Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Neurosci ; 22(1): 5, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509094

RESUMEN

BACKGROUND: The Period Circadian Regulator 2 (Per2) gene is important for the modulation of circadian rhythms that influence biological processes. Circadian control of the hypothalamus-pituitary-adrenal (HPA) axis is critical for regulation of hormones involved in the stress response. Dysregulation of the HPA axis is associated with neuropsychiatric disorders. Therefore, it is important to understand how disruption of the circadian rhythm alters the HPA axis. One way to address this question is to delete a gene involved in regulating a central circadian gene such as Per2 in an animal model and to determine how this deletion may affect the HPA axis and behaviors that are altered when the HPA axis is dysregulated. To study this, corticosterone (CORT) levels were measured through the transition from light (inactive phase) to dark (active phase). Additionally, CORT levels as well as pituitary and adrenal mRNA expression were measured following a mild restraint stress. Mice were tested for depressive-like behaviors (forced swim test (FST)), acoustic startle response (ASR), and pre-pulse inhibition (PPI). RESULTS: The present results showed that Per2 knockout impacted CORT levels, mRNA expression, depressive-like behaviors, ASR and PPI. Unlike wild-type (WT) mice, Per2 knockout (Per2) mice showed no diurnal rise in CORT levels at the onset of the dark cycle. Per2-/- mice had enhanced CORT levels and adrenal melanocortin receptor 2 (Mc2R) mRNA expression following restraint. There were no changes in expression of any other pituitary or adrenal gene. In the FST, Per2-/- mice spent more time floating (less time struggling) than WT mice, suggesting increased depressive-like behaviors. Per2-/- mice had deficits in ASR and PPI startle responses compared to WT mice. CONCLUSIONS: In summary, these findings showed that disruption of the circadian system via Per2 gene deletion dysregulated the HPA stress axis and is subsequently correlated with increased depressive-like behaviors and deficits in startle response.


Asunto(s)
Ritmo Circadiano/fisiología , Corticosterona/metabolismo , Depresión/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Reflejo de Sobresalto/fisiología , Animales , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/deficiencia
2.
Elife ; 82019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613218

RESUMEN

In Drosophila, ~150 neurons expressing molecular clock proteins regulate circadian behavior. Sixteen of these neurons secrete the neuropeptide Pdf and have been called 'master pacemakers' because they are essential for circadian rhythms. A subset of Pdf+ neurons (the morning oscillator) regulates morning activity and communicates with other non-Pdf+ neurons, including a subset called the evening oscillator. It has been assumed that the molecular clock in Pdf+ neurons is required for these functions. To test this, we developed and validated Gal4-UAS based CRISPR tools for cell-specific disruption of key molecular clock components, period and timeless. While loss of the molecular clock in both the morning and evening oscillators eliminates circadian locomotor activity, the molecular clock in either oscillator alone is sufficient to rescue circadian locomotor activity in the absence of the other. This suggests that clock neurons do not act in a hierarchy but as a distributed network to regulate circadian activity.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neuronas/metabolismo , Neuropéptidos/genética , Proteínas Circadianas Period/genética , Animales , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Sistemas CRISPR-Cas , Comunicación Celular , Linaje de la Célula/genética , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Oscuridad , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efectos de la radiación , Retroalimentación Fisiológica , Edición Génica , Regulación de la Expresión Génica , Fototransducción/genética , Locomoción/genética , Locomoción/efectos de la radiación , Red Nerviosa/metabolismo , Red Nerviosa/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación , Neuropéptidos/deficiencia , Proteínas Circadianas Period/deficiencia , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
3.
Elife ; 82019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613223

RESUMEN

Animal circadian rhythms persist in constant darkness and are driven by intracellular transcription-translation feedback loops. Although these cellular oscillators communicate, isolated mammalian cellular clocks continue to tick away in darkness without intercellular communication. To investigate these issues in Drosophila, we assayed behavior as well as molecular rhythms within individual brain clock neurons while blocking communication within the ca. 150 neuron clock network. We also generated CRISPR-mediated neuron-specific circadian clock knockouts. The results point to two key clock neuron groups: loss of the clock within both regions but neither one alone has a strong behavioral phenotype in darkness; communication between these regions also contributes to circadian period determination. Under these dark conditions, the clock within one region persists without network communication. The clock within the famous PDF-expressing s-LNv neurons however was strongly dependent on network communication, likely because clock gene expression within these vulnerable sLNvs depends on neuronal firing or light.


