Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.174
Filtrar
1.
Int J Biol Sci ; 20(7): 2356-2369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725858

RESUMEN

Dysregulation of cancer cell motility is a key driver of invasion and metastasis. High dysadherin expression in cancer cells is correlated with invasion and metastasis. Here, we found the molecular mechanism by which dysadherin regulates the migration and invasion of colon cancer (CC). Comprehensive analysis using single-cell RNA sequencing data from CC patients revealed that high dysadherin expression in cells is linked to cell migration-related gene signatures. We confirmed that the deletion of dysadherin in tumor cells hindered local invasion and distant migration using in vivo tumor models. In this context, by performing cell morphological analysis, we found that aberrant cell migration resulted from impaired actin dynamics, focal adhesion turnover and protrusive structure formation upon dysadherin expression. Mechanistically, the activation of focal adhesion kinase (FAK) was observed in dysadherin-enriched cells. The dysadherin/FAK axis enhanced cell migration and invasion by activating the FAK downstream cascade, which includes the Rho family of small GTPases. Overall, this study illuminates the role of dysadherin in modulating cancer cell migration by forcing actin dynamics and protrusive structure formation via FAK signaling, indicating that targeting dysadherin may be a potential therapeutic strategy for CC patients.


Asunto(s)
Movimiento Celular , Neoplasias del Colon , Humanos , Movimiento Celular/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Línea Celular Tumoral , Animales , Ratones , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Canales Iónicos/metabolismo , Canales Iónicos/genética , Transducción de Señal
2.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732165

RESUMEN

Glioblastoma (GBM), an aggressive form of brain cancer, has a higher incidence in non-Hispanics when compared to the US Hispanic population. Using data from RT-PCR analysis of 21 GBM tissue from Hispanic patients in Puerto Rico, we identified significant correlations in the gene expression of focal adhesion kinase and proline-rich tyrosine kinase (PTK2 and PTK2B) with NGFR (nerve growth factor receptor), PDGFRB (platelet-derived growth factor receptor B), EGFR (epithelial growth factor receptor), and CXCR1 (C-X-C motif chemokine receptor 1). This study further explores these correlations found in gene expression while accounting for sex and ethnicity. Statistically significant (p < 0.05) correlations with an r value > ±0.7 were subsequently contrasted with mRNA expression data acquired from cBioPortal for 323 GBM specimens. Significant correlations in Puerto Rican male patients were found between PTK2 and PTK2B, NGFR, PDGFRB, EGFR, and CXCR1, which did not arise in non-Hispanic male patient data. The data for Puerto Rican female patients showed correlations in PTK2 with PTK2B, NGFR, PDGFRB, and EGFR, all of which did not appear in the data for non-Hispanic female patients. The data acquired from cBioPortal for non-Puerto Rican Hispanic patients supported the correlations found in the Puerto Rican population for both sexes. Our findings reveal distinct correlations in gene expression patterns, particularly involving PTK2, PTK2B, NGFR, PDGFRB, and EGFR among Puerto Rican Hispanic patients when compared to non-Hispanic counterparts.


Asunto(s)
Neoplasias Encefálicas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Hispánicos o Latinos , Transducción de Señal , Humanos , Glioblastoma/genética , Glioblastoma/etnología , Hispánicos o Latinos/genética , Masculino , Femenino , Transducción de Señal/genética , Puerto Rico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/etnología , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Persona de Mediana Edad , Receptores ErbB/genética , Adulto , Anciano
3.
Nat Commun ; 15(1): 3741, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702301

RESUMEN

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Señalizadoras YAP/metabolismo , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasia Residual , Ratones , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Commun ; 15(1): 3740, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702347

RESUMEN

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Asunto(s)
Células Acinares , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Células Secretoras de Insulina/metabolismo , Ratones , Células Acinares/metabolismo , Masculino , Insulina/metabolismo , Transdiferenciación Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Islotes Pancreáticos/metabolismo
5.
Oncol Res ; 32(4): 679-690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560575

