Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2319727121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669181

RESUMEN

The DNA sliding clamp PCNA is a multipurpose platform for DNA polymerases and many other proteins involved in DNA metabolism. The topologically closed PCNA ring needs to be cracked open and loaded onto DNA by a clamp loader, e.g., the well-studied pentameric ATPase complex RFC (RFC1-5). The CTF18-RFC complex is an alternative clamp loader found recently to bind the leading strand DNA polymerase ε and load PCNA onto leading strand DNA, but its structure and the loading mechanism have been unknown. By cryo-EM analysis of in vitro assembled human CTF18-RFC-DNA-PCNA complex, we have captured seven loading intermediates, revealing a detailed PCNA loading mechanism onto a 3'-ss/dsDNA junction by CTF18-RFC. Interestingly, the alternative loader has evolved a highly mobile CTF18 AAA+ module likely to lower the loading activity, perhaps to avoid competition with the RFC and to limit its role to leading strand clamp loading. To compensate for the lost stability due to the mobile AAA+ module, CTF18 has evolved a unique ß-hairpin motif that reaches across RFC2 to interact with RFC5, thereby stabilizing the pentameric complex. Further, we found that CTF18 also contains a separation pin to locally melt DNA from the 3'-end of the primer; this ensures its ability to load PCNA to any 3'-ss/dsDNA junction, facilitated by the binding energy of the E-plug to the major groove. Our study reveals unique structural features of the human CTF18-RFC and contributes to a broader understanding of PCNA loading by the alternative clamp loaders.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Microscopía por Crioelectrón , Proteínas Nucleares , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , Humanos , Microscopía por Crioelectrón/métodos , ADN/metabolismo , ADN/química , Replicación del ADN , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química
2.
J Biol Chem ; 300(4): 107166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490435

RESUMEN

Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.


Asunto(s)
Replicación del ADN , Escherichia coli , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformación Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/genética , Modelos Moleculares , Estructura Cuaternaria de Proteína
3.
J Biol Chem ; 300(4): 107138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447794

RESUMEN

Short tandem repeats are inherently unstable during DNA replication depending on repeat length, and the expansion of the repeat length in the human genome is responsible for repeat expansion disorders. Pentanucleotide AAGGG and ACAGG repeat expansions in intron 2 of the gene encoding replication factor C subunit 1 (RFC1) cause cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and other phenotypes of late-onset cerebellar ataxia. Herein, we reveal the structural polymorphism of the RFC1 repeats associated with CANVAS in vitro. Single-stranded AAGGG repeat DNA formed a hybrid-type G-quadruplex, whereas its RNA formed a parallel-type G-quadruplex with three layers. The RNA of the ACAGG repeat formed hairpin structure comprising C-G and G-C base pairs with A:A and GA:AG mismatched repeats. Furthermore, both pathogenic repeat RNAs formed more rigid structures than those of the nonpathogenic repeat RNAs. These findings provide novel insights into the structural polymorphism of the RFC1 repeats, which may be closely related to the disease mechanism of CANVAS.


Asunto(s)
Ataxia Cerebelosa , Expansión de las Repeticiones de ADN , Enfermedades del Sistema Nervioso Periférico , Proteína de Replicación C , Enfermedades Vestibulares , Humanos , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , G-Cuádruplex , Repeticiones de Microsatélite , Polimorfismo Genético , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química , ARN/química , ARN/genética , ARN/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/metabolismo
4.
Bioessays ; 44(11): e2200154, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36116108

RESUMEN

Clamp loaders are pentameric AAA+ assemblies that use ATP to open and close circular DNA sliding clamps around DNA. Clamp loaders show homology in all organisms, from bacteria to human. The eukaryotic PCNA clamp is loaded onto 3' primed DNA by the replication factor C (RFC) hetero-pentameric clamp loader. Eukaryotes also have three alternative RFC-like clamp loaders (RLCs) in which the Rfc1 subunit is substituted by another protein. One of these is the yeast Rad24-RFC (Rad17-RFC in human) that loads a 9-1-1 heterotrimer clamp onto a recessed 5' end of DNA. Recent structural studies of Rad24-RFC have discovered an unexpected 5' DNA binding site on the outside of the clamp loader and reveal how a 5' end can be utilized for loading the 9-1-1 clamp onto DNA. In light of these results, new studies reveal that RFC also contains a 5' DNA binding site, which functions in gap repair. These studies also reveal many new features of clamp loaders. As reviewed herein, these recent studies together have transformed our view of the clamp loader mechanism.