Asunto(s)
Encéfalo/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Fototransducción/genética , Neuronas/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Encéfalo/citología , Encéfalo/efectos de la radiación , Sistemas CRISPR-Cas , Comunicación Celular , Linaje de la Célula/genética , Relojes Circadianos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Oscuridad , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efectos de la radiación , Retroalimentación Fisiológica , Edición Génica , Red Nerviosa/metabolismo , Red Nerviosa/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación , Neuropéptidos/deficiencia , Neuropéptidos/genética , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
4.
Am J Physiol Renal Physiol ; 316(5): F807-F813, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30759025

RESUMEN

Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.


Asunto(s)
Presión Sanguínea , Ritmo Circadiano , Canales Epiteliales de Sodio/metabolismo , Hipertensión/prevención & control , Nefronas/metabolismo , Proteínas Circadianas Period/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Caseína Quinasas/antagonistas & inhibidores , Caseína Quinasas/metabolismo , Ritmo Circadiano/efectos de los fármacos , Desoxicorticosterona/análogos & derivados , Modelos Animales de Enfermedad , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/efectos de los fármacos , Canales Epiteliales de Sodio/genética , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Mineralocorticoides , Natriuresis , Nefronas/efectos de los fármacos , Proteínas Circadianas Period/antagonistas & inhibidores , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Pirimidinas/farmacología , Cloruro de Sodio Dietético , Factores de Tiempo , Xenopus
5.
Ann Anat ; 223: 43-48, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30716467

RESUMEN

BACKGROUND: Ultrasonic vocalizations (USV) of mice are produced in and emitted by the larynx. However, which anatomical elements of the mouse larynx are involved and to which aspects of USV they contribute is not clear. Frequency and amplitude parameters of mice, deficient in the clock gene Period1 (mPer1-/- mice) are distinguishably different compared to C3H wildtype (WT) controls. Because structural differences in the larynx may be a reason for the different USV observed, we analyzed laryngeal anatomy of mPer1-/- mice and WT control animals using micro-computed-tomography and stereology. RESULTS: In mPer1-/- mice, we found laryngeal cartilages to be normally arranged, and the thyroid, arytenoid and epiglottal cartilages were similar in diameter and volume measurements, compared to WT mice. However, in the cricoid cartilage, a significant difference in the dorso-ventral diameter and volume was evident. CONCLUSION: Our findings imply that laryngeal morphology is affected by inactivation of the clock gene Period1 in mice, which may contribute to their abnormal USV.


Asunto(s)
Laringe/anatomía & histología , Ratones Endogámicos C3H/anatomía & histología , Proteínas Circadianas Period/deficiencia , Vocalización Animal/fisiología , Animales , Imagenología Tridimensional , Laringe/diagnóstico por imagen , Ratones , Ratones Endogámicos C3H/genética , Ratones Endogámicos C3H/fisiología , Proteínas Circadianas Period/genética , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , Microtomografía por Rayos X
6.
Addict Biol ; 24(5): 946-957, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30091820