RESUMEN

Liver cancer is a prevalent malignant cancer, ranking third in terms of mortality rate. Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer. Hepatocellular carcinoma (HCC) has low expression of focal adhesion kinase (FAK), which increases the risk of metastasis and recurrence. Nevertheless, the efficacy of FAK phosphorylation inhibitors is currently limited. Thus, investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis. This study examined the correlation between FAK expression and the prognosis of HCC. Additionally, we explored the impact of FAK degradation on HCC metastasis through wound healing experiments, transwell invasion experiments, and a xenograft tumor model. The expression of proteins related to epithelial-mesenchymal transition (EMT) was measured to elucidate the underlying mechanisms. The results showed that FAK PROTAC can degrade FAK, inhibit the migration and invasion of HCC cells in vitro, and notably decrease the lung metastasis of HCC in vivo. Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited. Consequently, degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis, holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Línea Celular Tumoral , Pronóstico , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Invasividad Neoplásica/genética , Metástasis de la Neoplasia
6.
Oncol Res ; 32(4): 615-624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560567

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies. A specific mechanism of its metastasis has not been established. In this study, we investigated whether Neural Wiskott-Aldrich syndrome protein (N-WASP) plays a role in distant metastasis of PDAC. We found that N-WASP is markedly expressed in clinical patients with PDAC. Clinical analysis showed a notably more distant metastatic pattern in the N-WASP-high group compared to the N-WASP-low group. N-WASP was noted to be a novel mediator of epithelial-mesenchymal transition (EMT) via gene expression profile studies. Knockdown of N-WASP in pancreatic cancer cells significantly inhibited cell invasion, migration, and EMT. We also observed positive association of lysyl oxidase-like 2 (LOXL2) and focal adhesion kinase (FAK) with the N-WASP-mediated response, wherein EMT and invadopodia function were modulated. Both N-WASP and LOXL2 depletion significantly reduced the incidence of liver and lung metastatic lesions in orthotopic mouse models of pancreatic cancer. These results elucidate a novel role for N-WASP signaling associated with LOXL2 in EMT and invadopodia function, with respect to regulation of intercellular communication in tumor cells for promoting pancreatic cancer metastasis. These findings may aid in the development of therapeutic strategies against pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
7.
Biochim Biophys Acta Gen Subj ; 1868(6): 130617, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614280

RESUMEN

BACKGROUND: Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level. SCOPE OF REVIEW: Recent research has expanded our understanding of sialylation, revealing ST activity changes beyond mRNA level variations. This includes insights into COPI vesicle formation and Golgi apparatus maintenance and identifying specific target proteins of STs that are not predictable through recombinant enzyme assays. MAJOR CONCLUSIONS: This review summarizes that Golgi-associated pathways largely influence the regulation of STs. GOLPH3, GORAB, PI4K, and FAK have become critical elements in sialylation regulation. Some STs have been revealed to possess specificity for specific target proteins, suggesting the presence of additional, enzyme-specific regulatory mechanisms. GENERAL SIGNIFICANCE: This study enhances our understanding of the molecular interplay in sialylation regulation, mainly focusing on the role of integrin and FAK. It proposes a bidirectional system where sialylations might influence integrins and vice versa. The diversity of STs and their specific linkages offer new perspectives in cancer research, potentially broadening our understanding of cellular mechanisms and opening avenues for new therapeutic approaches in targeting sialylation pathways.


Asunto(s)
Integrinas , Polisacáridos , Sialiltransferasas , Humanos , Integrinas/metabolismo , Sialiltransferasas/metabolismo , Polisacáridos/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Animales , Aparato de Golgi/metabolismo
8.
Biochemistry (Mosc) ; 89(3): 474-486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648767

RESUMEN

Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.