Asunto(s)
Daño del ADN , Proteínas de Saccharomyces cerevisiae , Humanos , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Replicación del ADN , ADN/metabolismo , Adenosina Trifosfato/metabolismo , ADN Circular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Elife ; 112022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939393

RESUMEN

The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3' end (3' ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3' ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.


Asunto(s)
ADN , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , ADN/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Conformación Proteica , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Elife ; 112022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35829698

RESUMEN

RFC uses ATP to assemble PCNA onto primed sites for replicative DNA polymerases δ and ε. The RFC pentamer forms a central chamber that binds 3' ss/ds DNA junctions to load PCNA onto DNA during replication. We show here five structures that identify a second DNA binding site in RFC that binds a 5' duplex. This 5' DNA site is located between the N-terminal BRCT domain and AAA+ module of the large Rfc1 subunit. Our structures reveal ideal binding to a 7-nt gap, which includes 2 bp unwound by the clamp loader. Biochemical studies show enhanced binding to 5 and 10 nt gaps, consistent with the structural results. Because both 3' and 5' ends are present at a ssDNA gap, we propose that the 5' site facilitates RFC's PCNA loading activity at a DNA damage-induced gap to recruit gap-filling polymerases. These findings are consistent with genetic studies showing that base excision repair of gaps greater than 1 base requires PCNA and involves the 5' DNA binding domain of Rfc1. We further observe that a 5' end facilitates PCNA loading at an RPA coated 30-nt gap, suggesting a potential role of the RFC 5'-DNA site in lagging strand DNA synthesis.


Asunto(s)
ADN , Proteínas de Saccharomyces cerevisiae , Microscopía por Crioelectrón , ADN/metabolismo , Reparación del ADN , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Elife ; 112022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35731107

RESUMEN

Clamp loaders place circular sliding clamp proteins onto DNA so that clamp-binding partner proteins can synthesize, scan, and repair the genome. DNA with nicks or small single-stranded gaps are common clamp-loading targets in DNA repair, yet these substrates would be sterically blocked given the known mechanism for binding of primer-template DNA. Here, we report the discovery of a second DNA binding site in the yeast clamp loader replication factor C (RFC) that aids in binding to nicked or gapped DNA. This DNA binding site is on the external surface and is only accessible in the open conformation of RFC. Initial DNA binding at this site thus provides access to the primary DNA binding site in the central chamber. Furthermore, we identify that this site can partially unwind DNA to create an extended single-stranded gap for DNA binding in RFC's central chamber and subsequent ATPase activation. Finally, we show that deletion of the BRCT domain, a major component of the external DNA binding site, results in defective yeast growth in the presence of DNA damage where nicked or gapped DNA intermediates occur. We propose that RFC's external DNA binding site acts to enhance DNA binding and clamp loading, particularly at DNA architectures typically found in DNA repair.


Asunto(s)
Adenosina Trifosfato , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Nat Struct Mol Biol ; 29(4): 376-385, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314830

RESUMEN

The 9-1-1 DNA checkpoint clamp is loaded onto 5'-recessed DNA to activate the DNA damage checkpoint that arrests the cell cycle. The 9-1-1 clamp is a heterotrimeric ring that is loaded in Saccharomyces cerevisiae by Rad24-RFC (hRAD17-RFC), an alternate clamp loader in which Rad24 replaces Rfc1 in the RFC1-5 clamp loader of proliferating cell nuclear antigen (PCNA). The 9-1-1 clamp loading mechanism has been a mystery, because, unlike RFC, which loads PCNA onto a 3'-recessed junction, Rad24-RFC loads the 9-1-1 ring onto a 5'-recessed DNA junction. Here we report two cryo-EM structures of Rad24-RFC-DNA with a closed or 27-Å open 9-1-1 clamp. The structures reveal a completely unexpected mechanism by which a clamp can be loaded onto DNA. Unlike RFC, which encircles DNA, Rad24 binds 5'-DNA on its surface, not inside the loader, and threads the 3' ssDNA overhang into the 9-1-1 clamp from above the ring.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular , Antígeno Nuclear de Célula en Proliferación/genética , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Elife ; 112022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179493

RESUMEN

Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.