RESUMEN

Drug addiction is a chronic and relapsing brain disorder, influenced by complex interactions between endogenous and exogenous factors. Per2, a circadian gene, plays a role in drug addiction. Previous studies using Per2-knockout mice have shown a role for Per2 in cocaine, morphine and alcohol addiction. In the present study, we investigated the role of Per2 in methamphetamine (METH) addiction using Per2-overexpression and knockout mice. We observed locomotor sensitization responses to METH administration, and rewarding effects using a conditioned place preference test. In addition, we measured expression levels of dopamine and dopamine-related genes (monoamine oxidase A, DA receptor 1, DA receptor 2, DA active transporter, tyrosine hydroxylase and cAMP response element-binding protein 1) in the striatum of the mice after repeated METH treatments, using qRT-PCR. Per2-overexpressed mice showed decreased locomotor sensitization and rewarding effects of METH compared to the wildtype mice, whereas the opposite was observed in Per2 knockout mice. Both types of transgenic mice showed altered expression levels of dopamine-related genes after repeated METH administration. Specifically, we observed lower dopamine levels in Per2-overexpressed mice and higher levels in Per2-knockout mice. Taken together, Per2 expression levels may influence the addictive effects of METH through the dopaminergic system in the striatum of mice.


Asunto(s)
Trastornos Relacionados con Anfetaminas/fisiopatología , Estimulantes del Sistema Nervioso Central/farmacología , Metanfetamina/farmacología , Proteínas Circadianas Period/fisiología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Técnicas de Inactivación de Genes , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/metabolismo , Equilibrio Postural/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Recompensa , Síndrome de Abstinencia a Sustancias/fisiopatología
7.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R50-R58, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427705

RESUMEN

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Hipertensión/genética , Proteínas Circadianas Period/deficiencia , Animales , Presión Sanguínea/fisiología , Ritmo Circadiano/fisiología , Femenino , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Mineralocorticoides , Proteínas Circadianas Period/genética , Cloruro de Sodio Dietético/metabolismo
8.
Curr Pharm Des ; 24(28): 3376-3383, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30246635

RESUMEN

BACKGROUND: Recently, we identified the circadian rhythm protein Period 2 (PER2) in robust cardioprotection from myocardial ischemia (MI). Based on findings that perioperative MI is the most common major cardiovascular complication and that anesthetics can alter the expression of PER2, we hypothesized that an anesthesia mediated downregulation of PER2 could be detrimental if myocardial ischemia and reperfusion (IR) would occur. METHODS AND RESULTS: We exposed mice to pentobarbital, fentanyl, ketamine, propofol, midazolam or isoflurane and determined cardiac Per2 mRNA levels. Unexpectedly, only midazolam treatment resulted in an immediate and significant downregulation of Per2 transcript levels. Subsequent studies in mice pretreated with midazolam using an in-situ mouse model for myocardial (IR)-injury revealed a significant and dramatic increase in infarct sizes or Troponin-I serum levels in the midazolam treated group when compared to controls. Using the recently identified flavonoid, nobiletin, as a PER2 enhancer completely abolished the deleterious effects of midazolam during myocardial IR-injury. Moreover, nobiletin treatment alone significantly reduced infarct sizes or Troponin I levels in wildtype but not in Per2-/- mice. Pharmacological studies on nobiletin like flavonoids revealed that only nobiletin and tangeritin, both found to enhance PER2, were cardioprotective in our murine model for myocardial IR-injury. CONCLUSION: We identified midazolam mediated downregulation of cardiac PER2 as an underlying mechanism for a deleterious effect of midazolam pretreatment in myocardial IR-injury. These findings highlight PER2 as a cardioprotective mechanism and suggest the PER2 enhancers nobiletin or tangeritin as a preventative therapy for myocardial IR-injury in the perioperative setting where midazolam pretreatment occurs frequently.