Asunto(s)
Movimiento Celular , Vinculina , Humanos , Vinculina/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células A549 , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Adhesiones Focales/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo
9.
Exp Neurol ; 376: 114776, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38609046

RESUMEN

BACKGROUND AND PURPOSE: The poor prognosis in patients with subarachnoid hemorrhage (SAH) is often attributed to neuronal apoptosis. Recent evidence suggests that Laminin subunit gamma 1 (LAMC1) is essential for cell survival and proliferation. However, the effects of LAMC1 on early brain injury after SAH and the underlying mechanisms are unknown. The current study aimed to reveal the anti-neuronal apoptotic effect and the potential mechanism of LAMC1 in the rat and in the in vitro SAH models. METHODS: The SAH model of Sprague-Dawley rats was established by endovascular perforation. Recombinant LAMC1 (rLAMC1) was administered intranasally 30 min after modeling. LAMC1 small interfering RNA (LAMC1 siRNA), focal adhesion kinase (FAK)-specific inhibitor Y15 and PI3K-specific inhibitor LY294002 were administered before SAH modeling to explore the neuroprotection mechanism of rLAMC1. HT22 cells were cultured and stimulated by oxyhemoglobin to establish an in vitro model of SAH. Subsequently, SAH grades, neurobehavioral tests, brain water content, blood-brain barrier permeability, western blotting, immunofluorescence, TUNEL, and Fluoro-Jade C staining were performed. RESULTS: The expression of endogenous LAMC1 was markedly decreased after SAH, both in vitro and in vivo. rLAMC1 significantly reduced the brain water content and blood-brain barrier permeability, improved short- and long-term neurobehavior, and decreased neuronal apoptosis. Furthermore, rLAMC1 treatment significantly increased the expression of p-FAK, p-PI3K, p-AKT, Bcl-XL, and Bcl-2 and decreased the expression of Bax and cleaved caspase -3. Conversely, knockdown of endogenous LAMC1 aggravated the neurological impairment, suppressed the expression of Bcl-XL and Bcl-2, and upregulated the expression of Bax and cleaved caspase-3. Additionally, the administration of Y15 and LY294002 abolished the protective roles of rLAMC1. In vitro, rLAMC1 significantly reduced neuronal apoptosis, and the protective effects were also abolished by Y15 and LY294002. CONCLUSION: Exogenous LAMC1 treatment improved neurological deficits after SAH in rats, and attenuated neuronal apoptosis in both in vitro and in vivo SAH models, at least partially through the FAK/PI3K/AKT pathway.


Asunto(s)
Apoptosis , Laminina , Neuronas , Transducción de Señal , Hemorragia Subaracnoidea , Animales , Masculino , Ratones , Ratas , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Laminina/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Hemorragia Subaracnoidea/tratamiento farmacológico
10.
Biochem Pharmacol ; 224: 116246, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685282

RESUMEN

Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.


Asunto(s)
Antineoplásicos , Proteína-Tirosina Quinasas de Adhesión Focal , Neoplasias , Inhibidores de Proteínas Quinasas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Animales , Proteolisis/efectos de los fármacos , Terapia Molecular Dirigida/métodos
11.
BMC Cancer ; 24(1): 334, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475740

RESUMEN

BACKGROUND: Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS: The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS: Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin ß4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS: RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Procesamiento Postranscripcional del ARN , Proteínas Ribosómicas , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Ribosomas/metabolismo , Ribosomas/patología , Factores de Transcripción/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
12.
Med ; 5(4): 348-367.e7, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38521069

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3ß1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies. METHODS: Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma. FINDINGS: We found the oncogenic collagen expression in human pancreatic cancer patients and demonstrated its interaction with integrin α3ß1. We proved that reactive oxygen species (ROS) in the microenvironment of PDAC triggered collagenase release to degrade oncogenic collagen and block integrin α3ß1-FAK signaling pathway, thus overcoming the immunosuppression and synergizing with anti-PD-L1 immunotherapy. CONCLUSIONS: Collectively, our study highlights the significance of oncogenic collagen in PDAC immunotherapy, and consequently, we developed a therapeutic strategy that can deplete oncogenic collagen to synergize with immune checkpoint blockade for enhanced PDAC treatment efficacy. FUNDING: This work was supported by the University of Wisconsin Carbone Cancer Center Research Collaborative and Pancreas Cancer Research Task Force, UWCCC Transdisciplinary Cancer Immunology-Immunotherapy Pilot Project, and the start-up package from the University of Wisconsin-Madison (to Q.H.).