Asunto(s)
Replicación del ADN , Saccharomyces cerevisiae , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/genética
10.
Sci Rep ; 11(1): 21817, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34751190

RESUMEN

Proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity clamp for eukaryotic DNA polymerases and a binding platform for many DNA replication and repair proteins. The enzymatic activities of PCNA loading and unloading have been studied extensively in vitro. However, the subcellular locations of PCNA loaders, replication complex C (RFC) and CTF18-RFC-like-complex (RLC), and PCNA unloader ATAD5-RLC remain elusive, and the role of their subunits RFC2-5 is unknown. Here we used protein fractionation to determine the subcellular localization of RFC and RLCs and affinity purification to find molecular requirements for the newly defined location. All RFC/RLC proteins were detected in the nuclease-resistant pellet fraction. RFC1 and ATAD5 were not detected in the non-ionic detergent-soluble and nuclease-susceptible chromatin fractions, independent of cell cycle or exogenous DNA damage. We found that small RFC proteins contribute to maintaining protein levels of the RFC/RLCs. RFC1, ATAD5, and RFC4 co-immunoprecipitated with lamina-associated polypeptide 2 (LAP2) α which regulates intranuclear lamin A/C. LAP2α knockout consistently reduced detection of RFC/RLCs in the pellet fraction, while marginally affecting total protein levels. Our findings strongly suggest that PCNA-mediated DNA transaction occurs through regulatory machinery associated with nuclear structures, such as the nuclear matrix.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Animales , Ciclo Celular , Fraccionamiento Celular , Células Cultivadas , Cromatina/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Lámina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Estabilidad Proteica , Subunidades de Proteína , Proteína de Replicación C/química , Fracciones Subcelulares/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(38): 23571-23580, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32907938

RESUMEN

DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5'-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a "limited change/induced fit" mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Replicación del ADN/fisiología , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Humanos , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/ultraestructura , Proteína de Replicación C/química , Proteína de Replicación C/metabolismo , Proteína de Replicación C/ultraestructura
12.
J Biol Chem ; 293(8): 2661-2674, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29196608

RESUMEN

TRIM5α is an important host restriction factor that could potently block retrovirus infection. The SPRY domain of TRIM5α mediates post-entry restriction by recognition of and binding to the retroviral capsid. Human TRIM5α also functions as an innate immune sensor to activate AP-1 and NF-κB signaling, which subsequently restrict virus replication. Previous studies have shown that the AP-1 and NF-κB signaling activation relies on the RING motif of TRIM5α. In this study, we have demonstrated that the SPRY domain is essential for rhesus macaque TRIM5α to activate AP-1 but not NF-κB signaling. The AP-1 activation mainly depends on all of the ß-sheet barrel on SPRY structure of TRIM5α. Furthermore, the SPRY-mediated auto-ubiquitination of TRIM5α is required for AP-1 activation. This study reports that rhesus macaque TRIM5α mainly undergoes Lys27-linked and Met1-linked auto-polyubiquitination. Finally, we found that the TRIM5α signaling function was positively correlated with its retroviral restriction activity. This study discovered an important role of the SPRY domain in immune signaling and antiviral activity and further expanded our knowledge of the antiviral mechanism of TRIM5α.


Asunto(s)
Dominio B30.2-SPRY , Modelos Moleculares , Proteína de Replicación C/metabolismo , Transducción de Señal , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitinación , Animales , Activación Enzimática , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Macaca fascicularis , Macaca mulatta , FN-kappa B/agonistas , FN-kappa B/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica en Lámina beta , Dominios RING Finger , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/genética , Especificidad de la Especie , Proteínas de Motivos Tripartitos/química , Proteínas de Motivos Tripartitos/genética
13.
Structure ; 26(1): 137-144.e3, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29225079

RESUMEN

Ctf18-RFC is an alternative PCNA loader which plays important but poorly understood roles in multiple DNA replication-associated processes. To fulfill its specialist roles, the Ctf18-RFC clamp loader contains a unique module in which the Dcc1-Ctf8 complex is bound to the C terminus of Ctf18 (the Ctf18-1-8 module). Here, we report the structural and functional characterization of the heterotetrameric complex formed between Ctf18-1-8 and a 63 kDa fragment of DNA polymerase ɛ. Our data reveal that Ctf18-1-8 binds stably to the polymerase and far from its other functional sites, suggesting that Ctf18-RFC could be associated with Pol ɛ throughout normal replication as the leading strand clamp loader. We also show that Pol ɛ and double-stranded DNA compete to bind the same winged-helix domain on Dcc1, with Pol ɛ being the preferred binding partner, thus suggesting that there are two alternative pathways to recruit Ctf18-RFC to sites of replication.


