Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(19): 4204-4215.e19, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37557170

RESUMEN

Tn7-like transposons have co-opted CRISPR-Cas systems to facilitate the movement of their own DNA. These CRISPR-associated transposons (CASTs) are promising tools for programmable gene knockin. A key feature of CASTs is their ability to recruit Tn7-like transposons to nuclease-deficient CRISPR effectors. However, how Tn7-like transposons are recruited by diverse CRISPR effectors remains poorly understood. Here, we present the cryo-EM structure of a recruitment complex comprising the Cascade complex, TniQ, TnsC, and the target DNA in the type I-B CAST from Peltigera membranacea cyanobiont 210A. Target DNA recognition by Cascade induces conformational changes in Cas6 and primes TniQ recruitment through its C-terminal domain. The N-terminal domain of TniQ is bound to the seam region of the TnsC spiral heptamer. Our findings provide insights into the diverse mechanisms for the recruitment of Tn7-like transposons to CRISPR effectors and will aid in the development of CASTs as gene knockin tools.


Asunto(s)
Ascomicetos , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Elementos Transponibles de ADN , Técnicas de Sustitución del Gen , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Microscopía por Crioelectrón , Ascomicetos/química , Ascomicetos/metabolismo , Ascomicetos/ultraestructura
2.
Nature ; 618(7966): 855-861, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316664

RESUMEN

CRISPR-Cas adaptive immune systems capture DNA fragments from invading mobile genetic elements and integrate them into the host genome to provide a template for RNA-guided immunity1. CRISPR systems maintain genome integrity and avoid autoimmunity by distinguishing between self and non-self, a process for which the CRISPR/Cas1-Cas2 integrase is necessary but not sufficient2-5. In some microorganisms, the Cas4 endonuclease assists CRISPR adaptation6,7, but many CRISPR-Cas systems lack Cas48. Here we show here that an elegant alternative pathway in a type I-E system uses an internal DnaQ-like exonuclease (DEDDh) to select and process DNA for integration using the protospacer adjacent motif (PAM). The natural Cas1-Cas2/exonuclease fusion (trimmer-integrase) catalyses coordinated DNA capture, trimming and integration. Five cryo-electron microscopy structures of the CRISPR trimmer-integrase, visualized both before and during DNA integration, show how asymmetric processing generates size-defined, PAM-containing substrates. Before genome integration, the PAM sequence is released by Cas1 and cleaved by the exonuclease, marking inserted DNA as self and preventing aberrant CRISPR targeting of the host. Together, these data support a model in which CRISPR systems lacking Cas4 use fused or recruited9,10 exonucleases for faithful acquisition of new CRISPR immune sequences.


Asunto(s)
Biocatálisis , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Genoma Bacteriano , Integrasas , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Microscopía por Crioelectrón , ADN/inmunología , ADN/metabolismo , Exonucleasas/química , Exonucleasas/metabolismo , Exonucleasas/ultraestructura , Integrasas/química , Integrasas/metabolismo , Integrasas/ultraestructura , Genoma Bacteriano/genética
3.
Nature ; 620(7974): 660-668, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37380027

RESUMEN

RNA-guided systems, which use complementarity between a guide RNA and target nucleic acid sequences for recognition of genetic elements, have a central role in biological processes in both prokaryotes and eukaryotes. For example, the prokaryotic CRISPR-Cas systems provide adaptive immunity for bacteria and archaea against foreign genetic elements. Cas effectors such as Cas9 and Cas12 perform guide-RNA-dependent DNA cleavage1. Although a few eukaryotic RNA-guided systems have been studied, including RNA interference2 and ribosomal RNA modification3, it remains unclear whether eukaryotes have RNA-guided endonucleases. Recently, a new class of prokaryotic RNA-guided systems (termed OMEGA) was reported4,5. The OMEGA effector TnpB is the putative ancestor of Cas12 and has RNA-guided endonuclease activity4,6. TnpB may also be the ancestor of the eukaryotic transposon-encoded Fanzor (Fz) proteins4,7, raising the possibility that eukaryotes are also equipped with CRISPR-Cas or OMEGA-like programmable RNA-guided endonucleases. Here we report the biochemical characterization of Fz, showing that it is an RNA-guided DNA endonuclease. We also show that Fz can be reprogrammed for human genome engineering applications. Finally, we resolve the structure of Spizellomyces punctatus Fz at 2.7 Å using cryogenic electron microscopy, showing the conservation of core regions among Fz, TnpB and Cas12, despite diverse cognate RNA structures. Our results show that Fz is a eukaryotic OMEGA system, demonstrating that RNA-guided endonucleases are present in all three domains of life.


