Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Intervalo de año de publicación
1.
FEBS Open Bio ; 9(8): 1421-1431, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31161731

RESUMEN

Centrin is an evolutionarily conserved EF-hand-containing protein, which is present in eukaryotic organisms as diverse as algae, yeast, and humans. Centrins are associated with the microtubule-organizing center and with centrosome-related structures, such as basal bodies in flagellar and ciliated cells, and the spindle pole body in yeast. Five centrin genes have been identified in Trypanosoma brucei (T. brucei), a protozoan parasite that causes sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. In the present study, we identified that centrin5 of T. brucei (TbCentrin5) is localized throughout the cytosol and nucleus and enriched in the flagellum. We further identified that TbCentrin5 binds Ca2+ ions with a high affinity and constructed a model of TbCentrin5 bound by Ca2+ ions. Meanwhile, we observed that TbCentrin5 interacts with TbCentrin1, TbCentrin3, and TbCentrin4 and that the interactions are Ca2+ -dependent, suggesting that TbCentrin5 is able to form different complexes with other TbCentrins to participate in relevant cellular processes. Our study provides a foundation for better understanding of the biological roles of TbCentrin5.


Asunto(s)
Proteínas Contráctiles/metabolismo , Proteínas Contráctiles/ultraestructura , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Bovinos , Citosol/metabolismo , Motivos EF Hand , Flagelos/metabolismo , Flagelos/fisiología , Humanos , Filogenia , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Trypanosoma brucei brucei/metabolismo
2.
Biochemistry ; 58(27): 3031-3041, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243991

RESUMEN

Division of fungal and animal cells depends on scaffold proteins called anillins. Cytokinesis by the fission yeast Schizosaccharomyces pombe is compromised by the loss of anillin Mid1p (Mid1, UniProtKB P78953 ), because cytokinesis organizing centers, called nodes, are misplaced and fail to acquire myosin-II, so they assemble slowly into abnormal contractile rings. The C-terminal half of Mid1p consists of lipid binding C2 and PH domains, but the N-terminal half (Mid1p-N452) performs most of the functions of the full-length protein. Little is known about the structure of the N-terminal half of Mid1p, so we investigated its physical properties using structure prediction tools, spectroscopic techniques, and hydrodynamic measurements. The data indicate that Mid1p-N452 is intrinsically disordered but moderately compact. Recombinant Mid1p-N452 purified from insect cells was phosphorylated, which weakens its tendency to aggregate. Purified Mid1p-N452 demixes into liquid droplets at concentrations far below its concentration in nodes. These physical properties are appropriate for scaffolding other proteins in nodes.


Asunto(s)
Proteínas Contráctiles/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Secuencia de Aminoácidos , Proteínas Contráctiles/metabolismo , Proteínas Contráctiles/ultraestructura , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/ultraestructura , Modelos Moleculares , Transición de Fase , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/ultraestructura , Solubilidad
3.
PLoS Genet ; 11(10): e1005545, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26460929

RESUMEN

The Type VI secretion system (T6SS) is a widespread weapon dedicated to the delivery of toxin proteins into eukaryotic and prokaryotic cells. The 13 T6SS subunits assemble a cytoplasmic contractile structure anchored to the cell envelope by a membrane-spanning complex. This structure is evolutionarily, structurally and functionally related to the tail of contractile bacteriophages. In bacteriophages, the tail assembles onto a protein complex, referred to as the baseplate, that not only serves as a platform during assembly of the tube and sheath, but also triggers the contraction of the sheath. Although progress has been made in understanding T6SS assembly and function, the composition of the T6SS baseplate remains mostly unknown. Here, we report that six T6SS proteins-TssA, TssE, TssF, TssG, TssK and VgrG-are required for proper assembly of the T6SS tail tube, and a complex between VgrG, TssE,-F and-G could be isolated. In addition, we demonstrate that TssF and TssG share limited sequence homologies with known phage components, and we report the interaction network between these subunits and other baseplate and tail components. In agreement with the baseplate being the assembly platform for the tail, fluorescence microscopy analyses of functional GFP-TssF and TssK-GFP fusion proteins show that these proteins assemble stable and static clusters on which the sheath polymerizes. Finally, we show that recruitment of the baseplate to the apparatus requires initial positioning of the membrane complex and contacts between TssG and the inner membrane TssM protein.