Asunto(s)
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Integrina alfa3beta1 , Proyectos Piloto , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Colágeno , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Microambiente Tumoral
13.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542070

RESUMEN

Monomeric C-reactive protein (mCRP) has recently been implicated in the abnormal vascular activation associated with development of atherosclerosis, but it may act more specifically through mechanisms perpetuating damaged vessel inflammation and subsequent aggregation and internalization of resident macrophages. Whilst the direct effects of mCRP on endothelial cells have been characterized, the interaction with blood monocytes has, to our knowledge, not been fully defined. Here we showed that mCRP caused a strong aggregation of both U937 cell line and primary peripheral blood monocytes (PBMs) obtained from healthy donors. Moreover, this increase in clustering was dependent on focal adhesion kinase (FAK) activation (blocked by a specific inhibitor), as was the concomitant adhesive attachment to the plate, which was suggestive of macrophage differentiation. Confocal microscopy confirmed the increased expression and nuclear localization of p-FAK, and cell surface marker expression associated with M1 macrophage polarization (CD11b, CD14, and CD80, as well as iNOS) in the presence of mCRP. Inclusion of a specific CRP dissociation/mCRP inhibitor (C10M) effectively inhibited PBMs clustering, as well as abrogating p-FAK expression, and partially reduced the expression of markers associated with M1 macrophage differentiation. mCRP also increased the secretion of pro-inflammatory cytokines Interleukin-8 (IL-8) and Interleukin-1ß (IL-1ß), without notably affecting MAP kinase signaling pathways; inclusion of C10M did not perturb or modify these effects. In conclusion, mCRP modulates PBMs through a mechanism that involves FAK and results in cell clustering and adhesion concomitant with changes consistent with M1 phenotypical polarization. C10M has potential therapeutic utility in blocking the primary interaction of mCRP with the cells-for example, by protecting against monocyte accumulation and residence at damaged vessels that may be predisposed to plaque development and atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína C-Reactiva , Humanos , Proteína C-Reactiva/metabolismo , Monocitos/metabolismo , Inflamación/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Endoteliales/metabolismo , Células U937 , Aterosclerosis/metabolismo
14.
Biomaterials ; 308: 122542, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38547833

RESUMEN

Focal adhesions (FAs) are nanoscale complexes containing clustered integrin receptors and intracellular structural and signaling proteins that function as principal sites of mechanotransduction in part via promoting the nuclear translocation and activation of the transcriptional coactivator yes-associated protein (YAP). Knockdown of FA proteins such as focal adhesion kinase (FAK), talin, and vinculin can prevent YAP nuclear localization. However, the mechanism(s) of action remain poorly understood. Herein, we investigated the role of different functional domains in vinculin, talin, and FAK in regulating YAP nuclear localization. Using genetic or pharmacological inhibition of fibroblasts and human mesenchymal stem cells (hMSCs) adhering to deformable substrates, we find that disruption of vinculin-talin binding versus talin-FAK binding reduces YAP nuclear localization and transcriptional activity via different mechanisms. Disruption of vinculin-talin binding or knockdown of talin-1 reduces nuclear size, traction forces, and YAP nuclear localization. In contrast, disruption of the talin binding site on FAK or elimination of FAK catalytic activity did not alter nuclear size yet still prevented YAP nuclear localization and activity. These data support both nuclear tension-dependent and independent models for matrix stiffness-regulated YAP nuclear localization. Our results highlight the importance of vinculin-talin-FAK interactions at FAs of adherent cells, controlling YAP nuclear localization and activity.


Asunto(s)
Núcleo Celular , Mecanotransducción Celular , Talina , Vinculina , Proteínas Señalizadoras YAP , Talina/metabolismo , Vinculina/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Adhesiones Focales/metabolismo , Ratones , Fibroblastos/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Unión Proteica
15.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396816