Asunto(s)
Flavonas/farmacología , Midazolam/antagonistas & inhibidores , Isquemia Miocárdica/tratamiento farmacológico , Proteínas Circadianas Period/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Flavonas/metabolismo , Ratones , Ratones Noqueados , Midazolam/farmacología , Isquemia Miocárdica/metabolismo , Proteínas Circadianas Period/antagonistas & inhibidores , Proteínas Circadianas Period/deficiencia , Daño por Reperfusión/metabolismo
9.
Biochem Biophys Res Commun ; 503(3): 1254-1259, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30025896

RESUMEN

Previously, period1b-/- zebrafish mutants were used to establish an attention deficit hyperactivity disorder (ADHD) model, in which hyperactive behavior was found to be a typical characteristic of ADHD due to down-regulated dopamine levels. Here, we used five prenylated isoflavones from Flemingia philippinensis roots to study their therapeutic effects on hyperactivity behavior in period1b-/- zebrafish. Results of locomotor activity assay showed that auriculasin, one of the prenylated isoflavones, significantly reduced the hyperactivity behavior in period1b-/- zebrafish. Hormone measurement results showed that auriculasin increased melatonin and dopamine content. Results of quantitative real-time polymerase chain reaction showed that auriculasin down-regulated the expression of mao but up-regulated the expression of th and per1b. Thus, auriculasin demonstrated a potential biological effect on dopamine activity to inhibit hyperactivity behavior in the ADHD zebrafish model by regulating circadian clock gene per1b.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Fabaceae/química , Isoflavonas/farmacología , Locomoción/efectos de los fármacos , Raíces de Plantas/química , Animales , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Isoflavonas/química , Isoflavonas/aislamiento & purificación , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Am J Physiol Renal Physiol ; 314(6): F1138-F1144, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357420

RESUMEN

Many physiological functions have a circadian rhythm, including blood pressure (BP). BP is highest during the active phase, whereas during the rest period, BP dips 10-20%. Patients that do not experience this dip at night are termed "nondippers." Nondipping hypertension is associated with increased risk of cardiovascular disease. The mechanisms underlying nondipping hypertension are not understood. Without the circadian clock gene Per1, C57BL/6J mice develop nondipping hypertension on a high-salt diet plus mineralocorticoid treatment (HS/DOCP). Our laboratory has shown that PER1 regulates expression of several genes related to sodium (Na) transport in the kidney, including epithelial Na channel (ENaC) and Na chloride cotransporter (NCC). Urinary Na excretion also demonstrates a circadian pattern with a peak during active periods. We hypothesized that PER1 contributes to circadian regulation of BP via a renal Na-handling-dependent mechanism. Na-handling genes from the distal nephron were inappropriately regulated in KO mice on HS/DOCP. Additionally, the night/day ratio of Na urinary excretion by Per1 KO mice is decreased compared with WT (4 × vs. 7×, P < 0.001, n = 6 per group). Distal nephron-specific Per1 KO mice also show an inappropriate increase in expression of Na transporter genes αENaC and NCC. These results support the hypothesis that PER1 mediates control of circadian BP rhythms via the regulation of distal nephron Na transport genes. These findings have implications for the understanding of the etiology of nondipping hypertension and the subsequent development of novel therapies for this dangerous pathophysiological condition.


Asunto(s)
Presión Sanguínea , Ritmo Circadiano , Hipertensión/metabolismo , Túbulos Renales Distales/metabolismo , Natriuresis , Proteínas Circadianas Period/metabolismo , Eliminación Renal , Animales , Presión Sanguínea/genética , Ritmo Circadiano/genética , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Predisposición Genética a la Enfermedad , Hipertensión/genética , Hipertensión/fisiopatología , Túbulos Renales Distales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Natriuresis/genética , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Fenotipo , Eliminación Renal/genética , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Factores de Tiempo , Regulación hacia Arriba
11.
Sci Rep ; 7(1): 15510, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138421

RESUMEN

Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.


