Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Cancer ; 24(1): 465, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622522

RESUMEN

BACKGROUND: Gastric cancer (GC) lacks serum biomarkers with clinical diagnostic value. Multi-omics analysis is an important approach to discovering cancer biomarkers. This study aimed to identify and validate serum biomarkers for GC diagnosis by cross-analysis of proteomics and transcriptomics datasets. METHODS: A cross-omics analysis was performed to identify overlapping differentially expressed genes (DEGs) between our previous aptamer-based GC serum proteomics dataset and the GC tissue RNA-Seq dataset in The Cancer Genome Atlas (TCGA) database, followed by lasso regression and random forest analysis to select key overlapping DEGs as candidate biomarkers for GC. The mRNA levels and diagnostic performance of these candidate biomarkers were analyzed in the original and independent GC datasets to select valuable candidate biomarkers. The valuable candidate biomarkers were subjected to bioinformatics analysis to select those closely associated with the biological behaviors of GC as potential biomarkers. The clinical diagnostic value of the potential biomarkers was validated using serum samples, and their expression levels and functions in GC cells were validated using in vitro cell experiments. RESULTS: Four candidate biomarkers (ILF2, PGM2L1, CHD7, and JCHAIN) were selected. Their mRNA levels differed significantly between tumor and normal tissues and showed different diagnostic performances for GC, with areas under the receiver operating characteristic curve (AUROCs) of 0.629-0.950 in the TCGA dataset and 0.736-0.840 in the Gene Expression Omnibus (GEO) dataset. In the bioinformatics analysis, only ILF2 (interleukin enhancer-binding factor 2) gene levels were associated with immune cell infiltration, some checkpoint gene expression, chemotherapy sensitivity, and immunotherapy response. Serum levels of ILF2 were higher in GC patients than in controls, with an AUROC of 0.944 for the diagnosis of GC, and it was also detected in the supernatants of GC cells. Knockdown of ILF2 by siRNA significantly reduced the proliferation and colony formation of GC cells. Overexpression of ILF2 significantly promotes the proliferation and colony formation of gastric cancer cells. CONCLUSIONS: Trans-omics analysis of proteomics and transcriptomics is an efficient approach for discovering serum biomarkers, and ILF2 is a potential diagnostic biomarker and therapeutic target of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína del Factor Nuclear 45/genética
2.
J Exp Clin Cancer Res ; 43(1): 22, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238853

RESUMEN

BACKGROUND: Triple-negative breast cancer is a complex breast malignancy subtype characterized by poor prognosis. The pursuit of effective therapeutic approaches for this subtype is considerably challenging. Notably, recent research has illuminated the key role of the tricarboxylic acid cycle in cancer metabolism and the complex landscape of tumor development. Concurrently, an emerging body of evidence underscores the noteworthy role that long non-coding RNAs play in the trajectory of breast cancer development. Despite this growing recognition, the exploration of whether long non-coding RNAs can influence breast cancer progression by modulating the tricarboxylic acid cycle has been limited. Moreover, the underlying mechanisms orchestrating these interactions have not been identified. METHODS: The expression levels of LINC00571 and IDH2 were determined through the analysis of the public TCGA dataset, transcriptome sequencing, qRT‒PCR, and Western blotting. The distribution of LINC00571 was assessed using RNA fluorescence in situ hybridization. Alterations in biological effects were evaluated using CCK-8, colony formation, EdU, cell cycle, and apoptosis assays and a tumor xenograft model. To elucidate the interaction between LINC00571, HNRNPK, and ILF2, RNA pull-down, mass spectrometry, coimmunoprecipitation, and RNA immunoprecipitation assays were performed. The impacts of LINC00571 and IDH2 on tricarboxylic acid cycle metabolites were investigated through measurements of the oxygen consumption rate and metabolite levels. RESULTS: This study revealed the complex interactions between a novel long non-coding RNA (LINC00571) and tricarboxylic acid cycle metabolism. We validated the tumor-promoting role of LINC00571. Mechanistically, LINC00571 facilitated the interaction between HNRNPK and ILF2, leading to reduced ubiquitination and degradation of ILF2, thereby stabilizing its expression. Furthermore, ILF2 acted as a transcription factor to enhance the expression of its downstream target gene IDH2. CONCLUSIONS: Our study revealed that the LINC00571/HNRNPK/ILF2/IDH2 axis promoted the progression of triple-negative breast cancer by regulating tricarboxylic acid cycle metabolites. This discovery provides a novel theoretical foundation and new potential targets for the clinical treatment of triple-negative breast cancer.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/patología , Ciclo del Ácido Cítrico , Hibridación Fluorescente in Situ , ARN/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Proteína del Factor Nuclear 45/genética , Proteína del Factor Nuclear 45/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298108

