Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(2): 1451-1463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656427

RESUMEN

Antarctic temperature variations and long periods of freezing shaped the evolution of microorganisms with unique survival mechanisms. These resilient organisms exhibit several adaptations for life in extreme cold. In such ecosystems, microorganisms endure the absence of liquid water and exhibit resistance to freezing by producing water-binding molecules such as antifreeze proteins (AFP). AFPs modify the ice structure, lower the freezing point, and inhibit recrystallization. The objective of this study was to select and identify microorganisms isolated from different Antarctic ecosystems based on their resistance to temperatures below 0 °C. Furthermore, the study sought to characterize these microorganisms regarding their potential antifreeze adaptive mechanisms. Samples of soil, moss, permafrost, and marine sediment were collected on King George Island, located in the South Shetland archipelago, Antarctica. Bacteria and yeasts were isolated and subjected to freezing-resistance and ice recrystallization inhibition (IR) tests. A total of 215 microorganisms were isolated, out of which 118 were molecularly identified through molecular analysis using the 16S rRNA and ITS regions. Furthermore, our study identified 24 freezing-resistant isolates, including two yeasts and 22 bacteria. A total of 131 protein extracts were subjected to the IR test, revealing 14 isolates positive for AFP production. Finally, four isolates showed both freeze-resistance and IR activity (Arthrobacter sp. BGS04, Pseudomonas sp. BGS05, Cryobacterium sp. P64, and Acinetobacter sp. M1_25C). This study emphasizes the diversity of Antarctic microorganisms with the ability to tolerate freezing conditions. These microorganisms warrant further investigation to conduct a comprehensive analysis of their antifreeze capabilities, with the goal of exploring their potential for future biotechnological applications.


Asunto(s)
Proteínas Anticongelantes , Bacterias , Congelación , Regiones Antárticas , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Islas , Filogenia , Levaduras/genética , Levaduras/clasificación , Levaduras/aislamiento & purificación , Levaduras/metabolismo , ARN Ribosómico 16S/genética , Ecosistema
2.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140973, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956730

RESUMEN

Antifreeze proteins (AFPs) bind to ice in solutions, resulting in non-colligative freezing point depression; however, their effects on ice nucleation are not well understood. The predominant plasma AFP of winter flounder (Pseudopleuronectes americanus) is AFP6, which is an amphiphilic alpha helix. In this study, AFP6 and modified constructs were produced as fusion proteins in Escherichia coli, subjected to proteolysis when required and purified prior to use. AFP6 and its recombinant fusion precursor generated similar thermal hysteresis and bipyramidal ice crystals, whereas an inactive mutant AFP6 produced hexagonal crystals and no hysteresis. Circular dichroism spectra of the wild-type and mutant AFP6 were consistent with an alpha helix. The effects of these proteins on ice nucleation were investigated alongside non-AFP proteins using a standard droplet freezing assay. In the presence of nucleating AgI, modest reductions in the nucleation temperature occurred with the addition of mutant AFP6, and several non-AFPs, suggesting non-specific inhibition of AgI-induced ice nucleation. In these experiments, both AFP6 and its recombinant precursor resulted in lower nucleation temperatures, consistent with an additional inhibitory effect. Conversely, in the absence of AgI, AFP6 induced ice nucleation, with no other proteins showing this effect. Nucleation by AFP6 was dose-dependent, reaching a maximum at 1.5 mM protein. Nucleation by AFP6 also required an ice-binding site, as the inactive mutant had no effect. Furthermore, the absence of nucleation by the recombinant precursor protein suggested that the fusion moiety was interfering with the formation of a surface capable of nucleating ice.


Asunto(s)
Lenguado , Hielo , Animales , Lenguado/genética , Lenguado/metabolismo , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Congelación , Temperatura
3.
Biomolecules ; 14(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38254654

RESUMEN

Ice-binding proteins are crucial for the adaptation of various organisms to low temperatures. Some of these, called antifreeze proteins, are usually thought to inhibit growth and/or recrystallization of ice crystals. However, prior to these events, ice must somehow appear in the organism, either coming from outside or forming inside it through the nucleation process. Unlike most other works, our paper is focused on ice nucleation and not on the behavior of the already-nucleated ice, its growth, etc. The nucleation kinetics is studied both theoretically and experimentally. In the theoretical section, special attention is paid to surfaces that bind ice stronger than water and thus can be "ice nucleators", potent or relatively weak; but without them, ice cannot be nucleated in any way in calm water at temperatures above -30 °C. For experimental studies, we used: (i) the ice-binding protein mIBP83, which is a previously constructed mutant of a spruce budworm Choristoneura fumiferana antifreeze protein, and (ii) a hyperactive ice-binding antifreeze protein, RmAFP1, from a longhorn beetle Rhagium mordax. We have shown that RmAFP1 (but not mIBP83) definitely decreased the ice nucleation temperature of water in test tubes (where ice originates at much higher temperatures than in bulk water and thus the process is affected by some ice-nucleating surfaces) and, most importantly, that both of the studied ice-binding proteins significantly decreased the ice nucleation temperature that had been significantly raised in the presence of potent ice nucleators (CuO powder and ice-nucleating bacteria Pseudomonas syringae). Additional experiments on human cells have shown that mIBP83 is concentrated in some cell regions of the cooled cells. Thus, the ice-binding protein interacts not only with ice, but also with other sites that act or potentially may act as ice nucleators. Such ice-preventing interaction may be the crucial biological task of ice-binding proteins.


Asunto(s)
Proteínas Portadoras , Hielo , Humanos , Física , Frío , Proteínas Anticongelantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA