Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 689
Filtrar
1.
Anal Chim Acta ; 1309: 342693, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772660

RESUMEN

BACKGROUND: CRISPR-Cas12a based one-step assays are widely used for nucleic acid detection, particularly for pathogen detection. However, the detection capability of the one-step assay is reduced because the Cas12a protein competes with the isothermal amplification enzymes for the target DNA and cleaves it. Therefore, the key to improving the sensitivity of the one-step assay is to address the imbalance between isothermal amplification and CRISPR detection. In previous study, we developed a Cas12a one-step assay using single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA) and applied this method for the detection of pathogenic DNA. RESULTS: Here, we utilized mD-crRNA to establish a sensitive one-step assay that enables the visual detection of SARS-CoV-2 under ultraviolet light, achieving a detection limit of 5 aM without cross-reactivity. The sensitivity of mD-crRNA in the one-step assay was 100-fold higher than that of wild-type crRNA. Mechanistic studies revealed that the addition of ssDNA at the 3' end of mD-crRNA attenuates the binding affinity between the Cas12a-mD-crRNA complex and the target DNA. Consequently, this reduction in binding affinity decreases the cis-cleavage activity of Cas12a, mitigating its cleavage of the target DNA in the one-step assay. As a result, there is an augmentation in the amplification and accumulation of target DNA, thereby enhancing detection sensitivity. In the clinical testing of 40 SARS-CoV-2 RNA samples, the concordance between the results of the one-step assay and known qPCR results was 97.5 %. SIGNIFICANCE: The one-step assay using mD-crRNA proves to be highly sensitive and specificity and visually effective for the detection of SARS-CoV-2. Our study delves into the application of the mD-crRNA-mediated one-step assay in nucleic acid detection and its associated reaction mechanism. This holds great significance in addressing the inherent incompatibility issues between isothermal amplification and CRISPR detection.


Asunto(s)
COVID-19 , ADN de Cadena Simple , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , ARN Viral/análisis , ARN Viral/genética , COVID-19/diagnóstico , COVID-19/virología , Límite de Detección , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Bacterianas
2.
Nat Commun ; 15(1): 4126, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750051

RESUMEN

Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3+ T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells.


Asunto(s)
Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Edición Génica , Synechocystis , Edición Génica/métodos , Humanos , Synechocystis/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Linfocitos T/metabolismo , Estructuras R-Loop/genética
3.
Nat Commun ; 15(1): 3699, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698035

RESUMEN

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Asunto(s)
Archaea , Virus de Archaea , Virus de Archaea/genética , Archaea/genética , Archaea/virología , Archaea/inmunología , Regiones Promotoras Genéticas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas Virales/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Metagenoma/genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética
4.
Nat Commun ; 15(1): 3823, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714643

RESUMEN

The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target. The resulting CRISPR-Cas12a (named zCRISPR-Cas12a thereafter) shows an on-target editing efficiency comparable to that of the CRISPR-Cas9 system but with much lower off-target effects than the CRISPR-Cas9 system in mammalian cells. In addition, zCRISPR-Cas12a can be used for precise gene knock-in and highly efficient multiplex genome editing. Overall, the zCRISPR-Cas12a system is superior to the CRISPR-Cas9 system, and our simple crRNA engineering strategy may be extended to other CRISPR-Cas family members as well as their derivatives.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Humanos , Células HEK293 , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN/genética , ARN/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Bacterianas , Endodesoxirribonucleasas
5.
J Phys Chem B ; 128(15): 3563-3574, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38573978

RESUMEN

Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states. In contrast, multiple-point amino acid mutations, particularly G74A, P80L, and V89A mutations on Cas2 and Cas2' proteins (m-multiple1 system), significantly affected the protospacer binding and selection. Notably, mutations on Cas2 and Cas2' led to an increased number of hydrogen bonds (#HBs) between Cas2&Cas2' and the dsDNA in the m-multiple1 system compared with the wild-type system. And the strong electrostatic interactions between Cas1-Cas2 and the protospacer DNA (psDNA) in the m-multiple1 system again suggested the increase in the binding affinity of protospacer acquisition. Specifically, mutations in Cas2 and Cas2' can remotely make the protospacer adjacent motif complementary (PAMc) sequences better in recognition by the two active sites, while multiple mutations K211E, P202Q, P212L, R138L, V134A, A286T, P282H, and P294H on Cas1a/Cas1b&Cas1a'/Cas1b' (m-multiple2 system) decrease the #HBs and the electrostatic interactions and make the PAMc worse in recognition compared with the wild-type system.


Asunto(s)
Proteínas Asociadas a CRISPR , Escherichia coli , Escherichia coli/genética , Simulación de Dinámica Molecular , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN/química , Aminoácidos/metabolismo
6.
Anal Chem ; 96(16): 6337-6346, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613479

RESUMEN

The arsM gene is a critical biomarker for the potential risk of arsenic exposure in paddy soil. However, on-site screening of arsM is limited by the lack of high-throughput point-of-use (POU) methods. Here, a multiplex CRISPR/Cas12a microfluidic paper-based analytical device (µPAD) was constructed for the high-throughput POU analysis of arsM, with cascade amplification driven by coupling crRNA-enhanced Cas12a and horseradish peroxidase (HRP)-modified probes. First, seven crRNAs were designed to recognize arsM, and their LODs and background signal intensities were evaluated. Next, a step-by-step iterative approach was utilized to develop and optimize coupling systems, which improved the sensitivity 32 times and eliminated background signal interference. Then, ssDNA reporters modified with HRP were introduced to further lower the LOD to 16 fM, and the assay results were visible to the naked eye. A multiplex channel microfluidic paper-based chip was developed for the reaction integration and simultaneous detection of 32 samples and generated a recovery rate between 87.70 and 114.05%, simplifying the pretreatment procedures and achieving high-throughput POU analysis. Finally, arsM in Wanshan paddy soil was screened on site, and the arsM abundance ranged from 1.05 × 106 to 6.49 × 107 copies/g; this result was not affected by the environmental indicators detected in the study. Thus, a coupling crRNA-based cascade amplification method for analyzing arsM was constructed, and a microfluidic device was developed that contains many more channels than previous paper chips, greatly improving the analytical performance in paddy soil samples and providing a promising tool for the on-site screening of arsM at large scales.


Asunto(s)
Suelo , Suelo/química , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasa de Rábano Silvestre/química , Sistemas CRISPR-Cas , Oryza/química , Contaminantes del Suelo/análisis , Dispositivos Laboratorio en un Chip , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos
7.
Nat Commun ; 15(1): 3256, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627399

RESUMEN

Spacer acquisition step in CRISPR-Cas system involves the recognition and subsequent integration of protospacer by the Cas1-Cas2 complex in CRISPR-Cas systems. Here we report an anti-CRISPR protein, AcrVA5, and reveal the mechanisms by which it strongly inhibits protospacer integration. Our biochemical data shows that the integration by Cas1-Cas2 was abrogated in the presence of AcrVA5. AcrVA5 exhibits low binding affinity towards Cas2 and acetylates Cas2 at Lys55 on the binding interface of the Cas2 and AcrVA5 N-terminal peptide complex to inhibit the Cas2-mediated endonuclease activity. Moreover, a detailed structural comparison between our crystal structure and homolog structure shows that binding of AcrVA5 to Cas2 causes steric hindrance to the neighboring protospacer resulting in the partial disassembly of the Cas1-Cas2 and protospacer complex, as demonstrated by electrophoretic mobility shift assay. Our study focuses on this mechanism of spacer acquisition inhibition and provides insights into the biology of CRISPR-Cas systems.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas
8.
Chem Commun (Camb) ; 60(39): 5197-5200, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38651297

RESUMEN

Through the integration of CRISPR/Cpf1 with optogenetics and a reduction-responsive motif, we have developed a photoactivatable cross-linked crRNA that enables precise genome editing upon light exposure. This system also allows for termination of editing activity through external application of reducing agent. The dual-stimuli-responsive CRISPR/Cpf1 editing process operates in a unique OFF → ON → OFF sequence, making it a valuable tool for investigating time-sensitive biological events.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Humanos , Luz , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , ARN/química , ARN/genética
9.
J Mol Biol ; 436(10): 168550, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38575054

RESUMEN

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.