RESUMEN

Although DNA damage repair plays a critical role in cancer chemotherapy, the function of lncRNAs in this process remains largely unclear. In this study, in silico screening identified H19 as an lncRNA that potentially plays a role in DNA damage response and sensitivity to PARP inhibitors. Increased expression of H19 is correlated with disease progression and with a poor prognosis in breast cancer. In breast cancer cells, forced expression of H19 promotes DNA damage repair and resistance to PARP inhibition, whereas H19 depletion diminishes DNA damage repair and increases sensitivity to PARP inhibitors. H19 exerted its functional roles via direct interaction with ILF2 in the cell nucleus. H19 and ILF2 increased BRCA1 stability via the ubiquitin-proteasome proteolytic pathway via the H19- and ILF2-regulated BRCA1 ubiquitin ligases HUWE1 and UBE2T. In summary, this study has identified a novel mechanism to promote BRCA1-deficiency in breast cancer cells. Therefore, targeting the H19/ILF2/BRCA1 axis might modulate therapeutic approaches in breast cancer.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/uso terapéutico , Ubiquitina/metabolismo , Daño del ADN , Proteína del Factor Nuclear 45/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047232

RESUMEN

Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.


Asunto(s)
Neoplasias de la Próstata , Estructuras R-Loop , Humanos , Masculino , Daño del ADN , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína del Factor Nuclear 45/genética , Proteína del Factor Nuclear 45/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteómica
5.
Bioengineered ; 13(4): 8785-8797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35333683

RESUMEN

Oral squamous cell carcinoma (OSCC) is a frequent threatening head and neck malignancy. Serine hydroxymethyltransferase 2 (SHMT2) was identified to be upregulated in OSCC and its high expression was associated with poor patient prognosis. This paper set out to assess the influence of SHMT2 on OSCC progression and the potential mechanisms related to interleukin enhancer-binding factor 2 (ILF2). First of all, reverse transcription-quantitative PCR (RT-qPCR) and western blot examined the expression of SHMT2 and ILF2 in OSCC cells. Cell Counting Kit-8 (CCK-8) and colony formation assays appraised cell proliferation. Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling (TUNEL) staining was to estimate the apoptotic rate of cells. Further, wound healing and transwell assays verified the migration and invasion of cells. Western blot was adopted to detect the expression of factors related to apoptosis, migration, and epithelial-mesenchymal transition (EMT). The possible interaction of SHMT2 and ILF2 was predicted by a Molecular INTeraction (MINT) and BioGRID databases and determined using co-immunoprecipitation (IP) assay. Subsequently, ILF2 was overexpressed to investigate whether SHMT2 regulated OSCC progression by binding to ILF2. Results implied that SHMT2 possessed increased expression in OSCC cells, and OSCC cell viability, migration, invasion, EMT were inhibited and apoptosis was potentiated after its silencing. ILF2 bound to SHMT2 and ILF2 expression was downregulated after SHMT2 silencing in OSCC cells. Importantly, ILF2 overexpression abolished the suppressive role of SHMT2 interference in the progression of OSCC. Collectively, SHMT2 could promote the progression of OSCC by binding to ILF2.