Asunto(s)
Anticipación Psicológica , Relojes Biológicos/fisiología , Conducta Alimentaria/psicología , Proteínas Circadianas Period/genética , Animales , Ritmo Circadiano/fisiología , Señales (Psicología) , Ayuno/fisiología , Conducta Alimentaria/fisiología , Femenino , Alimentos , Privación de Alimentos/fisiología , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Mutación , Proteínas Circadianas Period/deficiencia , Fotoperiodo , Transducción de Señal
12.
J Biol Chem ; 292(30): 12679-12690, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28607147

RESUMEN

Cell proliferation and release from the bone marrow have been demonstrated to be controlled by circadian rhythms in both humans and mice. However, it is unclear whether local circadian clocks in the bone marrow influence physiological functions and life span of erythrocytes. Here, we report that loss of the clock gene Per2 significantly decreased erythrocyte life span. Mice deficient in Per2 were more susceptible to acute stresses in the erythrocytes, becoming severely anemic upon phenylhydrazine, osmotic, and H2O2 challenges. 1H NMR-based metabolomics analysis revealed that the Per2 depletion causes significant changes in metabolic profiles of erythrocytes, including increased lactate and decreased ATP levels compared with wild-type mice. The lower ATP levels were associated with hyperfunction of Na+/K+-ATPase activity in Per2-null erythrocytes, and inhibition of Na+/K+-ATPase activity by ouabain efficiently rescued ATP levels. Per2-null mice displayed increased levels of Na+/K+-ATPase α1 (ATP1A1) in the erythrocyte membrane, and transfection of Per2 cDNA into the erythroleukemic cell line TF-1 inhibited Atp1a1 expression. Furthermore, we observed that PER2 regulates Atp1a1 transcription through interacting with trans-acting transcription factor 1 (SP1). Our findings reveal that Per2 function in the bone marrow is required for the regulation of life span in circulating erythrocytes.


Asunto(s)
Senescencia Celular , Eritrocitos/citología , Eritrocitos/metabolismo , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Curr Neurovasc Res ; 14(3): 207-214, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28625127

RESUMEN

BACKGROUND: Autophagy is an intracellular bulk self-degrading process in which cytoplasmic contents of abnormal proteins and excess or damaged organelles are sequestered into autophagosomes, and degraded upon fusion with lysosomes. Although autophagy is generally considered to be pro-survival, it also functions in cell death processes. We recently reported on the hippocampal, higher vulnerability to cerebral ischemia in mice lacking the circadian clock protein PERIOD1 (PER1), a phenomenon we found to be linked to a PER1-dependent modulation of the expression patterns of apoptotic/autophagic markers. METHODS: To exclude the contribution of vascular or glial factors to the innate vulnerability of Per1 knockout-mice (Per1-/--mice) to cerebral ischemia in vivo, we compared the autophagic machinery between primary hippocampal cultures from wild-type (WT)- and Per1-/--mice, using the lipophilic macrolide antibiotic, Rapamycin to induce autophagy. RESULTS: Development of autophagy in WT cells involved an increased LC3-II-to-LC3-I ratio (microtubule-associated protein 1 light chain 3) and an overall increase in the level of LC3-II. In addition, immunostaining of LC3 in WT cells revealed the typical transformation of LC3 localization from a diffused staining to a dot- and ring-like pattern. In contrast, Per1-/--hippocampal cells were resistant to Rapamycin induced alterations of autophagy hallmarks. CONCLUSION: Our in vitro data suggests that basal activity of autophagy seems to be modulated by PER1, and confirms the in vivo data by showing that the autophagic machinery is depressed in Per1-/--hippocampal neurons.The implication of both autophagy and circadian dysfunction in the pathogenesis of cerebral ischemia suggests that a functional connection between the two processes may exist.