Asunto(s)
Quitridiomicetos , Endonucleasas , Eucariontes , Proteínas Fúngicas , Edición Génica , ARN , Humanos , Archaea/genética , Archaea/inmunología , Bacterias/genética , Bacterias/inmunología , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas , Elementos Transponibles de ADN/genética , Endonucleasas/química , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Eucariontes/enzimología , Edición Génica/métodos , ARN/genética , ARN/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Evolución Molecular , Secuencia Conservada , Quitridiomicetos/enzimología
4.
Nature ; 616(7956): 384-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020015

RESUMEN

The widespread TnpB proteins of IS200/IS605 transposon family have recently emerged as the smallest RNA-guided nucleases capable of targeted genome editing in eukaryotic cells1,2. Bioinformatic analysis identified TnpB proteins as the likely predecessors of Cas12 nucleases3-5, which along with Cas9 are widely used for targeted genome manipulation. Whereas Cas12 family nucleases are well characterized both biochemically and structurally6, the molecular mechanism of TnpB remains unknown. Here we present the cryogenic-electron microscopy structures of the Deinococcus radiodurans TnpB-reRNA (right-end transposon element-derived RNA) complex in DNA-bound and -free forms. The structures reveal the basic architecture of TnpB nuclease and the molecular mechanism for DNA target recognition and cleavage that is supported by biochemical experiments. Collectively, these results demonstrate that TnpB represents the minimal structural and functional core of the Cas12 protein family and provide a framework for developing TnpB-based genome editing tools.


Asunto(s)
Proteínas Asociadas a CRISPR , Elementos Transponibles de ADN , Deinococcus , Endonucleasas , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Microscopía por Crioelectrón , Deinococcus/enzimología , Deinococcus/genética , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Elementos Transponibles de ADN/genética , Endonucleasas/química , Endonucleasas/clasificación , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Evolución Molecular , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas
5.
Nat Chem Biol ; 17(4): 387-393, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33495647

RESUMEN

Cas12g, the type V-G CRISPR-Cas effector, is an RNA-guided ribonuclease that targets single-stranded RNA substrate. The CRISPR-Cas12g system offers a potential platform for transcriptome engineering and diagnostic applications. We determined the structures of Cas12g-guide RNA complexes in the absence and presence of target RNA by cryo-EM to a resolution of 3.1 Å and 4.8 Å, respectively. Cas12g adopts a bilobed structure with miniature REC2 and Nuc domains, whereas the guide RNAs fold into a flipped 'F' shape, which is primarily recognized by the REC lobe. Target RNA and the CRISPR RNA (crRNA) guide form a duplex that inserts into the central cavity between the REC and NUC lobes, inducing conformational changes in both lobes to activate Cas12g. The structural insights would facilitate the development of Cas12g-based applications.