Asunto(s)
Glicina Hidroximetiltransferasa , Neoplasias de la Boca , Proteína del Factor Nuclear 45 , Carcinoma de Células Escamosas de Cabeza y Cuello , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Glicina Hidroximetiltransferasa/genética , Humanos , Interleucinas , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Proteína del Factor Nuclear 45/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
6.
Sci Rep ; 12(1): 2278, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145187

RESUMEN

DNA cytosine deaminase APOBEC3B (A3B) is an endogenous source of mutations in many human cancers, including multiple myeloma. A3B proteins form catalytically inactive high molecular mass (HMM) complexes in nuclei, however, the regulatory mechanisms of A3B deaminase activity in HMM complexes are still unclear. Here, we performed mass spectrometry analysis of A3B-interacting proteins from nuclear extracts of myeloma cell lines and identified 30 putative interacting proteins. These proteins are involved in RNA metabolism, including RNA binding, mRNA splicing, translation, and regulation of gene expression. Except for SAFB, these proteins interact with A3B in an RNA-dependent manner. Most of these interacting proteins are detected in A3B HMM complexes by density gradient sedimentation assays. We focused on two interacting proteins, ILF2 and SAFB. We found that overexpressed ILF2 enhanced the deaminase activity of A3B by 30%, while SAFB did not. Additionally, siRNA-mediated knockdown of ILF2 suppressed A3B deaminase activity by 30% in HEK293T cell lysates. Based on these findings, we conclude that ILF2 can interact with A3B and enhance its deaminase activity in HMM complexes.


Asunto(s)
Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Regulación Enzimológica de la Expresión Génica/genética , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Mieloma Múltiple/genética , Mutación/genética , Proteína del Factor Nuclear 45/genética , Proteína del Factor Nuclear 45/fisiología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Proteína del Factor Nuclear 45/metabolismo , Mapas de Interacción de Proteínas/genética
7.
Clin Transl Med ; 11(10): e608, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709752

RESUMEN

BACKGROUND: 1q21.3 amplification, which is frequently observed in metastatic melanoma, is associated with cancer progression. Interleukin enhancer-binding factor 2 (ILF2) is located in the 1q21.3 amplified region, but its functional role or contribution to tumour aggressiveness in cutaneous melanoma is unknown. METHODS: In silico analyses were performed using the TCGA SKCM dataset with clinical annotations and three melanoma microarray cohorts from the GEO datasets. RNA in situ hybridisation and immunohistochemistry were utilised to validate the gene expression in melanoma tissues. Four stable melanoma cell lines were established for in vitro ILF2 functional characterisation. RESULTS: Our results showed that the ILF2 copy number variation (CNV) is positively correlated with ILF2 mRNA expression (r = 0.68, p < .0001). Additionally, ILF2 expression is significantly increased with melanoma progression (p < .0001), and significantly associated with poor overall survival for metastatic melanoma patients (p = .026). The overexpression of ILF2 (ILF2-OV) promotes proliferation in metastatic melanoma cells, whereas ILF2 knockdown decreases proliferation by blocking the cell cycle. Mechanistically, we demonstrated the interaction between ILF2 and the splicing factor U2AF2, whose knockdown reverses the proliferation effects mediated by ILF2-OV. Stage IIIB-C melanoma patients with high ILF2-U2AF2 expression showed significantly shorter overall survival (p = .024). Enhanced ILF2/U2AF2 expression promotes a more efficient DNA-damage repair by increasing RAD50 and ATM mRNA expression. Paradoxically, metastatic melanoma cells with ILF2-OV were more sensitive to ATM inhibitors. CONCLUSION: Our study uncovered that ILF2 amplification of the 1q21.3 chromosome is associated with melanoma progression and triggers a functional downstream pathway in metastatic melanoma promoting drug resistance.