Asunto(s)
Acidaminococcus , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Especificidad por Sustrato , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/química , Acidaminococcus/enzimología , Acidaminococcus/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Exonucleasas/metabolismo , Exonucleasas/genética , ADN Cruciforme/metabolismo , ADN Cruciforme/genética , ADN/metabolismo , ADN/genética
10.
Nat Commun ; 15(1): 3324, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637512

RESUMEN

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.


Asunto(s)
Proteínas Asociadas a CRISPR , ARN Catalítico , ARN/metabolismo , ARN Catalítico/metabolismo , Sistemas CRISPR-Cas/genética , ADN/metabolismo , Dominio Catalítico , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , División del ARN
11.
Nucleic Acids Res ; 52(8): 4739-4755, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567723

RESUMEN

Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.


Asunto(s)
Bacillus subtilis , Sistemas CRISPR-Cas , Escherichia coli , Edición Génica , Mutagénesis , Escherichia coli/genética , Bacillus subtilis/genética , Edición Génica/métodos , Plásmidos/genética , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Mutación , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Aminohidrolasas
12.
ACS Chem Biol ; 19(5): 1051-1055, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38602884

RESUMEN

The Craspase CRISPR-Cas effector consists of the RNA-guided ribonuclease gRAMP and the protease TPR-CHAT, coupling target RNA recognition to protease activation. The natural substrate of Craspase is Csx30, a protein cleaved in two fragments that subsequently activates downstream antiviral pathways. Here, we determined the protease substrate specificity of Craspase from Candidatus "Jettenia caeni" (Jc-Craspase). We find that Jc-Craspase cleaves Jc-Csx30 in a target RNA-dependent fashion in A|S, which is different from the sites found in two other studied Craspases (L|D and M|K for Candidatus "Scalindua brodae" and Desulfonema ishimotonii, respectively). The fact that Craspase cleaves a nonconserved site across orthologs indicates the evolution of specific protein interactions between Craspase and its respective Csx30 target protein. The Craspase family thus represents a panel of proteases with different substrate specificities, which we exploited for the development of a readout for multiplexed RNA detection.


Asunto(s)
Sistemas CRISPR-Cas , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética
13.
Nucleic Acids Res ; 52(9): 5241-5256, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647045

RESUMEN

CRISPR-Cas systems have widely been adopted as genome editing tools, with two frequently employed Cas nucleases being SpyCas9 and LbCas12a. Although both nucleases use RNA guides to find and cleave target DNA sites, the two enzymes differ in terms of protospacer-adjacent motif (PAM) requirements, guide architecture and cleavage mechanism. In the last years, rational engineering led to the creation of PAM-relaxed variants SpRYCas9 and impLbCas12a to broaden the targetable DNA space. By employing their catalytically inactive variants (dCas9/dCas12a), we quantified how the protein-specific characteristics impact the target search process. To allow quantification, we fused these nucleases to the photoactivatable fluorescent protein PAmCherry2.1 and performed single-particle tracking in cells of Escherichia coli. From our tracking analysis, we derived kinetic parameters for each nuclease with a non-targeting RNA guide, strongly suggesting that interrogation of DNA by LbdCas12a variants proceeds faster than that of SpydCas9. In the presence of a targeting RNA guide, both simulations and imaging of cells confirmed that LbdCas12a variants are faster and more efficient in finding a specific target site. Our work demonstrates the trade-off of relaxing PAM requirements in SpydCas9 and LbdCas12a using a powerful framework, which can be applied to other nucleases to quantify their DNA target search.


Asunto(s)
Proteína 9 Asociada a CRISPR , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Endodesoxirribonucleasas , Escherichia coli , Edición Génica , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ADN/metabolismo , ADN/genética , ADN/química , Cinética
14.
Anal Chem ; 96(16): 6426-6435, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38604773