Asunto(s)
Proteínas Cromosómicas no Histona/química , ADN Polimerasa II/química , Replicación del ADN , Proteínas de Unión al ADN/química , ADN/química , Proteína de Replicación C/química , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Unión Competitiva , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Clonación Molecular , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
14.
J Biol Chem ; 292(38): 15892-15906, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28808059

RESUMEN

DNA polymerases depend on circular sliding clamps for processive replication. Clamps must be loaded onto primer-template DNA (ptDNA) by clamp loaders that open and close clamps around ptDNA in an ATP-fueled reaction. All clamp loaders share a core structure in which five subunits form a spiral chamber that binds the clamp at its base in a twisted open form and encloses ptDNA within, while binding and hydrolyzing ATP to topologically link the clamp and ptDNA. To understand how clamp loaders perform this complex task, here we focused on conserved arginines that might play a central coordinating role in the mechanism because they can alternately contact ptDNA or Walker B glutamate in the ATPase site and lie close to the clamp loader-clamp-binding interface. We mutated Arg-84, Arg-88, and Arg-101 in the ATPase-active B, C, and D subunits of Saccharomyces cerevisiae replication factor C (RFC) clamp loader, respectively, and assessed the impact on multiple transient events in the reaction: proliferating cell nuclear antigen (PCNA) clamp binding/opening/closure/release, ptDNA binding/release, and ATP hydrolysis/product release. The results show that these arginines relay critical information between the PCNA-binding, DNA-binding, and ATPase sites at all steps of the reaction, particularly at a checkpoint before RFC commits to ATP hydrolysis. Moreover, their actions are subunit-specific with RFC-C Arg-88 serving as an accelerator that enables rapid ATP hydrolysis upon contact with ptDNA and RFC-D Arg-101 serving as a brake that confers specificity for ptDNA as the correct substrate for loading PCNA.


Asunto(s)
Biocatálisis , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/metabolismo , Adenosina Trifosfato/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Hidrólisis , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
15.
Crit Rev Oncol Hematol ; 111: 133-143, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28259288

RESUMEN

Excision repair cross-complementation group 1 (ERCC1) is a key component in DNA repair mechanisms and may influence the tumor DNA-targeting effect of the chemotherapeutic agent oxaliplatin. Germline ERCC1 polymorphisms may alter the protein expression and published data on their predictive and prognostic value have so far been contradictory. In the present article we review available evidence on the clinical role and utility of ERCC1 polymorphisms and, in the absence of a 'perfect' trial, what we call the 'sliding doors' trial, we present the data of ERCC1 genotyping in our local patient population. We found a useful predictive value for oxaliplatin-induced risk of anemia.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/genética , Reparación del ADN , ADN de Neoplasias/genética , Proteínas de Unión al ADN/química , Endonucleasas/química , Femenino , Humanos , Persona de Mediana Edad , Compuestos Organoplatinos/administración & dosificación , Oxaliplatino , Polimorfismo de Nucleótido Simple , Pronóstico , Proteína de Replicación C/química , Proteína de Replicación C/genética , Factores de Transcripción/química , Factores de Transcripción/genética
16.
Biochim Biophys Acta ; 1854(1): 31-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450506

RESUMEN

DNA polymerases require a sliding clamp to achieve processive DNA synthesis. The toroidal clamps are loaded onto DNA by clamp loaders, members of the AAA+family of ATPases. These enzymes utilize the energy of ATP binding and hydrolysis to perform a variety of cellular functions. In this study, a clamp loader-clamp binding assay was developed to measure the rates of ATP-dependent clamp binding and ATP-hydrolysis-dependent clamp release for the Saccharomyces cerevisiae clamp loader (RFC) and clamp (PCNA). Pre-steady-state kinetics of PCNA binding showed that although ATP binding to RFC increases affinity for PCNA, ATP binding rates and ATP-dependent conformational changes in RFC are fast relative to PCNA binding rates. Interestingly, RFC binds PCNA faster than the Escherichia coli γ complex clamp loader binds the ß-clamp. In the process of loading clamps on DNA, RFC maintains contact with PCNA while PCNA closes, as the observed rate of PCNA closing is faster than the rate of PCNA release, precluding the possibility of an open clamp dissociating from DNA. Rates of clamp closing and release are not dependent on the rate of the DNA binding step and are also slower than reported rates of ATP hydrolysis, showing that these rates reflect unique intramolecular reaction steps in the clamp loading pathway.


