis and death pattern evaluations revealed significantly increased nuclear fragmentation in sub-G1 phase, as well as cell death due to apoptosis. In conclusion, the significantly reduced GLI1 gene expression seen in response to the GLI inhibitor indicates diminished downstream activation in HH pathway components. GANT61 significantly reduced cell viability in the metastatic cell line of OSCC and promoted a significant increase in nuclear fragmentation and cell death by apoptosis.
Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Piridinas/farmacología , Pirimidinas/farmacología , Proteína con Dedos de Zinc GLI1/genética , Adulto , Apoptosis/genética , Carcinoma de Células Escamosas/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias de la Boca/genética , Metástasis de la Neoplasia , Proteína con Dedos de Zinc GLI1/metabolismoRESUMEN
The first-line chemotherapy treatment for Glioblastoma (GBM) - the most aggressive and frequent brain tumor - is temozolomide (TMZ). The Sonic hedgehog (SHH) pathway is involved with GBM tumorigenesis and TMZ chemoresistance. The role of SHH pathway inhibition in the potentiation of TMZ's effects using T98G, U251, and GBM11 cell lines is investigated herein. The combination of GANT-61 and TMZ over 72 hr suggested a synergistic effect. All TMZ-resistant cell lines displayed a significant decrease in cell viability, increased DNA fragmentation and loss of membrane integrity. For T98G cells, G2 /M arrest was observed, while U251 cells presented a significant increase in reactive oxygen species production and catalase activity. All the cell lines presented acidic vesicles formation correlated to Beclin-1 overexpression. The combined treatment also enhanced GLI1 expression, indicating the presence of select resistant cells. The selective inhibition of the SHH pathway potentiated the cytotoxic effect of TMZ, thus becoming a promising in vitro strategy for GBM treatment.
Asunto(s)
Beclina-1/genética , Glioblastoma/tratamiento farmacológico , Proteínas Hedgehog/genética , Temozolomida/farmacología , Proteína con Dedos de Zinc GLI1/genética , Animales , Antineoplásicos Alquilantes/farmacología , Autofagia/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Humanos , Ratones , Estrés Oxidativo/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Abnormalities in cerebellar structure and function may cause ataxia, a neurological dysfunction of motor coordination. In the course of the present study, we characterized a mutant mouse lineage with an ataxia-like phenotype. We localized the mutation on chromosome 17 and mapped it to position 1534 of the Nox3 gene, resulting in p.Asn64Tyr change. The primary defect observed in Nox3eqlb mice was increased proliferation of cerebellar granule cell precursors (GCPs). cDNA microarray comparing Nox3eqlb and BALB/c neonatal cerebellum revealed changes in the expression of genes involved in the control of cell proliferation. Nox3eqlb GCPs and NSC produce higher amounts of reactive oxygen species (ROS) and upregulate the expression of SHH target genes, such as Gli1-3 and Ccnd1 (CyclinD1). We hypothesize that this new mutation is responsible for an increase in proliferation via stimulation of the SHH pathway. We suggest this mutant mouse lineage as a new model to investigate the role of ROS in neuronal precursor cell proliferation.
Asunto(s)
Ataxia/genética , Cerebelo/enzimología , Proteínas Hedgehog/genética , NADPH Oxidasas/genética , Células-Madre Neurales/enzimología , Transducción de Señal/genética , Animales , Ataxia/enzimología , Ataxia/fisiopatología , Diferenciación Celular , Proliferación Celular , Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Mapeo Cromosómico , Cromosomas de los Mamíferos , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Actividad Motora/genética , Mutación , NADPH Oxidasas/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/patología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteína Gli3 con Dedos de Zinc/metabolismoRESUMEN
Bone marrow fibrosis is a critical component of primary myelofibrosis in which normal bone marrow tissue and blood-forming cells are gradually replaced with scar tissue. The specific cellular and molecular mechanisms that cause bone marrow fibrosis are not understood. A recent study using state-of-the-art techniques, including in vivo lineage tracing, provides evidence that Gli1+ cells are the cells responsible for fibrotic disease in the bone marrow. Strikingly, genetic depletion of Gli1+ cells rescues bone marrow failure and abolishes myelofibrosis. This work introduces a new central cellular target for bone marrow fibrosis. The knowledge that emerges from this research will be important for the treatment of several malignant and nonmalignant disorders.
Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Terapia Molecular Dirigida , Factor Plaquetario 4/genética , Mielofibrosis Primaria/tratamiento farmacológico , Piridinas/farmacología , Pirimidinas/farmacología , Proteína con Dedos de Zinc GLI1/genética , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Médula Ósea/patología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Proliferación Celular , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Factor Plaquetario 4/metabolismo , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/patología , Proteína con Dedos de Zinc GLI1/antagonistas & inhibidores , Proteína con Dedos de Zinc GLI1/metabolismoRESUMEN
BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naïve cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGFß/SMAD (transforming growth factor-ß/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naïve cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.
Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Indoles/farmacología , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Melanoma/metabolismo , Sulfonamidas/farmacología , Proteína con Dedos de Zinc GLI1/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Senescencia Celular/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Hedgehog/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Vemurafenib , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli2 con Dedos de ZincRESUMEN
Renal ischemia-reperfusion (I/R) injury ranks as the primary cause of acute renal injury with severe morbidity and mortality. Side population (SP) cells have recently drawn increasing attention due to their critical role in injury repair and regeneration. Unfortunately, the underlying mechanism involved in renal I/R remains poorly elucidated. Here, pronounced increases of stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) were substantiated in I/R kidneys from C57BL/6 mice subjected to clamp the bilateral renal pedicles to mimic renal ischemia. Similar up-regulation of them was also determined in SP cells upon simulated ischemia/reperfusion (SI/R). In contrast to non-SP cells, SP cells exhibited higher viability, apoptosis resistance, chemotaxis, and paracrine actions following SI/R treatment, and these were further enhanced after SDF-1 stimulation. Interestingly, blocking CXCR4 signaling with AMD3100 notably ameliorated the above effects. Mechanism analysis corroborated that SDF-1/CXCR4 further induced the expression of ATP-binding cassette transporter ABCG2, an essential element for SP-mediated kidney regeneration after renal I/R injury. Moreover, AMD3100 pretreatment strikingly attenuated ABCG2 elevation in SP cells. Additionally, sonic hedgehog (SHH)-Gli 1 signaling was involved in SDF-1/CXCR4-mediated ABCG2 expression. When SP cells pretreated with AMD3100 were intravenously injected into I/R mice, SP cell-mediated decreases in blood urea nitrogen, serum creatinine, and histological score of kidney were noticeably attenuated, indicating that blocking CXCR4 pathway mitigated the therapeutic function of SP cells in renal I/R injury. Together, this research suggests that SDF-1/CXCR4 axis might act, via Shh-Gli1-ABCG2 signaling, as a positive regulator of SP cell-based therapies for renal I/R by Shh-Gli 1-ABCG2 signaling.