RESUMEN

Sensors designed based on the trans-cleavage activity of CRISPR/Cas12a systems have opened up a new era in the field of biosensing. The current design of CRISPR/Cas12-based sensors in the "on-off-on" mode mainly focuses on programming the activator strand (AS) to indirectly switch the trans-cleavage activity of Cas12a in response to target information. However, this design usually requires the help of additional auxiliary probes to keep the activator strand in an initially "blocked" state. The length design and dosage of the auxiliary probe need to be strictly optimized to ensure the lowest background and the best signal-to-noise ratio. This will inevitably increase the experiment complexity. To solve this problem, we propose using AS after the "RESET" effect to directly regulate the Cas12a enzymatic activity. Initially, the activator strand was rationally designed to be embedded in a hairpin structure to deprive its ability to activate the CRISPR/Cas12a system. When the target is present, target-mediated strand displacement causes the conformation change in the AS, the hairpin structure is opened, and the CRISPR/Cas12a system is reactivated; the switchable structure of AS can be used to regulate the degree of activation of Cas12a according to the target concentration. Due to the advantages of low background and stability, the CRISPR/Cas12a-based strategy can not only image endogenous biomarkers (miR-21) in living cells but also enable long-term and accurate imaging analysis of the process of exogenous virus invasion of cells. Release and replication of virus genome in host cells are indispensable hallmark events of cell infection by virus; sensitive monitoring of them is of great significance to revealing virus infection mechanism and defending against viral diseases.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , MicroARNs , Sistemas CRISPR-Cas/genética , Técnicas Biosensibles/métodos , Humanos , MicroARNs/análisis , MicroARNs/metabolismo , Regulación Alostérica , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Células HEK293
15.
ACS Sens ; 9(4): 1877-1885, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38573977

RESUMEN

The precise determination of DNA methylation at specific sites is critical for the timely detection of cancer, as DNA methylation is closely associated with the initiation and progression of cancer. Herein, a novel ratiometric fluorescence method based on the methylation-sensitive restriction enzyme (MSRE), CRISPR/Cas12a, and catalytic hairpin assembly (CHA) amplification were developed to detect site-specific methylation with high sensitivity and specificity. In detail, AciI, one of the commonly used MSREs, was employed to distinguish the methylated target from nonmethylated targets. The CRISPR/Cas12a system was utilized to recognize the site-specific target. In this process, the protospacer adjacent motif and crRNA-dependent identification, the single-base resolution of Cas12a, can effectively ensure detection specificity. The trans-cleavage ability of Cas12a can convert one target into abundant activators and can then trigger the CHA reaction, leading to the accomplishment of cascaded signal amplification. Moreover, with the structural change of the hairpin probe during CHA, two labeled dyes can be spatially separated, generating a change of the Förster resonance energy transfer signal. In general, the proposed strategy of tandem CHA after the CRISPR/Cas12a reaction not only avoids the generation of false-positive signals caused by the target-similar nucleic acid but can also improve the sensitivity. The use of ratiometric fluorescence can eradicate environmental effects by self-calibration. Consequently, the proposed approach had a detection limit of 2.02 fM. This approach could distinguish between colorectal cancer and precancerous tissue, as well as between colorectal patients and healthy people. Therefore, the developed method can serve as an excellent site-specific methylation detection tool, which is promising for biological and disease studies.


Asunto(s)
Sistemas CRISPR-Cas , Metilación de ADN , Sistemas CRISPR-Cas/genética , Humanos , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción del ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Técnicas Biosensibles/métodos
16.
Nat Commun ; 15(1): 3577, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678031

RESUMEN

Genetic interactions mediate the emergence of phenotype from genotype, but technologies for combinatorial genetic perturbation in mammalian cells are challenging to scale. Here, we identify background-independent paralog synthetic lethals from previous CRISPR genetic interaction screens, and find that the Cas12a platform provides superior sensitivity and assay replicability. We develop the in4mer Cas12a platform that uses arrays of four independent guide RNAs targeting the same or different genes. We construct a genome-scale library, Inzolia, that is ~30% smaller than a typical CRISPR/Cas9 library while also targeting ~4000 paralog pairs. Screens in cancer cells demonstrate discrimination of core and context-dependent essential genes similar to that of CRISPR/Cas9 libraries, as well as detection of synthetic lethal and masking/buffering genetic interactions between paralogs of various family sizes. Importantly, the in4mer platform offers a fivefold reduction in library size compared to other genetic interaction methods, substantially reducing the cost and effort required for these assays.