Asunto(s)
Adenosina Trifosfato/química , Antígeno Nuclear de Célula en Proliferación/química , Proteína de Replicación C/química , Saccharomyces cerevisiae/química , Adenosina Trifosfato/metabolismo , Unión Competitiva , Catálisis , Cumarinas/química , Cumarinas/metabolismo , ADN/química , ADN/metabolismo , Cinética , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Mutación , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
17.
Proc Natl Acad Sci U S A ; 110(19): 7672-7, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610416

RESUMEN

Proliferating cell nuclear antigen (PCNA) is required for DNA homologous recombination (HR), but its exact role is unclear. Here, we investigated the loading of PCNA onto a synthetic D-loop (DL) intermediate of HR and the functional interactions of PCNA with Rad51 recombinase and DNA polymerase (Pol) δ, Pol η, and Pol ζ. PCNA was loaded onto the synthetic DL as efficiently as it was loaded onto a primed DNA substrate. Efficient PCNA loading requires Replication Protein A, which is associated with the displaced ssDNA loop and provides a binding site for the clamp-loader Replication Factor C. Loaded PCNA greatly stimulates DNA synthesis by Pol δ within the DL but does not affect primer recognition by Pol δ. This suggests that the essential role of PCNA in HR is not recruitment of Pol δ to the DL but stimulation of Pol δ to displace a DNA strand during DL extension. Both Pol η and Pol ζ extended the DL more efficiently than Pol δ in the absence of PCNA, but little or no stimulation was observed in the presence of PCNA. Finally, Rad51 inhibited both the loading of PCNA onto the DL and the extension of the DL by Pol δ and Pol η. However, preloaded PCNA on the DL counteracts the Rad51-mediated inhibition of the DL extension. This suggests that the inhibition of postinvasion DNA synthesis by Rad51 occurs mostly at the step of PCNA loading.


Asunto(s)
ADN Polimerasa III/química , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , Regulación Enzimológica de la Expresión Génica , Antígeno Nuclear de Célula en Proliferación/química , ADN de Cadena Simple/química , Recombinasa Rad51/química , Proteína de Replicación A/química , Proteína de Replicación C/química
18.
Nucleic Acids Res ; 41(2): 855-68, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23175608

RESUMEN

Genomic integrity is preserved by the action of protein complexes that control DNA homeostasis. These include the sliding clamps, trimeric protein rings that are arranged around DNA by clamp loaders. Replication factor C (RFC) is the clamp loader for proliferating cell nuclear antigen, which acts on DNA replication. Other processes that require mobile contact of proteins with DNA use alternative RFC complexes that exchange RFC1 for CTF18 or RAD17. Phosphoinositide 3-kinases (PI3K) are lipid kinases that generate 3-poly-phosphorylated-phosphoinositides at the plasma membrane following receptor stimulation. The two ubiquitous isoforms, PI3Kalpha and PI3Kbeta, have been extensively studied due to their involvement in cancer and nuclear PI3Kbeta has been found to regulate DNA replication and repair, processes controlled by molecular clamps. We studied here whether PI3Kbeta directly controls the process of molecular clamps loading. We show that PI3Kbeta associated with RFC1 and RFC1-like subunits. Only when in complex with PI3Kbeta, RFC1 bound to Ran GTPase and localized to the nucleus, suggesting that PI3Kbeta regulates RFC1 nuclear import. PI3Kbeta controlled not only RFC1- and RFC-RAD17 complexes, but also RFC-CTF18, in turn affecting CTF18-mediated chromatid cohesion. PI3Kbeta thus has a general function in genomic stability by controlling the localization and function of RFC complexes.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Proteína de Replicación C/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/química , Fosfatidilinositol 3-Quinasa Clase Ia/fisiología , Reparación del ADN , Replicación del ADN , Humanos , Subunidades de Proteína/metabolismo , Proteína de Replicación C/antagonistas & inhibidores , Proteína de Replicación C/química , Proteína de Unión al GTP ran/metabolismo
19.
Genes Cells ; 17(11): 923-37, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23078585