Asunto(s)
Proteínas Contráctiles/ultraestructura , Proteínas de Escherichia coli/genética , Sistemas de Secreción Tipo VI/ultraestructura , Proteínas de la Cola de los Virus/genética , Bacteriófagos/genética , Bacteriófagos/ultraestructura , Proteínas Contráctiles/genética , Citoplasma/genética , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de la Membrana/genética , Microscopía Fluorescente , Complejos Multiproteicos/genética , Homología de Secuencia de Aminoácido , Sistemas de Secreción Tipo VI/genética , Proteínas Virales/genética
5.
Nat Struct Mol Biol ; 22(5): 377-82, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25822993

RESUMEN

R-type pyocins are representatives of contractile ejection systems, a class of biological nanomachines that includes, among others, the bacterial type VI secretion system (T6SS) and contractile bacteriophage tails. We report atomic models of the Pseudomonas aeruginosa precontraction pyocin sheath and tube, and the postcontraction sheath, obtained by cryo-EM at 3.5-Å and 3.9-Å resolutions, respectively. The central channel of the tube is negatively charged, in contrast to the neutral and positive counterparts in T6SSs and phage tails. The sheath is interwoven by long N- and C-terminal extension arms emanating from each subunit, which create an extensive two-dimensional mesh that has the same connectivity in the extended and contracted state of the sheath. We propose that the contraction process draws energy from electrostatic and shape complementarities to insert the inner tube through bacterial cell membranes to eventually kill the bacteria.


Asunto(s)
Antibacterianos/química , Proteínas Contráctiles/ultraestructura , Nanotubos/química , Pseudomonas aeruginosa/patogenicidad , Piocinas/química , Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos , Bacteriófagos/química , Membrana Celular/metabolismo , Proteínas Contráctiles/química , Cristalografía por Rayos X , Microscopía Electrónica , Modelos Moleculares , Estructura Secundaria de Proteína
7.
Tissue Cell ; 42(1): 53-60, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19833367

RESUMEN

In Megalobulimus abbreviatus, the ultrastructural features and the contractile proteins of columellar, pharyngeal and foot retractor muscles were studied. These muscles are formed from muscular fascicles distributed in different planes that are separated by connective tissue rich in collagen fibrils. These cells contain thick and thin filaments, the latter being attached to dense bodies, lysosomes, sarcoplasmic reticulum, caveolae, mitochondria and glycogen granules. Three types of muscle cells were distinguished: T1 cells displayed the largest amount of glycogen and an intermediate number of mitochondria, suggesting the highest anaerobic metabolism; T2 cells had the largest number of mitochondria and less glycogen, which suggests an aerobic metabolism; T3 cells showed intermediate glycogen volumes, suggesting an intermediate anaerobic metabolism. The myofilaments in the pedal muscle contained paramyosin measuring between 40 and 80nm in diameter. Western Blot muscle analysis showed a 46-kDa band that corresponds to actin and a 220-kDa band that corresponds to myosin filaments. The thick filament used in the electrophoresis showed a protein band of 100kDa in the muscles, which may correspond to paramyosin.


Asunto(s)
Proteínas Contráctiles/ultraestructura , Músculo Estriado/ultraestructura , Caracoles/ultraestructura , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Adaptación Fisiológica/fisiología , Animales , Colágeno/metabolismo , Colágeno/ultraestructura , Tejido Conectivo/metabolismo , Tejido Conectivo/ultraestructura , Proteínas Contráctiles/análisis , Proteínas Contráctiles/metabolismo , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Glucógeno/metabolismo , Glucólisis/fisiología , Locomoción/fisiología , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Estriado/metabolismo , Miosinas/metabolismo , Miosinas/ultraestructura , Orgánulos/metabolismo , Orgánulos/ultraestructura , Caracoles/metabolismo , Especificidad de la Especie , Tropomiosina/metabolismo , Tropomiosina/ultraestructura
8.
Trends Microbiol ; 18(1): 38-45, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19959363

RESUMEN

Cytokinesis, the final stage of the cell division cycle, requires the proper placement, assembly and contraction of an actomyosin-based contractile ring. Conserved sets of cytokinesis proteins and pathways have now been identified and characterized functionally. Additionally, fluorescent protein fusion technology enables quantitative high-resolution imaging of protein dynamics in living cells. For these reasons, the study of cytokinesis is now ripe for quantitative, systems-level approaches. Here, we review our current understanding of the molecular mechanisms of contractile ring dynamics in the model organism Schizosaccharomyces pombe (fission yeast), focusing on recent examples that illustrate a synergistic integration of quantitative experimental data with computational modeling. A picture of a highly dynamic and integrated system consisting of overlapping networks is beginning to emerge, the detailed nature of which remains to be elucidated.