Asunto(s)
Proteínas Asociadas a CRISPR/ultraestructura , ARN Guía de Kinetoplastida/ultraestructura , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Microscopía por Crioelectrón/métodos , ARN Bacteriano/química , ARN Guía de Kinetoplastida/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribonucleasas/ultraestructura
6.
Mol Cell ; 81(3): 558-570.e3, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33333018

RESUMEN

RNA-guided DNA endonucleases derived from CRISPR-Cas adaptive immune systems are widely used as powerful genome-engineering tools. Among the diverse CRISPR-Cas nucleases, the type V-F Cas12f (also known as Cas14) proteins are exceptionally compact and associate with a guide RNA to cleave single- and double-stranded DNA targets. Here, we report the cryo-electron microscopy structure of Cas12f1 (also known as Cas14a) in complex with a guide RNA and its target DNA. Unexpectedly, the structure revealed that two Cas12f1 molecules assemble with the single guide RNA to recognize the double-stranded DNA target. Each Cas12f1 protomer adopts a different conformation and plays distinct roles in nucleic acid recognition and DNA cleavage, thereby explaining how the miniature Cas12f1 enzyme achieves RNA-guided DNA cleavage as an "asymmetric homodimer." Our findings augment the mechanistic understanding of diverse CRISPR-Cas nucleases and provide a framework for the development of compact genome-engineering tools critical for therapeutic genome editing.


Asunto(s)
Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/ultraestructura , Edición Génica , ARN Guía de Kinetoplastida/ultraestructura , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , Modelos Moleculares , Motivos de Nucleótidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Relación Estructura-Actividad
7.
Nat Commun ; 11(1): 5993, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239638

RESUMEN

A hallmark of type I CRISPR-Cas systems is the presence of Cas3, which contains both the nuclease and helicase activities required for DNA cleavage during interference. In subtype I-D systems, however, the histidine-aspartate (HD) nuclease domain is encoded as part of a Cas10-like large effector complex subunit and the helicase activity in a separate Cas3' subunit, but the functional and mechanistic consequences of this organisation are not currently understood. Here we show that the Sulfolobus islandicus type I-D Cas10d large subunit exhibits an unusual domain architecture consisting of a Cas3-like HD nuclease domain fused to a degenerate polymerase fold and a C-terminal domain structurally similar to Cas11. Crystal structures of Cas10d both in isolation and bound to S. islandicus rod-shaped virus 3 AcrID1 reveal that the anti-CRISPR protein sequesters the large subunit in a non-functional state unable to form a cleavage-competent effector complex. The architecture of Cas10d suggests that the type I-D effector complex is similar to those found in type III CRISPR-Cas systems and that this feature is specifically exploited by phages for anti-CRISPR defence.


Asunto(s)
Proteínas Arqueales/antagonistas & inhibidores , Proteínas Asociadas a CRISPR/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Sulfolobus/genética , Proteínas Virales/metabolismo , Proteínas Arqueales/metabolismo , Proteínas Arqueales/ultraestructura , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , División del ADN , Interacciones Huésped-Patógeno/genética , Dominios Proteicos/genética , Proteínas Represoras/genética , Rudiviridae/genética , Rudiviridae/metabolismo , Rudiviridae/patogenicidad , Sulfolobus/virología , Proteínas Virales/genética , Proteínas Virales/ultraestructura
8.
Mol Cell ; 79(5): 741-757.e7, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32730741

RESUMEN

Cmr-ß is a type III-B CRISPR-Cas complex that, upon target RNA recognition, unleashes a multifaceted immune response against invading genetic elements, including single-stranded DNA (ssDNA) cleavage, cyclic oligoadenylate synthesis, and also a unique UA-specific single-stranded RNA (ssRNA) hydrolysis by the Cmr2 subunit. Here, we present the structure-function relationship of Cmr-ß, unveiling how binding of the target RNA regulates the Cmr2 activities. Cryoelectron microscopy (cryo-EM) analysis revealed the unique subunit architecture of Cmr-ß and captured the complex in different conformational stages of the immune response, including the non-cognate and cognate target-RNA-bound complexes. The binding of the target RNA induces a conformational change of Cmr2, which together with the complementation between the 5' tag in the CRISPR RNAs (crRNA) and the 3' antitag of the target RNA activate different configurations in a unique loop of the Cmr3 subunit, which acts as an allosteric sensor signaling the self- versus non-self-recognition. These findings highlight the diverse defense strategies of type III complexes.


Asunto(s)
Inmunidad Adaptativa/fisiología , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Arqueales/química , Proteínas Arqueales/fisiología , Proteínas Arqueales/ultraestructura , Proteínas Asociadas a CRISPR/ultraestructura , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Microscopía por Crioelectrón , ADN de Cadena Simple/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Sulfolobus/genética , Sulfolobus/fisiología
9.
Proc Natl Acad Sci U S A ; 117(13): 7176-7182, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170016

RESUMEN

Prokaryotes and viruses have fought a long battle against each other. Prokaryotes use CRISPR-Cas-mediated adaptive immunity, while conversely, viruses evolve multiple anti-CRISPR (Acr) proteins to defeat these CRISPR-Cas systems. The type I-F CRISPR-Cas system in Pseudomonas aeruginosa requires the crRNA-guided surveillance complex (Csy complex) to recognize the invading DNA. Although some Acr proteins against the Csy complex have been reported, other relevant Acr proteins still need studies to understand their mechanisms. Here, we obtain three structures of previously unresolved Acr proteins (AcrF9, AcrF8, and AcrF6) bound to the Csy complex using electron cryo-microscopy (cryo-EM), with resolution at 2.57 Å, 3.42 Å, and 3.15 Å, respectively. The 2.57-Å structure reveals fine details for each molecular component within the Csy complex as well as the direct and water-mediated interactions between proteins and CRISPR RNA (crRNA). Our structures also show unambiguously how these Acr proteins bind differently to the Csy complex. AcrF9 binds to key DNA-binding sites on the Csy spiral backbone. AcrF6 binds at the junction between Cas7.6f and Cas8f, which is critical for DNA duplex splitting. AcrF8 binds to a distinct position on the Csy spiral backbone and forms interactions with crRNA, which has not been seen in other Acr proteins against the Csy complex. Our structure-guided mutagenesis and biochemistry experiments further support the anti-CRISPR mechanisms of these Acr proteins. Our findings support the convergent consequence of inhibiting degradation of invading DNA by these Acr proteins, albeit with different modes of interactions with the type I-F CRISPR-Cas system.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Pseudomonas aeruginosa , Proteínas Virales/ultraestructura
10.
Elife ; 82019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31021314

RESUMEN

CRISPR adaptation immunizes bacteria and archaea against viruses. During adaptation, the Cas1-Cas2 complex integrates fragments of invader DNA as spacers in the CRISPR array. Recently, an additional protein Cas4 has been implicated in selection and processing of prespacer substrates for Cas1-Cas2, although this mechanism remains unclear. We show that Cas4 interacts directly with Cas1-Cas2 forming a Cas4-Cas1-Cas2 complex that captures and processes prespacers prior to integration. Structural analysis of the Cas4-Cas1-Cas2 complex reveals two copies of Cas4 that closely interact with the two integrase active sites of Cas1, suggesting a mechanism for substrate handoff following processing. We also find that the Cas4-Cas1-Cas2 complex processes single-stranded DNA provided in cis or in trans with a double-stranded DNA duplex. Cas4 cleaves precisely upstream of PAM sequences, ensuring the acquisition of functional spacers. Our results explain how Cas4 cleavage coordinates with Cas1-Cas2 integration and defines the exact cleavage sites and specificity of Cas4.