Asunto(s)
Proliferación Celular/genética , Daño del ADN/genética , Melanoma/genética , Proteína del Factor Nuclear 45/genética , Proteína del Factor Nuclear 45/metabolismo , Neoplasias Cutáneas/genética , Línea Celular Tumoral , Células Cultivadas , Variaciones en el Número de Copia de ADN/genética , Humanos , Melanoma/metabolismo , Melanoma/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
8.
Life Sci ; 284: 119708, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34153299

RESUMEN

AIMS: Hepatocellular carcinoma (HCC) is a primary malignancy of the hepatocyte. Interleukin enhancer binding factor 2 (ILF2) plays a role in the development of HCC. However, the regulatory mechanisms of ILF2 expression in HCC remain unclear. In this study, we aimed to identify ILF2-targeting microRNAs (miRNAs) and to explore how they affect ILF2 expression in HCC. MAIN METHODS: The tissue specimens were collected from 25 HCC patients. The underlying regulatory mechanism of ILF2 expression in HCC progression was determined using luciferase reporter assay, quantitative real-time PCR, Western blotting, and BrdU incorporation assay. KEY FINDINGS: Of predicted miRNA candidates (miR-122-5p, miR-425-5p, miR-136-5p, miR-7-5p, miR-421 and miR-543), a statistically significant inverse correlation by linear correlation analysis was observed between miR-136-5p and ILF2 mRNA expressions in patients with HCC (r = -0.627, P < 0.001). Further analysis demonstrated that ILF2 was directly regulated by miR-136-5p. In addition, we showed that long noncoding RNA colorectal neoplasia differentially expressed-h (lncRNA CRNDE-h) transcript expression was significantly up-regulated in HCC, and a miR-136-5p binding site was newly found in the lncRNA CRNDE-h transcript sequence using IntaRNA tool. In terms of mechanism, highly-expressed lncRNA CRNDE-h transcript can sponge miR-136-5p, thereby preventing it from interacting with target ILF2 mRNA while promoting the proliferation of HCC cells. SIGNIFICANCE: The lncRNA CRNDE-h/miR-136-5p/ILF2 axis plays a significant regulatory role in HCC progression, which may partly explain the pathogenic mechanisms of HCC and may provide promising potential targets for the diagnosis, treatment, and prognosis of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Proteína del Factor Nuclear 45/genética , ARN Largo no Codificante/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , MicroARNs/genética , Proteína del Factor Nuclear 45/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Cancer Res ; 81(13): 3525-3538, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33975879

RESUMEN

Balancing mRNA nuclear export kinetics with its nuclear decay is critical for mRNA homeostasis control. How this equilibrium is aberrantly disrupted in esophageal cancer to acquire cancer stem cell properties remains unclear. Here we find that the RNA-binding protein interleukin enhancer binding factor 2 (ILF2) is robustly upregulated by nicotine, a major chemical component of tobacco smoke, via activation of JAK2/STAT3 signaling and significantly correlates with poor prognosis in heavy-smoking patients with esophageal cancer. ILF2 bound the THO complex protein THOC4 as a regulatory cofactor to induce selective interactions with pluripotency transcription factor mRNAs to promote their assembly into export-competent messenger ribonucleoprotein complexes. ILF2 facilitated nuclear mRNA export and inhibited hMTR4-mediated exosomal degradation to promote stabilization and expression of SOX2, NANOG, and SALL4, resulting in enhanced stemness and tumor-initiating capacity of esophageal cancer cells. Importantly, inducible depletion of ILF2 significantly increased the therapeutic efficiency of cisplatin and abrogated nicotine-induced chemoresistance in vitro and in vivo. These findings reveal a novel role of ILF2 in nuclear mRNA export and maintenance of cancer stem cells and open new avenues to overcome smoking-mediated chemoresistance in esophageal cancer. SIGNIFICANCE: This study defines a previously uncharacterized role of nicotine-regulated ILF2 in facilitating nuclear mRNA export to promote cancer stemness, suggesting a potential therapeutic strategy against nicotine-induced chemoresistance in esophageal cancer.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Esofágicas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Neoplásicas/patología , Nicotina/farmacología , Proteína del Factor Nuclear 45/metabolismo , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Agonistas Nicotínicos/farmacología , Proteína del Factor Nuclear 45/genética , Pronóstico , ARN Mensajero/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Tasa de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
EMBO Mol Med ; 13(3): e12834, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33555115