Asunto(s)
Proteínas Bacterianas , Sistemas CRISPR-Cas , Endodesoxirribonucleasas , Técnicas de Inactivación de Genes , Humanos , Técnicas de Inactivación de Genes/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Biblioteca de Genes , Línea Celular Tumoral , Genes Esenciales , Células HEK293 , Epistasis Genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo
17.
Biomolecules ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38672502

RESUMEN

In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Edición Génica/métodos , Acidaminococcus/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Familia de Multigenes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Genoma Bacteriano
18.
Sci Adv ; 10(17): eadl0164, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657076

RESUMEN

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.


Asunto(s)
Anticodón , Sistemas CRISPR-Cas , Escherichia coli , ARN de Transferencia , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leptotrichia/genética , Leptotrichia/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Bacteriófagos/genética , División del ARN
19.
Nucleic Acids Res ; 52(6): 2761-2775, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471818

RESUMEN

CRISPR-Cas provides adaptive immunity in prokaryotes. Type III CRISPR systems detect invading RNA and activate the catalytic Cas10 subunit, which generates a range of nucleotide second messengers to signal infection. These molecules bind and activate a diverse range of effector proteins that provide immunity by degrading viral components and/or by disturbing key aspects of cellular metabolism to slow down viral replication. Here, we focus on the uncharacterised effector Csx23, which is widespread in Vibrio cholerae. Csx23 provides immunity against plasmids and phage when expressed in Escherichia coli along with its cognate type III CRISPR system. The Csx23 protein localises in the membrane using an N-terminal transmembrane α-helical domain and has a cytoplasmic C-terminal domain that binds cyclic tetra-adenylate (cA4), activating its defence function. Structural studies reveal a tetrameric structure with a novel fold that binds cA4 specifically. Using pulse EPR, we demonstrate that cA4 binding to the cytoplasmic domain of Csx23 results in a major perturbation of the transmembrane domain, consistent with the opening of a pore and/or disruption of membrane integrity. This work reveals a new class of cyclic nucleotide binding protein and provides key mechanistic detail on a membrane-associated CRISPR effector.


Many anti-viral defence systems generate a cyclic nucleotide signal that activates cellular defences in response to infection. Type III CRISPR systems use a specialised polymerase to make cyclic oligoadenylate (cOA) molecules from ATP. These can bind and activate a range of effector proteins that slow down viral replication. In this study, we focussed on the Csx23 effector from the human pathogen Vibrio cholerae ­ a trans-membrane protein that binds a cOA molecule, leading to anti-viral immunity. Structural studies revealed a new class of nucleotide recognition domain, where cOA binding is transmitted to changes in the trans-membrane domain, most likely resulting in membrane depolarisation. This study highlights the diversity of mechanisms for anti-viral defence via nucleotide signalling.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Vibrio cholerae , Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos , Sistemas de Mensajero Secundario , Proteínas Bacterianas/metabolismo , Vibrio cholerae/metabolismo
20.
Nucleic Acids Res ; 52(8): 4502-4522, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38477377

RESUMEN

The RNA-guided CRISPR-associated (Cas) enzyme Cas12a cleaves specific double-stranded (ds-) or single-stranded (ss-) DNA targets (in cis), unleashing non-specific ssDNA cleavage (in trans). Though this trans-activity is widely coopted for diagnostics, little is known about target determinants promoting optimal enzyme performance. Using quantitative kinetics, we show formation of activated nuclease proceeds via two steps whereby rapid binding of Cas12a ribonucleoprotein to target is followed by a slower allosteric transition. Activation does not require a canonical protospacer-adjacent motif (PAM), nor is utilization of such PAMs predictive of high trans-activity. We identify several target determinants that can profoundly impact activation times, including bases within the PAM (for ds- but not ssDNA targets) and sequences within and outside those complementary to the spacer, DNA topology, target length, presence of non-specific DNA, and ribose backbone itself, uncovering previously uncharacterized cleavage of and activation by RNA targets. The results provide insight into the mechanism of Cas12a activation, with direct implications on the role of Cas12a in bacterial immunity and for Cas-based diagnostics.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , ADN de Cadena Simple , ADN , Endodesoxirribonucleasas , ARN , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , ADN/genética , ADN/química , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , ARN/metabolismo , ARN/química , ARN/genética , ADN de Cadena Simple/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Cinética , Activación Enzimática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...