RESUMEN

Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain endothelial cells, shedding light on its potential implications for cerebrovascular diseases. Our research reveals a physical interaction between THSD1 and FAs. Depletion of THSD1 significantly reduces FA numbers, impairing cell spreading and adhesion. The loss of THSD1 also induces autophagy independently of changes in mTOR and AMPK activation, implying that THSD1 primarily governs FA dynamics rather than serving as a global regulator of nutrient and energy status. Mechanistically, THSD1 negatively regulates Beclin 1, a central autophagy regulator, at FAs through interactions with focal adhesion kinase (FAK). THSD1 inactivation diminishes FAK activity and relieves its inhibitory phosphorylation on Beclin 1. This, in turn, promotes the complex formation between Beclin 1 and ATG14, a critical event for the activation of the autophagy cascade. In summary, our findings identify THSD1 as a novel regulator of autophagy that degrades FAs in brain endothelial cells. This underscores the distinctive nature of THSD1-mediated, cargo-directed autophagy and its potential relevance to vascular diseases due to the loss of endothelial FAs. Investigating the underlying mechanisms of THSD1-mediated pathways holds promise for discovering novel therapeutic targets in vascular diseases.


Asunto(s)
Adhesiones Focales , Trombospondinas , Enfermedades Vasculares , Humanos , Autofagia , Beclina-1/metabolismo , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Fosforilación , Enfermedades Vasculares/metabolismo , Trombospondinas/metabolismo
16.
Cells ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334670

RESUMEN

Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.


Asunto(s)
Cardiomiopatías , Filaminas , Células Madre Pluripotentes Inducidas , Humanos , Cardiomiopatías/metabolismo , Filaminas/genética , Filaminas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sarcómeros/metabolismo , Transducción de Señal
17.
ACS Appl Mater Interfaces ; 16(8): 9944-9955, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354103

RESUMEN

The complex interplay between cells and materials is a key focus of this research, aiming to develop optimal scaffolds for regenerative medicine. The need for tissue regeneration underscores understanding cellular behavior on scaffolds, especially cell adhesion to polymer fibers forming focal adhesions. Key proteins, paxillin and vinculin, regulate cell signaling, migration, and mechanotransduction in response to the extracellular environment. This study utilizes advanced microscopy, specifically the AiryScan technique, along with advanced image analysis employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm, to investigate protein distribution during osteoblast cell adhesion to polymer fibers and glass substrates. During cell attachment to both glass and polymer fibers, a noticeable shift in the local maxima of paxillin and vinculin signals is observed at the adhesion sites. The focal adhesion sites on polymer fibers are smaller and elliptical but exhibit higher protein density than on the typical glass surface. The characteristics of focal adhesions, influenced by paxillin and vinculin, such as size and density, can potentially reflect the strength and stability of cell adhesion. Efficient adhesion correlates with well-organized, larger focal adhesions characterized by increased accumulation of paxillin and vinculin. These findings offer promising implications for enhancing scaffold design, evaluating adhesion to various substrates, and refining cellular interactions in biomedical applications.


Asunto(s)
Adhesiones Focales , Mecanotransducción Celular , Paxillin/metabolismo , Vinculina/metabolismo , Adhesiones Focales/metabolismo , Adhesión Celular/fisiología , Polímeros/metabolismo , Fosfoproteínas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo
18.
Biochem Biophys Res Commun ; 703: 149575, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38382357

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, with a median survival of less than 12 months and a 5-year survival of less than 10 %. Here, we have established an image-based screening pipeline for quantifying single PDAC spheroid dynamics in genetically and phenotypically diverse PDAC cell models. Wild-type KRas PDAC cells formed tight/compact spheroids - compaction of these structures was completely blocked by cytoplasmic dynein and focal adhesion kinase (FAK) inhibitors. In contrast, PDAC cells containing mutant KRas formed loosely aggregated spheroids that grew significantly slower following inhibition of polo-like kinase 1 (PLK1) or focal adhesion kinase (FAK). Independent of genetic background, multicellular PDAC-mesenchymal stromal cell (MSC) spheroids self-organized into structures with an MSC-dominant core. The inclusion of MSCs into wild-type KRas PDAC spheroids modestly affected their compaction; however, MSCs significantly increased the compaction and growth of mutant KRas PDAC spheroids. Notably, exogenous collagen 1 potentiated PANC1 spheroid compaction while ITGA1 knockdown in PANC1 cells blocked MSC-induced PANC1 spheroid compaction. In agreement with a role for collagen-based integrin adhesion complexes in stromal cell-induced PDAC phenotypes, we also discovered that MSC-induced PANC1 spheroid growth was completely blocked by the ITGB1 immunoneutralizing antibody mAb13. Finally, multiplexed single-cell immunohistochemical analysis of a 25 patient PDAC tissue microarray revealed a relationship between decreased variance in Spearman r correlation for ITGA1 and PLK1 expression within the tumor cell compartment of PDAC in patients with advanced disease stage, and elevated expression of both ITGA1 and PLK1 in PDAC was found to be associated with decreased patient survival. Taken together, this work uncovers new therapeutic vulnerabilities in PDAC that are relevant to the progression of this stromal cell-rich malignancy and which may reveal strategies for improving patient outcomes.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Detección Precoz del Cáncer , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Colágeno/metabolismo , Uniones Célula-Matriz/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Línea Celular Tumoral
19.
Respir Physiol Neurobiol ; 323: 104237, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38354845