Asunto(s)
Bacillus/enzimología , Proteínas Asociadas a CRISPR/metabolismo , ADN de Cadena Simple/metabolismo , Endodesoxirribonucleasas/metabolismo , Bacillus/genética , Proteínas Asociadas a CRISPR/ultraestructura , Endodesoxirribonucleasas/ultraestructura , Microscopía Electrónica , Conformación Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína
11.
Sci Rep ; 9(1): 3188, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816277

RESUMEN

Adaptation in CRISPR-Cas systems enables the generation of an immunological memory to defend against invading viruses. This process is driven by foreign DNA spacer (termed protospacer) selection and integration mediated by Cas1-Cas2 protein. Recently, different states of Cas1-Cas2, in its free form and in complex with protospacer DNAs, were solved by X-ray crystallography. In this paper, molecular dynamics (MD) simulations are employed to study crystal structures of one free and two protospacer-bound Cas1-Cas2 complexes. The simulated results indicate that the protospacer binding markedly increases the system stability, in particular when the protospacer containing the PAM-complementary sequence. The hydrogen bond and binding free energy calculations explain that PAM recognition introduces more specific interactions to increase the cleavage activity of Cas1. By using principal component analysis (PCA) and intramolecular angle calculation, this study observes two dominant slow motions associated with the binding of Ca1-Cas2 to the protospacer and potential target DNAs respectively. The comparison of DNA structural deformation further implies a cooperative conformational change of Cas1-Cas2 and protospacer for the target DNA capture. We propose that this cooperativity is the intrinsic requirement of the CRISPR integration complex formation. This study provides some new insights into the understanding of CRISPR-Cas adaptation.


Asunto(s)
Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , ADN Helicasas/ultraestructura , Endodesoxirribonucleasas/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Proteínas Asociadas a CRISPR/genética , Cristalografía por Rayos X , ADN Helicasas/genética , ADN Intergénico/genética , ADN Intergénico/ultraestructura , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
12.
Nature ; 566(7743): 218-223, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718774

RESUMEN

The RNA-guided CRISPR-associated (Cas) proteins Cas9 and Cas12a provide adaptive immunity against invading nucleic acids, and function as powerful tools for genome editing in a wide range of organisms. Here we reveal the underlying mechanisms of a third, fundamentally distinct RNA-guided genome-editing platform named CRISPR-CasX, which uses unique structures for programmable double-stranded DNA binding and cleavage. Biochemical and in vivo data demonstrate that CasX is active for Escherichia coli and human genome modification. Eight cryo-electron microscopy structures of CasX in different states of assembly with its guide RNA and double-stranded DNA substrates reveal an extensive RNA scaffold and a domain required for DNA unwinding. These data demonstrate how CasX activity arose through convergent evolution to establish an enzyme family that is functionally separate from both Cas9 and Cas12a.


Asunto(s)
Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , División del ADN , Escherichia coli/genética , Evolución Molecular , Silenciador del Gen , Genoma Bacteriano/genética , Genoma Humano/genética , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo
13.
Nucleic Acids Res ; 47(7): 3765-3783, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30759237

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas proteins provide an immune-like response in many prokaryotes against extraneous nucleic acids. CRISPR-Cas systems are classified into different classes and types. Class 1 CRISPR-Cas systems form multi-protein effector complexes that includes a guide RNA (crRNA) used to identify the target for destruction. Here we present crystal structures of Staphylococcus epidermidis Type III-A CRISPR subunits Csm2 and Csm3 and a 5.2 Å resolution single-particle cryo-electron microscopy (cryo-EM) reconstruction of an in vivo assembled effector subcomplex including the crRNA. The structures help to clarify the quaternary architecture of Type III-A effector complexes, and provide details on crRNA binding, target RNA binding and cleavage, and intermolecular interactions essential for effector complex assembly. The structures allow a better understanding of the organization of Type III-A CRISPR effector complexes as well as highlighting the overall similarities and differences with other Class 1 effector complexes.