RESUMEN

The DNA sliding clamp is a multifunctional protein involved in cellular DNA transactions. In Archaea and Eukaryota, proliferating cell nuclear antigen (PCNA) is the sliding clamp. The ring-shaped PCNA encircles double-stranded DNA within its central hole and tethers other proteins on DNA. The majority of Crenarchaeota, a subdomain of Archaea, have multiple PCNA homologues, and they are capable of forming heterotrimeric rings for their functions. In contrast, most organisms in Euryarchaeota, the other major subdomain, have a single PCNA forming a homotrimeric ring structure. Among the Euryarchaeota whose genome is sequenced, Thermococcus kodakarensis is the only species with two genes encoding PCNA homologues on its genome. We cloned the two genes from the T. kodakarensis genome, and the gene products, PCNA1 and PCNA2, were characterized. PCNA1 stimulated the DNA synthesis reactions of the two DNA polymerases, PolB and PolD, from T. kodakarensis in vitro. PCNA2, however, only had an effect on PolB. We were able to disrupt the gene for PCNA2, whereas gene disruption for PCNA1 was not possible, suggesting that PCNA1 is essential for DNA replication. The sensitivities of the Δpcna2 mutant strain to ultraviolet irradiation (UV), methyl methanesulfonate (MMS) and mitomycin C (MMC) were indistinguishable from those of the wild-type strain.


Asunto(s)
Proteínas Arqueales/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Thermococcus/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfatasas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Daño del ADN , ADN Polimerasa III/química , ADN Polimerasa beta/química , Reparación del ADN , Replicación del ADN , ADN de Archaea/química , ADN de Archaea/metabolismo , Técnicas de Inactivación de Genes , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/aislamiento & purificación , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/aislamiento & purificación , Proteína de Replicación C/metabolismo , Thermococcus/genética , Thermococcus/crecimiento & desarrollo
20.
Mol Endocrinol ; 26(11): 1821-35, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22949521

RESUMEN

There is widespread interest in defining factors and mechanisms that suppress the proliferation of cancer cells. Retinoic acid (RA) is a potent suppressor of mammary cancer and developmental embryonic cell proliferation. However, the molecular mechanisms by which 9-cis-RA signaling induces growth inhibition in RA-sensitive breast cancer and embryonic cells are not apparent. Here, we provide evidence that the inhibitory effect of 9-cis-RA on cell proliferation depends on 9-cis-RA-dependent interaction of retinoid X receptor α (RXRα) with replication factor C3 (RFC3), which is a subunit of the RFC heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp on DNA. An RFC3 ortholog in a sea urchin cDNA library was isolated by using the ligand-binding domain of RXRα as bait in a yeast two-hybrid screening. The interaction of RFC3 with RXRα depends on 9-cis-RA and bexarotene, but not on all-trans-RA or an RA receptor (RAR)-selective ligand. Truncation and mutagenesis experiments demonstrated that the C-terminal LXXLL motifs in both human and sea urchin RFC3 are critical for the interaction with RXRα. The transient interaction between 9-cis-RA-activated RXRα and RFC3 resulted in reconfiguration of the PCNA-RFC complex. Furthermore, we found that knockdown of RXRα or overexpression of RFC3 impairs the ability of 9-cis-RA to inhibit proliferation of MCF-7 breast cancer cells and sea urchin embryogenesis. Our results indicate that 9-cis-RA-activated RXRα suppresses the growth of RA-sensitive breast cancer and embryonic cells through RFC3.


Asunto(s)
Neoplasias de la Mama/patología , Embrión no Mamífero/citología , Proteína de Replicación C/metabolismo , Receptor alfa X Retinoide/metabolismo , Retinoides/farmacología , Erizos de Mar/embriología , Tretinoina/farmacología , Alitretinoína , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Desarrollo Embrionario/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ligandos , Microinyecciones , Modelos Biológicos , Datos de Secuencia Molecular , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteína de Replicación C/química , Proteína de Replicación C/genética , Receptor alfa X Retinoide/genética , Erizos de Mar/efectos de los fármacos , Erizos de Mar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...