RESUMEN

The airway epithelium serves as a critical interface with the external environment, making it vulnerable to various external stimuli. Airway epithelial stress acts as a catalyst for the onset of numerous pulmonary and systemic diseases. Our previous studies have highlighted the impact of acute stress stimuli, especially bacterial lipopolysaccharide (LPS) and hydrogen peroxide (H2O2), on the continuous elevation of intracellular chloride concentration ([Cl-]i). However, the precise mechanism behind this [Cl-]i elevation and the consequential effects of such stress on the injury repair function of airway epithelial cells remain unclear. Our findings indicate that H2O2 induces an elevation in [Cl-]i by modulating the expression of CF transmembrane conductance regulator (CFTR) and Ca-activated transmembrane protein 16 A (TMEM16A) in airway epithelial cells (BEAS-2B), whereas LPS achieves this solely through CFTR. Subsequently, the elevated [Cl-]i level facilitated the injury repair process of airway epithelial cells by activating focal adhesion kinase (FAK). In summary, the [Cl-]i-FAK axis appears to play a promoting effect on the injury repair process triggered by stress stimulation. Furthermore, our findings suggest that abnormalities in the [Cl-]i-FAK signaling axis may play a crucial role in the pathogenesis of chronic airway diseases. Therefore, controlling the structure and function of airway epithelial barriers through the modulation of [Cl-]i holds promising prospects for future applications in managing and treating such conditions.


Asunto(s)
Cloruros , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Células Epiteliales/metabolismo
20.
Cell Death Dis ; 15(2): 108, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302407

RESUMEN

The prognosis of osteosarcoma (OS) has remained stagnant over the past two decades, requiring the exploration of new therapeutic targets. Cytokines, arising from tumor-associated macrophages (TAMs), a major component of the tumor microenvironment (TME), have garnered attention owing to their impact on tumor growth, invasion, metastasis, and resistance to chemotherapy. Nonetheless, the precise functional role of TAMs in OS progression requires further investigation. In this study, we investigated the interaction between OS and TAMs, as well as the contribution of TAM-produced cytokines to OS advancement. TAMs were observed to be more prevalent in lung metastases compared with that in primary tumors, suggesting their potential support for OS progression. To simulate the TME, OS and TAMs were co-cultured, and the cytokines resulting from this co-culture could stimulate OS proliferation, migration, and invasion. A detailed investigation of cytokines in the co-culture conditioned medium (CM) revealed a substantial increase in IL-8, establishing it as a pivotal cytokine in the process of enhancing OS proliferation, migration, and invasion through the focal adhesion kinase (FAK) pathway. In an in vivo model, co-culture CM promoted OS proliferation and lung metastasis, effects that were mitigated by anti-IL-8 antibodies. Collectively, IL-8, generated within the TME formed by OS and TAMs, accelerates OS proliferation and metastasis via the FAK pathway, thereby positioning IL-8 as a potential novel therapeutic target in OS.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Humanos , Macrófagos Asociados a Tumores/metabolismo , Interleucina-8/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Macrófagos/metabolismo , Neoplasias Pulmonares/patología , Osteosarcoma/patología , Citocinas/metabolismo , Neoplasias Óseas/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...