Asunto(s)
Proteínas Asociadas a CRISPR/ultraestructura , Conformación Proteica , Staphylococcus epidermidis/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , ARN Bacteriano/química , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Staphylococcus epidermidis/genética
14.
Cell ; 176(1-2): 239-253.e16, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30503210

RESUMEN

Csm, a type III-A CRISPR-Cas interference complex, is a CRISPR RNA (crRNA)-guided RNase that also possesses target RNA-dependent DNase and cyclic oligoadenylate (cOA) synthetase activities. However, the structural features allowing target RNA-binding-dependent activation of DNA cleavage and cOA generation remain unknown. Here, we report the structure of Csm in complex with crRNA together with structures of cognate or non-cognate target RNA bound Csm complexes. We show that depending on complementarity with the 5' tag of crRNA, the 3' anti-tag region of target RNA binds at two distinct sites of the Csm complex. Importantly, the interaction between the non-complementary anti-tag region of cognate target RNA and Csm1 induces a conformational change at the Csm1 subunit that allosterically activates DNA cleavage and cOA generation. Together, our structural studies provide crucial insights into the mechanistic processes required for crRNA-meditated sequence-specific RNA cleavage, RNA target-dependent non-specific DNA cleavage, and cOA generation.


Asunto(s)
Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Proteínas Bacterianas , Proteínas Asociadas a CRISPR/química , ADN/química , Desoxirribonucleasas/metabolismo , Endorribonucleasas/metabolismo , Modelos Moleculares , ARN/química , ARN Bacteriano/química , ARN Guía de Kinetoplastida/química , Ribonucleasas/metabolismo
15.
Mol Cell ; 73(2): 264-277.e5, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503773

RESUMEN

Type ΙΙΙ CRISPR-Cas systems provide robust immunity against foreign RNA and DNA by sequence-specific RNase and target RNA-activated sequence-nonspecific DNase and RNase activities. We report on cryo-EM structures of Thermococcus onnurineus CsmcrRNA binary, CsmcrRNA-target RNA and CsmcrRNA-target RNAanti-tag ternary complexes in the 3.1 Å range. The topological features of the crRNA 5'-repeat tag explains the 5'-ruler mechanism for defining target cleavage sites, with accessibility of positions -2 to -5 within the 5'-repeat serving as sensors for avoidance of autoimmunity. The Csm3 thumb elements introduce periodic kinks in the crRNA-target RNA duplex, facilitating cleavage of the target RNA with 6-nt periodicity. Key Glu residues within a Csm1 loop segment of CsmcrRNA adopt a proposed autoinhibitory conformation suggestive of DNase activity regulation. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into CsmcrRNA complex assembly, mechanisms underlying RNA targeting and site-specific periodic cleavage, regulation of DNase cleavage activity, and autoimmunity suppression.


Asunto(s)
Autoinmunidad , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasas/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/ultraestructura , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Microscopía por Crioelectrón , Desoxirribonucleasas/genética , Desoxirribonucleasas/inmunología , Desoxirribonucleasas/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/inmunología , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Complejos Multiproteicos , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/inmunología , ARN Bacteriano/ultraestructura , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/ultraestructura , Relación Estructura-Actividad , Thermococcus/enzimología , Thermococcus/genética , Thermococcus/inmunología
16.
Biochem Biophys Res Commun ; 498(4): 775-781, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29526756

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) from Prevotella and Francisella 1 (Cpf1) are RNA-guided endonucleases that produce cohesive double-stranded breaks in DNA by specifically recognizing thymidine-rich protospacer-adjacent motif (PAM) sequences. Cpf1 is emerging as a powerful genome-editing tool. Despite previous structural studies on various Cpf1 proteins, the apo-structure of Cpf1 remains unknown. In the present study, we determined the solution structure of the Cpf1 protein from Francisella novicida (FnCpf1) with and without CRISPR RNA (crRNA) using small-angle X-ray scattering, providing the insights into the apo-structure of FnCpf1. The apo-structure of FnCpf1 was also visualized using negative staining electron microcopy. When we compared the apo-structure of FnCpf1 with crRNA-bound structure, their overall shapes (a closed form) were similar, suggesting that conformational change upon crRNA binding to FnCpf1 is not drastic, but a local induced fit might occur to recognize PAM sequences. In contrast, the apo Cpf1 from Moraxella bovoculi 237 (MbCpf1) was analyzed as an open form, implying that a large conformational change from an open to a closed form might be required for crRNA binding to MbCpf1. These results suggested that the crRNA-induced conformational changes in Cpf1 differ among species.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Endonucleasas/química , Francisella/química , Proteínas de Unión al ARN/química , Proteínas Bacterianas/ultraestructura , Proteínas Asociadas a CRISPR/ultraestructura , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cristalografía por Rayos X , Endonucleasas/ultraestructura , Modelos Moleculares , Conformación Proteica , Proteínas de Unión al ARN/ultraestructura
17.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985564