RESUMEN

Herein, we demonstrate that NFAT, a key regulator of the immune response, translocates from cytoplasm to nucleolus and interacts with NF45/NF90 complex to collaboratively promote rDNA transcription via triggering the directly binding of NF45/NF90 to the ARRE2-like sequences in rDNA promoter upon T-cell activation in vitro. The elevated pre-rRNA level of T cells is also observed in both mouse heart or skin transplantation models and in kidney transplanted patients. Importantly, T-cell activation can be significantly suppressed by inhibiting NF45/NF90-dependent rDNA transcription. Amazingly, CX5461, a rDNA transcription-specific inhibitor, outperformed FK506, the most commonly used immunosuppressant, both in terms of potency and off-target activity (i.e., toxicity), as demonstrated by a series of skin and heart allograft models. Collectively, this reveals NF45/NF90-mediated rDNA transcription as a novel signaling pathway essential for T-cell activation and as a new target for the development of safe and effective immunosuppressants.


Asunto(s)
Proteína del Factor Nuclear 45 , Proteínas del Factor Nuclear 90 , Animales , ADN Ribosómico/genética , Humanos , Inmunosupresores/farmacología , Ratones , Proteína del Factor Nuclear 45/genética , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/genética , Proteínas del Factor Nuclear 90/metabolismo , Regiones Promotoras Genéticas
11.
Dev Comp Immunol ; 118: 103975, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33383068

RESUMEN

Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates the functions of interleukin-2 (IL-2) at the levels of transcription, splicing and translation, and plays other critical roles in the immune system. ILF2 is well-documented in vertebrates, while little is currently known in crustacean species such as the Pacific white shrimp (Litopenaeus vannamei). In the present study, five cDNA for spliced isoforms of Lv-ILF2 were identified, in which four of them are the full-length long isoforms (Lv-ILF2-L1, Lv-ILF2-L2, Lv-ILF2-L3 and Lv-ILF2-L4) and one of them is a truncated short isoform (Lv-ILF2-S). The whole sequence of ILF2 gene from L. vannamei was obtained, which is 11,680 bp in length with 9 exons separated by 8 introns. All five isoforms contain a domain associated with zinc fingers (DZF). Two alternative splicing types (alternative 5' splice site and alternative 3' splice site) were identified in the five isoforms. The Lv-ILF2 mRNA showed a broad distribution in all detected tissues, and the Lv-ILF2-L transcript levels were higher than those of Lv-ILF2-S in corresponding tissues. The mRNA levels of Lv-ILF2-S in the hepatopancreas, heart, muscle and stomach, but not in the eyestalk, were significantly increased after challenges with Vibrio harveyi or lipopolysaccharide (LPS), while no significant changes were observed for the transcript levels of Lv-ILF2-L in these tissues under the same immune stimulants. On the contrary, the transcript levels of neither Lv-ILF2-S nor Lv-ILF2-L were affected by challenges of polyinosinic: polycytidylic acid [Poly (I:C)]. In addition, after knockdown of the Lv-ILF2 mRNA level by siRNA, the mortality of shrimp and the hepatopancreatic bacterial numbers were significantly increased under V. harveyi challenge, indicating that Lv-ILF2 might participate in the immune defenses against V. harveyi invasion. Collectively, our study here supplied the first evidence for a novel splicing mechanism of ILF2 transcripts, and provided a functional link between the Lv-ILF2 isoforms and the capacity against pathogenic Vibrio in penaeid shrimp.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Inmunidad Innata/genética , Proteína del Factor Nuclear 45/metabolismo , Penaeidae/inmunología , Vibrio/inmunología , Empalme Alternativo/inmunología , Animales , Acuicultura , Proteínas de Artrópodos/genética , Técnicas de Silenciamiento del Gen , Proteína del Factor Nuclear 45/genética , Penaeidae/microbiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Protein J ; 39(5): 411-421, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33009960