Asunto(s)
Autofagia/genética , Isquemia Encefálica/patología , Regulación de la Expresión Génica/genética , Hipocampo/patología , Proteínas Circadianas Period/deficiencia , Animales , Modelos Animales de Enfermedad , Inmunosupresores/farmacología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Proteínas Circadianas Period/genética , Sirolimus/farmacología , Factores de Tiempo
14.
PLoS One ; 12(4): e0176243, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448534

RESUMEN

A wide search for ischemic preconditioning (IPC) mechanisms of cardioprotection identified the light elicited circadian rhythm protein Period 2 (Per2) to be cardioprotective. Studies on cardiac metabolism found a key role for light elicited Per2 in mediating metabolic dependence on carbohydrate metabolism. To profile Per2 mediated pathways following IPC of the mouse heart, we performed a genome array and identified 352 abundantly expressed and well-characterized Per2 dependent micro RNAs. One prominent result of our in silico analysis for cardiac Per2 dependent micro RNAs revealed a selective role for miR-21 in the regulation of hypoxia and metabolic pathways. Based on this Per2 dependency, we subsequently found a diurnal expression pattern for miR-21 with higher miR-21 expression levels at Zeitgeber time (ZT) 15 compared to ZT3. Gain or loss of function studies for miR-21 using miRNA mimics or miRNA inhibitors and a Seahorse Bioanalyzer uncovered a critical role of miR-21 for cellular glycolysis, glycolytic capacity, and glycolytic reserve. Exposing mice to intense light, a strategy to induce Per2, led to a robust induction of cardiac miR-21 tissue levels and decreased infarct sizes, which was abolished in miR-21-/- mice. Similarly, first translational studies in humans using intense blue light exposure for 5 days in healthy volunteers resulted in increased plasma miR-21 levels which was associated with increased phosphofructokinase activity, the rate-limiting enzyme in glycolysis. Together, we identified miR-21 as cardioprotective downstream target of Per2 and suggest intense light therapy as a potential strategy to enhance miR-21 activity and subsequent carbohydrate metabolism in humans.


Asunto(s)
Glucólisis/efectos de la radiación , Corazón/efectos de la radiación , Luz , MicroARNs/genética , Miocardio/metabolismo , Proteínas Circadianas Period/metabolismo , Regulación hacia Arriba/efectos de la radiación , Adulto , Animales , Células Endoteliales/metabolismo , Células Endoteliales/efectos de la radiación , Femenino , Humanos , Precondicionamiento Isquémico , Pulmón/metabolismo , Pulmón/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Proteínas Circadianas Period/deficiencia , Fosfofructoquinasas/metabolismo , Adulto Joven
15.
Acta Physiol (Oxf) ; 220(1): 72-82, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27636900

RESUMEN

AIM: Increasing evidence demonstrates that circadian clock proteins are important regulators of physiological functions including blood pressure. An established risk factor for developing cardiovascular disease is the absence of a blood pressure dip during the inactive period. The goal of the present study was to determine the effects of a high salt diet plus mineralocorticoid on PER1-mediated blood pressure regulation in a salt-resistant, normotensive mouse model, C57BL/6J. METHODS: Blood pressure was measured using radiotelemetry. After control diet, wild-type (WT) and Per1 (KO) knockout mice were given a high salt diet (4% NaCl) and the long-acting mineralocorticoid deoxycorticosterone pivalate. Blood pressure and activity rhythms were analysed to evaluate changes over time. RESULTS: Blood pressure in WT mice was not affected by a high salt diet plus mineralocorticoid. In contrast, Per1 KO mice exhibited significantly increased mean arterial pressure (MAP) in response to a high salt diet plus mineralocorticoid. The inactive/active phase ratio of MAP in WT mice was unchanged by high salt plus mineralocorticoid treatment. Importantly, this treatment caused Per1 KO mice to lose the expected decrease or 'dip' in blood pressure during the inactive compared to the active phase. CONCLUSION: Loss of PER1 increased sensitivity to the high salt plus mineralocorticoid treatment. It also resulted in a non-dipper phenotype in this model of salt-sensitive hypertension and provides a unique model of non-dipping. Together, these data support an important role for the circadian clock protein PER1 in the modulation of blood pressure in a high salt/mineralocorticoid model of hypertension.