Asunto(s)
Proteínas Contráctiles/metabolismo , Citocinesis , Proteínas Fúngicas/metabolismo , Schizosaccharomyces/fisiología , Actinas/química , Actinas/metabolismo , Actinas/ultraestructura , Proteínas Contráctiles/química , Proteínas Contráctiles/ultraestructura , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestructura , Microscopía Fluorescente , Espectrometría de Fluorescencia
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 1): 041928, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19518277

RESUMEN

Networks of the biopolymer actin, cross-linked by the compliant protein filamin, form soft gels. They can, however, withstand large shear stresses due to their pronounced nonlinear elastic behavior. The nonlinear elasticity can be controlled by varying the number of cross-links per actin filament. We propose and test a model of rigid filaments decorated by multiple flexible linkers that is in quantitative agreement with experiment. This allows us to estimate loads on individual cross-links, which we find to be less than 10 pN.


Asunto(s)
Actinas/química , Proteínas Contráctiles/química , Proteínas de Microfilamentos/química , Actinas/ultraestructura , Biopolímeros/química , Proteínas Contráctiles/ultraestructura , Elasticidad , Filaminas , Humanos , Proteínas de Microfilamentos/ultraestructura , Microscopía Confocal , Microscopía Electrónica , Modelos Biológicos , Dinámicas no Lineales , Resistencia al Corte
10.
Biomaterials ; 29(2): 247-56, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17920675

RESUMEN

Although they have been discovered decades ago, only in the last years forisome protein aggregates received broader attention due to their ability to convert chemical into mechanical energy. In contrast to most other motor proteins, these proteins from Fabaceae plants are independent of high-energy chemical compounds, like e.g. ATP, but undergo an anisotropic shape transition (longitudinally expanded to contracted) in response to ion concentration changes (Ca(2+), H(+), etc.), instead. We present morphological and functional data on forisomes obtained using atomic force microscopy (AFM). High-aspect ratio AFM tips allow the detailed elucidation of structural characteristics that are inaccessible with standard AFM tips. Microindentation measurements were employed to calculate the elasticity of the forisome material. Young's moduli were found to be approximately 32.7 kPa in the expanded state and approximately 2.748 kPa in the contracted state of the polymer. These results are compared to investigations where a tipless AFM cantilever was utilized to exert a load against the shape transition. In the latter experiments, an energy conversion of approximately 2.29 pJ per stroke was detected. Energetical considerations support the hypothesis that the switching process is accompanied by a change in cross-linking of the constituent subunits and allow estimating the extent of cooperativity during the pH-induced transition. Finally, useful parameters were identified and characterized that are crucial for the application of forisomes as functional elements in microfluidic chips.


Asunto(s)
Proteínas Contráctiles/metabolismo , Proteínas Contráctiles/ultraestructura , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Vicia faba/metabolismo
11.
Biophys J ; 94(3): 1075-83, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17921200

RESUMEN

Rearrangement of the actin cytoskeleton is integral to cell shape and function. Actin-binding proteins, e.g., filamin, can naturally contribute to the mechanics and function of the actin cytoskeleton. The molecular mechanical bases for filamin's function in actin cytoskeletal reorganization are examined here using molecular dynamics simulations. Simulations are performed by applying forces ranging from 25 pN to 125 pN for 2.5 ns to the rod domain of filamin. Applying small loads ( approximately 25 pN) to filamin's rod domain supplies sufficient energy to alter the conformation of the N-terminal regions of the rod. These forces break local hydrogen bond coordination often enough to allow side chains to find new coordination partners, in turn leading to drastic changes in the conformation of filamin, for example, increasing the hydrophobic character of the N-terminal rod region and, alternatively, activating the C-terminal region to become increasingly stiff. These changes in conformation can lead to changes in the affinity of filamin for its binding partners. Therefore, filamin can function to transduce mechanical signals as well as preserve topology of the actin cytoskeleton throughout the rod domain.