RESUMEN

Interleukin enhancer-binding factor 2 (ILF2) forms a heterodimer with interleukin enhancer-binding factor 3 (ILF3) via double-stranded RNA-binding motif and zinc finger associated domain and thus regulates gene expression and cancer cell growth. However, how ILF2 is degraded in cells remains elusive. In this work, using stable isotope labeling by amino acids in cell culture (SILAC) quantitative proteomics, we find that ILF2 is downregulated in cells expressing cereblon (CRBN). Using affinity purification and immunoblotting analysis, we demonstrate that CRBN interacts with ILF2 and functions as a substrate receptor of the cullin-4 RING E3 ligase complex. Biochemical experiments disclose that CRBN expression reduces ILF2 protein level and this reduction is diminished when the proteasome is inhibited. Upon protein synthesis inhibition, the degradation of ILF2 is enhanced by CRBN. Moreover, CRBN promotes the ubiquitination of ILF2 and thus results in the ubiquitin-mediated proteasomal degradation. Analyses of previously identified post-translational modification sites and the crystal structure of ILF2 discover the potential ubiquitination sites on ILF2. Through mutagenesis and biochemical experiments, we further reveal that the K45R mutation completely abolishes the effect of CRBN on ILF2, suggesting that this is the key residue responsible for its ubiquitination. Taken together, we identify an E3 ligase that regulates ILF2 and uncover a molecular pathway for its degradation. This work might be helpful to elucidate the molecular mechanism by which CRBN regulates diverse cellular functions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína del Factor Nuclear 45/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales/genética , Células HEK293 , Humanos , Proteína del Factor Nuclear 45/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina-Proteína Ligasas/genética
13.
Cell Rep ; 31(7): 107660, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433969

RESUMEN

In human cells, the expression of ∼1,000 genes is modulated throughout the cell cycle. Although some of these genes are controlled by specific transcriptional programs, very little is known about their post-transcriptional regulation. Here, we analyze the expression signature associated with all 687 RNA-binding proteins (RBPs) and identify 39 that significantly correlate with cell cycle mRNAs. We find that NF45 and NF90 play essential roles in mitosis, and transcriptome analysis reveals that they are necessary for the expression of a subset of mitotic mRNAs. Using proteomics, we identify protein clusters associated with the NF45-NF90 complex, including components of Staufen-mediated mRNA decay (SMD). We show that depletion of SMD components increases the binding of mitotic mRNAs to the NF45-NF90 complex and rescues cells from mitotic defects. Together, our results indicate that the NF45-NF90 complex plays essential roles in mitosis by competing with the SMD machinery for a common set of mRNAs.


Asunto(s)
Mitosis/fisiología , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Estabilidad del ARN/fisiología , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Mitosis/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteína del Factor Nuclear 45/genética , Proteínas del Factor Nuclear 90/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
14.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102467

RESUMEN

Photoactive RNA probes have unique advantages in the identification of microRNA (miR) targets due to their ability for efficient conjugation to the target sequences by covalent crosslinking, providing stable miR-mRNA complexes for further analysis. Here, we report a highly efficient and straightforward method for miR target identification that is based on photo-reactive chemical probes and RNA-seq technology (denotes PCP-Seq). UV reactive probes were prepared by incorporating psoralen in the specific position of the seed sequence of miR. Cancer cells that were transfected with the miR probes were treated with UV, following the isolation of poly(A) RNA and sequencing of the transcriptome. Quantitative analysis of RNA-seq reads and subsequent validation by qPCR, dual luciferase assay as well as western blotting confirmed that PCP-Seq could highly efficiently identify multiple targets of different miRs in the lung cancer cell line, such as targets PTTG1 and PTGR1 of miR-29a and ILF2 of miR-34a. Collectively, our data showed that PCP-Seq is a robust strategy for miR targets identification, and unique in the identification of the targets that escape degradation by miRISC and maintain normal cellular level, although their translation is repressed.