Asunto(s)
Hipertensión/metabolismo , Hipertensión/fisiopatología , Proteínas Circadianas Period/metabolismo , Animales , Presión Sanguínea/fisiología , Desoxicorticosterona/análogos & derivados , Desoxicorticosterona/farmacología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mineralocorticoides/farmacología , Proteínas Circadianas Period/deficiencia , Reacción en Cadena en Tiempo Real de la Polimerasa , Cloruro de Sodio Dietético/farmacología
16.
Cell Death Dis ; 7: e2176, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27054331

RESUMEN

The severity of acute liver failure (ALF) induced by bacterial lipopolysaccharide (LPS) is associated with the hepatic innate immune response. The core circadian molecular clock modulates the innate immune response by controlling rhythmic pathogen recognition by the innate immune system and daily variations in cytokine gene expression. However, the molecular link between circadian genes and the innate immune system has remained unclear. Here, we showed that mice lacking the clock gene Per1 (Period1) are more susceptible to LPS/d-galactosamine (LPS/GalN)-induced macrophage-dependent ALF compared with wild-type (WT) mice. Per1 deletion caused a remarkable increase in the number of Kupffer cells (KCs) in the liver, resulting in an elevation of the levels of pro-inflammatory cytokines after LPS treatment. Loss of Per1 had no effect on the proliferation or apoptosis of macrophages; however, it enhanced the recruitment of macrophages, which was associated with an increase in CC chemokine receptor 2 (Ccr2) expression levels in monocytes/macrophages. Deletion of Ccr2 rescued d-GalN/LPS-induced liver injury in Per1(-/-) mice. We demonstrated that the upregulation of Ccr2 expression by Per1 deletion could be reversed by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist GW9662. Further analysis indicated that PER1 binds to PPAR-γ on the Ccr2 promoter and enhanced the inhibitory effect of PPAR-γ on Ccr2 expression. These results reveal that Per1 reduces hepatic macrophage recruitment through interaction with PPAR-γ and prevents an excessive innate immune response in endotoxin-induced liver injury.


Asunto(s)
Inmunidad Innata , Lipopolisacáridos/toxicidad , Fallo Hepático Agudo/etiología , Macrófagos/metabolismo , Proteínas Circadianas Period/metabolismo , Anilidas/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Galactosamina/toxicidad , Macrófagos del Hígado/citología , Hígado/metabolismo , Hígado/patología , Fallo Hepático Agudo/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Unión Proteica , Receptores CCR2/genética , Receptores CCR2/metabolismo , Regulación hacia Arriba/efectos de los fármacos
17.
Sci Rep ; 6: 21945, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26904978

RESUMEN

The mammalian circadian system is a hierarchical network of oscillators organized to optimally coordinate behavior and physiology with daily environmental cycles. The suprachiasmatic nucleus (SCN) of the hypothalamus is at the top of this hierarchy, synchronizing to the environmental light-dark cycle, and coordinates the phases of peripheral clocks. The Period genes are critical components of the molecular timekeeping mechanism of these clocks. Circadian clocks are disabled in Period1/2/3 triple mutant mice, resulting in arrhythmic behavior in constant conditions. We uncovered rhythmic behavior in this mutant by simply exposing the mice to timed access to a palatable meal or running wheel. The emergent circadian behavior rhythms free-ran for many cycles under constant conditions without cyclic environmental cues. Together, these data demonstrate that the palatable meal-inducible circadian oscillator (PICO) and wheel-inducible circadian oscillator (WICO) are generated by non-canonical circadian clocks. Entrainment of these novel oscillators by palatable snacks and timed exercise could become novel therapeutics for human conditions caused by disruptions of the circadian clocks.