RESUMEN

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/ultraestructura , ADN Viral/química , Modelos Químicos , Modelos Moleculares , Complejos Multiproteicos/química , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestructura
18.
Cell ; 170(4): 714-726.e10, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28757251

RESUMEN

Cas13a, a type VI-A CRISPR-Cas RNA-guided RNA ribonuclease, degrades invasive RNAs targeted by CRISPR RNA (crRNA) and has potential applications in RNA technology. To understand how Cas13a is activated to cleave RNA, we have determined the crystal structure of Leptotrichia buccalis (Lbu) Cas13a bound to crRNA and its target RNA, as well as the cryo-EM structure of the LbuCas13a-crRNA complex. The crRNA-target RNA duplex binds in a positively charged central channel of the nuclease (NUC) lobe, and Cas13a protein and crRNA undergo a significant conformational change upon target RNA binding. The guide-target RNA duplex formation triggers HEPN1 domain to move toward HEPN2 domain, activating the HEPN catalytic site of Cas13a protein, which subsequently cleaves both single-stranded target and collateral RNAs in a non-specific manner. These findings reveal how Cas13a of type VI CRISPR-Cas systems defend against RNA phages and set the stage for its development as a tool for RNA manipulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Leptotrichia/inmunología , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Proteínas Asociadas a CRISPR/ultraestructura , Leptotrichia/química , Leptotrichia/metabolismo , Leptotrichia/virología , Modelos Moleculares , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/ultraestructura , ARN Viral/química , Difracción de Rayos X
19.
Cell ; 170(1): 48-60.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666122

RESUMEN

Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems.


Asunto(s)
Actinobacteria/genética , Actinobacteria/ultraestructura , Sistemas CRISPR-Cas , Hibridación de Ácido Nucleico , Actinobacteria/química , Actinobacteria/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo
20.
Cell Res ; 27(7): 853-864, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28574055

RESUMEN

Bacteriophages encode anti-CRISPR suppressors to counteract the CRISPR/Cas immunity of their bacterial hosts, thus facilitating their survival and replication. Previous studies have shown that two phage-encoded anti-CRISPR proteins, AcrF1 and AcrF2, suppress the type I-F CRISPR/Cas system of Pseudomonas aeruginosa by preventing target DNA recognition by the Csy surveillance complex, but the precise underlying mechanism was unknown. Here we present the structure of AcrF1/2 bound to the Csy complex determined by cryo-EM single-particle reconstruction. By structural analysis, we found that AcrF1 inhibits target DNA recognition of the Csy complex by interfering with base pairing between the DNA target strand and crRNA spacer. In addition, multiple copies of AcrF1 bind to the Csy complex with different modes when working individually or cooperating with AcrF2, which might exclude target DNA binding through different mechanisms. Together with previous reports, we provide a comprehensive working scenario for the two anti-CRISPR suppressors, AcrF1 and AcrF2, which silence CRISPR/Cas immunity by targeting the Csy surveillance complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Proteínas de la Membrana/química , Pseudomonas aeruginosa/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/ultraestructura , Microscopía por Crioelectrón , ADN Bacteriano/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Modelos Moleculares , Potyvirus , Fagos Pseudomonas , ARN Bacteriano/metabolismo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...