Asunto(s)
Carcinogénesis/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , Células A549 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteína del Factor Nuclear 45/genética , Proteína del Factor Nuclear 45/metabolismo , Securina/genética , Securina/metabolismo , Análisis de Secuencia de ARN/métodos
15.
Hum Cell ; 33(1): 131-139, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31612313

RESUMEN

Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) play an important role in the development and progression of human cancers. LncRNA LINC00470 has been reported to function as an oncogene in glioblastoma. Until now, the roles and underlying mechanisms of LINC00470 in the progression of hepatocellular carcinoma (HCC) remain unclear. Here, we found that LINC00470 was upregulated in HCC cells and tissues. High-level LINC00470 was significantly correlated with bigger tumor size, advanced TNM stage and poor prognosis in patients with HCC. Functional studies showed that knockdown of LINC00470 expression inhibited HCC cell proliferation and cell cycle progression, while overexpression of LINC00470 showed the opposite effects. Further investigation suggested that LINC00470 was associated with NF45/NF90 complex and increased its interaction with cyclin E1 mRNA, thus inhibiting the degradation of cyclin E1 mRNA. Additionally, knockdown of cyclin E1 in LINC00470-overexpressed cells abolished its promotive effects on HCC cell proliferation. In summary, our findings suggest that targeting LINC00470 could be a potential therapeutic approach in treating HCC patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteína del Factor Nuclear 45/genética , Proteínas del Factor Nuclear 90/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Humanos
16.
Viruses ; 12(1)2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878072

RESUMEN

Enterovirus 71 (EV71) infection causes hand-foot-mouth disease (HFMD), meningoencephalitis, neonatal sepsis, and even fatal encephalitis in children, thereby presenting a serious risk to public health. It is important to determine the mechanisms underlying the regulation of EV71 infection. In this study, we initially show that the interleukin enhancer-binding factor 2 (ILF2) reduces EV71 50% tissue culture infective dose (TCID50) and attenuates EV71 plaque-formation unit (PFU), thereby repressing EV71 infection. Microarray data analyses show that ILF2 mRNA is reduced upon EV71 infection. Cellular studies indicate that EV71 infection represses ILF2 mRNA expression and protein production in human leukemic monocytes (THP-1) -differentiated macrophages and human rhabdomyosarcoma (RD) cells. In addition, EV71 nonstructural protein 2B interacts with ILF2 in human embryonic kidney (HEK293T) cells. Interestingly, in the presence of EV71 2B, ILF2 is translocated from the nucleus to the cytoplasm, and it colocalizes with 2B in the cytoplasm. Therefore, we present a distinct mechanism by which EV71 antagonizes ILF2-mediated antiviral effects by inhibiting ILF2 expression and promoting ILF2 translocation from the nucleus to the cytoplasm through its 2B protein.


Asunto(s)
Núcleo Celular/metabolismo , Enterovirus Humano A/inmunología , Proteína del Factor Nuclear 45/antagonistas & inhibidores , Proteína del Factor Nuclear 45/genética , Translocación Genética , Proteínas no Estructurales Virales/metabolismo , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Células HEK293 , Humanos , Proteína del Factor Nuclear 45/inmunología , Rabdomiosarcoma/virología , Células THP-1 , Proteínas no Estructurales Virales/genética , Replicación Viral
17.
PLoS One ; 14(4): e0216042, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31022259

RESUMEN

Immediate early gene (IEG) transcription is rapidly activated by diverse stimuli. This transcriptional regulation is assumed to involve constitutively expressed nuclear factors that are targets of signaling cascades initiated at the cell membrane. NF45 (encoded by ILF2) and its heterodimeric partner NF90/NF110 (encoded by ILF3) are chromatin-interacting proteins that are constitutively expressed and localized predominantly in the nucleus. Previously, NF90/NF110 chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in K562 erythroleukemia cells revealed its enriched association with chromatin at active promoters and strong enhancers. NF90/NF110 specifically occupied the promoters of IEGs. Here, ChIP in serum-starved HEK293 cells demonstrated that NF45 and NF90/NF110 pre-exist and specifically occupy the promoters of IEG transcription factors EGR1, FOS and JUN. Cellular stimulation with phorbol myristyl acetate increased NF90/NF110 chromatin association, while decreasing NF45 chromatin association at promoters of EGR1, FOS and JUN. In HEK293 cells stably transfected with doxycycline-inducible shRNA vectors targeting NF90/NF110 or NF45, doxycycline-mediated knockdown of NF90/NF110 or NF45 attenuated the inducible expression of EGR1, FOS, and JUN at the levels of transcription, RNA and protein. Dynamic chromatin association of NF45 and NF90/NF110 at IEG promoters are observed upon stimulation, and NF45 and NF90/NF110 contribute to inducible transcription of IEGs. NF45 and NF90/NF110 operate as chromatin regulators of the immediate early response.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Proteína del Factor Nuclear 45/genética , Proteínas del Factor Nuclear 90/genética , Doxiciclina/farmacología , Células HEK293 , Humanos , Células K562 , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , Transcripción Genética/efectos de los fármacos
18.
Dis Markers ; 2017: 4387081, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28831206