Asunto(s)
Proteínas CLOCK/genética , Proteínas Circadianas Period/genética , Condicionamiento Físico Animal , Aceites de Plantas/administración & dosificación , Animales , Proteínas CLOCK/metabolismo , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Ingestión de Alimentos/fisiología , Femenino , Alimentos , Regulación de la Expresión Génica , Humanos , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Aceite de Cacahuete , Proteínas Circadianas Period/deficiencia , Fotoperiodo , Carrera , Transducción de Señal , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/efectos de la radiación
18.
Proc Natl Acad Sci U S A ; 113(12): E1673-82, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26862173

RESUMEN

Mitochondria are major suppliers of cellular energy through nutrients oxidation. Little is known about the mechanisms that enable mitochondria to cope with changes in nutrient supply and energy demand that naturally occur throughout the day. To address this question, we applied MS-based quantitative proteomics on isolated mitochondria from mice killed throughout the day and identified extensive oscillations in the mitochondrial proteome. Remarkably, the majority of cycling mitochondrial proteins peaked during the early light phase. We found that rate-limiting mitochondrial enzymes that process lipids and carbohydrates accumulate in a diurnal manner and are dependent on the clock proteins PER1/2. In this conjuncture, we uncovered daily oscillations in mitochondrial respiration that peak during different times of the day in response to different nutrients. Notably, the diurnal regulation of mitochondrial respiration was blunted in mice lacking PER1/2 or on a high-fat diet. We propose that PERIOD proteins optimize mitochondrial metabolism to daily changes in energy supply/demand and thereby, serve as a rheostat for mitochondrial nutrient utilization.


Asunto(s)
Ritmo Circadiano/fisiología , Mitocondrias Hepáticas/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas Circadianas Period/fisiología , Animales , Ritmo Circadiano/genética , Ciclo del Ácido Cítrico , Dieta Alta en Grasa , Grasas de la Dieta/metabolismo , Transporte de Electrón , Ácidos Grasos/metabolismo , Conducta Alimentaria/fisiología , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/enzimología , Actividad Motora , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Proteoma , ARN Mensajero/biosíntesis , ARN Mensajero/genética
19.
Nat Commun ; 6: 8587, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26617050

RESUMEN

Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators.


Asunto(s)
Trastornos Cronobiológicos/fisiopatología , Relojes Circadianos , Animales , Trastornos Cronobiológicos/genética , Trastornos Cronobiológicos/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética
20.
Am J Physiol Renal Physiol ; 309(11): F933-42, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26377793

RESUMEN

We have previously demonstrated that the circadian clock protein period (Per)1 coordinately regulates multiple genes involved in Na(+) reabsorption in renal collecting duct cells. Consistent with these results, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. The proximal tubule is responsible for a majority of Na(+) reabsorption. Previous work has demonstrated that expression of Na(+)/H(+) exchanger 3 (NHE3) oscillates with a circadian pattern and Na(+)-glucose cotransporter (SGLT)1 has been demonstrated to be a circadian target in the colon, but whether these target genes are regulated by Per1 has not been investigated in the kidney. The goal of the present study was to determine if Per1 regulates the expression of NHE3, SGLT1, and SGLT2 in the kidney. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of SGLT1 and NHE3 but not SGLT2 in the renal cortex of mice. Per1 small interfering RNA and pharmacological blockade of Per1 nuclear entry in human proximal tubule HK-2 cells yielded the same results. Examination of heterogeneous nuclear RNA suggested that the effects of Per1 on NHE3 and SGLT1 expression occurred at the level of transcription. Per1 and the circadian protein CLOCK were detected at promoters of NHE3 and SGLT1. Importantly, both membrane and intracellular protein levels of NHE3 and SGLT1 were decreased after blockade of nuclear Per1 entry. This effect was associated with reduced activity of Na(+)-K(+)-ATPase. These data demonstrate a role for Per1 in the transcriptional regulation of NHE3 and SGLT1 in the kidney.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Proteínas Circadianas Period/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transcripción Genética , Transporte Activo de Núcleo Celular , Animales , Sitios de Unión , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Caseína Cinasa 1 épsilon/metabolismo , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Quinasa Idelta de la Caseína/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Regiones Promotoras Genéticas , Pirimidinas/farmacología , Interferencia de ARN , ARN Mensajero/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...