Asunto(s)
Proteínas Contráctiles/química , Proteínas Contráctiles/ultraestructura , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/ultraestructura , Modelos Químicos , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/ultraestructura , Simulación por Computador , Elasticidad , Filaminas , Mecánica , Conformación Proteica , Estructura Terciaria de Proteína , Estrés Mecánico
12.
Methods Cell Biol ; 89: 487-519, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19118688

RESUMEN

The cellular cytoskeleton is a dynamic network of filamentous proteins, consisting of filamentous actin (F-actin), microtubules, and intermediate filaments. However, these networks are not simple linear, elastic solids; they can exhibit highly nonlinear elasticity and a thermal dynamics driven by ATP-dependent processes. To build quantitative mechanical models describing complex cellular behaviors, it is necessary to understand the underlying physical principles that regulate force transmission and dynamics within these networks. In this chapter, we review our current understanding of the physics of networks of cytoskeletal proteins formed in vitro. We introduce rheology, the technique used to measure mechanical response. We discuss our current understanding of the mechanical response of F-actin networks, and how the biophysical properties of F-actin and actin cross-linking proteins can dramatically impact the network mechanical response. We discuss how incorporating dynamic and rigid microtubules into F-actin networks can affect the contours of growing microtubules and composite network rigidity. Finally, we discuss the mechanical behaviors of intermediate filaments.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Citoesqueleto/fisiología , Elasticidad/fisiología , Reología/métodos , Actinina/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Proteínas Contráctiles/metabolismo , Proteínas Contráctiles/ultraestructura , Filaminas , Filamentos Intermedios/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura
13.
J Cell Biol ; 179(5): 1011-25, 2007 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18056414

RESUMEN

Filamin A (FLNa) can effect orthogonal branching of F-actin and bind many cellular constituents. FLNa dimeric subunits have N-terminal spectrin family F-actin binding domains (ABDs) and an elongated flexible segment of 24 immunoglobulin (Ig) repeats. We generated a library of FLNa fragments to examine their F-actin binding to define the structural properties of FLNa that enable its various functions. We find that Ig repeats 9-15 contain an F-actin-binding domain necessary for high avidity F-actin binding. Ig repeats 16-24, where most FLNa-binding partners interact, do not bind F-actin, and thus F-actin does not compete with Ig repeat 23 ligand, FilGAP. Ig repeats 16-24 have a compact structure that suggests their unfolding may accommodate pre-stress-mediated stiffening of F-actin networks, partner binding, mechanosensing, and mechanoprotection properties of FLNa. Our results also establish the orientation of FLNa dimers in F-actin branching. Dimerization, mediated by FLNa Ig repeat 24, accounts for rigid high-angle FLNa/F-actin branching resistant to bending by thermal forces, and high avidity F-actin binding and cross-linking.


Asunto(s)
Proteínas Contráctiles/química , Proteínas Contráctiles/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sitios de Unión , Línea Celular Tumoral , Proteínas Contráctiles/aislamiento & purificación , Proteínas Contráctiles/ultraestructura , Reactivos de Enlaces Cruzados/farmacología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/ultraestructura , Dimerización , Filaminas , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Proteínas de Microfilamentos/aislamiento & purificación , Proteínas de Microfilamentos/ultraestructura , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
14.
BMC Cell Biol ; 8: 48, 2007 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-17997829

RESUMEN

BACKGROUND: Filamin is an actin binding protein which is ubiquitous in eukaryotes and its basic structure is well conserved - an N-terminal actin binding domain followed by a series of repeated segments which vary in number in different organisms. D. discoideum is a well established model organism for the study of signalling pathways and the actin cytoskeleton and as such makes an excellent organism in which to study filamin. Ddfilamin plays a putative role as a scaffolding protein in a photosensory signalling pathway and this role is thought to be mediated by the unusual repeat segments in the rod domain. RESULTS: To study the role of filamin in phototaxis, a filamin null mutant, HG1264, was transformed with constructs each of which expressed wild type filamin or a mutant filamin with a deletion of one of the repeat segments. Transformants expressing the full length filamin to wild type levels completely rescued the phototaxis defect in HG1264, however if filamin was expressed at lower than wild type levels the phototaxis defect was not restored. The transformants lacking any one of the repeat segments 2-6 retained defective phototaxis and thermotaxis phenotypes, whereas transformants expressing filaminDelta1 exhibited a range of partial complementation of the phototaxis phenotype which was related to expression levels. Immunofluorescence microscopy showed that filamin lacking any of the repeat segments still localised to the same actin rich areas as wild type filamin. Ddfilamin interacts with RasD and IP experiments demonstrated that this interaction did not rely upon any single repeat segment or the actin binding domain. CONCLUSION: This paper demonstrates that wild type levels of filamin expression are essential for the formation of functional photosensory signalling complexes and that each of the repeat segments 2-6 are essential for filamins role in phototaxis. By contrast, repeat segment 1 is not essential provided the mutated filamin lacking repeat segment 1 is expressed at a high enough level. The defects in photo/thermosensory signal transduction caused by the absence of the repeats are due neither to mislocalisation of filamin nor to the loss of RasD recruitment to the previously described photosensory signalling complex.