RESUMEN

The aim of this study is to investigate the expression levels and clinical significance of ILF2 in gastric cancer. The mRNA and protein expression levels of ILF2 were, respectively, examined by quantitative real-time PCR (qRT-PCR) and Western blot from 21 paired fresh frozen GC tissues and corresponding normal gastric tissues. In order to analyze the expression pattern of ILF2 in GC, 60 paired paraffin-embedded GC slides and corresponding normal gastric slides were detected by immunohistochemistry (IHC) assay. The correlation between ILF2 protein expression levels and clinicopathological parameters, overall survival (OS), disease-free survival (DFS), and clinical prognosis were analyzed by statistical methods. Significantly higher levels of ILF2 were detected in GC tissues compared with normal controls at both mRNA and protein level. High expression of ILF2 was tightly correlated with depth of invasion, lymph node metastasis, pathological stage, and histological differentiation. Log-rank test showed that high expression of ILF2 was positively associated with poor clinical prognosis. Multivariate analysis identified that ILF2 was an independent prognostic factor for OS and DFS. Our findings suggest that ILF2 may be a valuable biomarker and a novel potential prognosis predictor for GC patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteína del Factor Nuclear 45/metabolismo , Neoplasias Gástricas/metabolismo , Anciano , Biomarcadores de Tumor/genética , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Proteína del Factor Nuclear 45/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
19.
Cancer Cell ; 32(1): 88-100.e6, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28669490

RESUMEN

Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.


Asunto(s)
Mieloma Múltiple/genética , Proteína del Factor Nuclear 45/fisiología , Empalme del ARN/genética , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Humanos , Proteína del Factor Nuclear 45/genética , Proteína del Factor Nuclear 45/metabolismo , Factor de Empalme U2AF/metabolismo , Células Tumorales Cultivadas , Proteína 1 de Unión a la Caja Y/metabolismo
20.
RNA ; 23(8): 1270-1284, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28487382

RESUMEN

While years of investigation have elucidated many aspects of embryonic stem cell (ESC) regulation, the contributions of post-transcriptional and translational mechanisms to the pluripotency network remain largely unexplored. In particular, little is known in ESCs about the function of RNA binding proteins (RBPs), the protein agents of post-transcriptional regulation. We performed an unbiased RNAi screen of RBPs in an ESC differentiation assay and identified two related genes, NF45 (Ilf2) and NF90/NF110 (Ilf3), whose knockdown promoted differentiation to an epiblast-like state. Characterization of NF45 KO, NF90 + NF110 KO, and NF110 KO ESCs showed that loss of NF45 or NF90 + NF110 impaired ESC proliferation and led to dysregulated differentiation down embryonic lineages. Additionally, we found that NF45 and NF90/NF110 physically interact and influence the expression of each other at different levels of regulation. Globally across the transcriptome, NF45 KO ESCs and NF90 + NF110 KO ESCs show similar expression changes. Moreover, NF90 + NF110 RNA immunoprecipitation (RIP)-seq in ESCs suggested that NF90/NF110 directly regulate proliferation, differentiation, and RNA-processing genes. Our data support a model in which NF45, NF90, and NF110 operate in feedback loops that enable them, through both overlapping and independent targets, to help balance the push and pull of pluripotency and differentiation cues.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Proteína del Factor Nuclear 45/antagonistas & inhibidores , Proteína del Factor Nuclear 45/genética , Proteínas del Factor Nuclear 90/antagonistas & inhibidores , Proteínas del Factor Nuclear 90/genética , Unión Proteica , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...