Asunto(s)
Movimiento Celular/fisiología , Movimiento Celular/efectos de la radiación , Proteínas Contráctiles/metabolismo , Proteínas Contráctiles/ultraestructura , Dictyostelium/fisiología , Dictyostelium/efectos de la radiación , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/ultraestructura , Actinas/química , Animales , Sitios de Unión , Proteínas Contráctiles/genética , Filaminas , Eliminación de Gen , Luz , Proteínas de Microfilamentos/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Fenotipo , Proteínas Protozoarias/metabolismo , Secuencias Repetitivas de Aminoácido/fisiología , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo
15.
Biophys J ; 93(11): 3989-98, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17704164

RESUMEN

Direct observation of the folding of a single polypeptide chain can provide important information about the thermodynamic states populated along its folding pathway. In this study, we present a lock-in force-spectroscopy technique that improves resolution of atomic-force microscopy force spectroscopy to 400 fN. Using this technique we show that immunoglobulin domain 4 from Dictyostelium discoideum filamin (ddFLN4) refolds against forces of approximately 4 pN. Our data show folding of this domain proceeds directly from an extended state and no thermodynamically distinct collapsed state of the polypeptide before folding is populated. Folding of ddFLN4 under load proceeds via an intermediate state. Three-state folding allows ddFLN4 to fold against significantly larger forces than would be possible for a mere two-state folder. We present a general model for protein folding kinetics under load that can predict refolding forces based on chain-length and zero force refolding rate.


Asunto(s)
Proteínas Contráctiles/química , Proteínas Contráctiles/ultraestructura , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/ultraestructura , Microscopía de Fuerza Atómica/métodos , Modelos Químicos , Modelos Moleculares , Simulación por Computador , Filaminas , Conformación Proteica , Pliegue de Proteína
16.
Trends Cell Biol ; 16(1): 5-10, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16325405

RESUMEN

Tight regulation of the contractility of the actomyosin cortex is essential for proper cell locomotion and division. Enhanced contractility leads, for example, to aberrations in the positioning of the mitotic spindle or to anomalous migration modes that allow tumor cells to escape anti-dissemination treatments. Spherical membrane protrusions called blebs occasionally appear during cell migration, cell division or apoptosis. We have shown that the cortex ruptures at sites where actomyosin cortical contractility is increased, leading to the formation of blebs. Here, we propose that bleb formation, which releases cortical tension, can be used as a reporter of cortical contractility. We go on to analyze the implications of spontaneous cortical contractile behaviors on cell locomotion and division and we particularly emphasize that variations in actomyosin contractility can account for a variety of migration modes.


Asunto(s)
Actomiosina/análisis , Actomiosina/fisiología , División Celular/fisiología , Movimiento Celular/fisiología , Citoplasma/química , Actomiosina/ultraestructura , Animales , Membrana Celular/química , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Polaridad Celular , Proteínas Contráctiles/análisis , Proteínas Contráctiles/fisiología , Proteínas Contráctiles/ultraestructura , Citocinesis , Citoplasma/ultraestructura , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/fisiología , Proteínas del Citoesqueleto/ultraestructura , Citoesqueleto/química , Citoesqueleto/fisiología , Citoesqueleto/ultraestructura , Geles , Humanos
17.
Blood ; 107(5): 1925-32, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16293600

RESUMEN

Filamin A (FLNa), a dimeric actin cross-linking and scaffold protein with numerous intracellular binding partners, anchors the platelet adhesion glycoprotein (GP) Ib-IX-V receptor to actin cytoskeleton. We mapped the GPIbalpha binding site to a single domain of FLNa and resolved the structure of this domain and its interaction complex with the corresponding GPIbalpha cytoplasmic domain. This is the first atomic structure of this class of membrane glycoprotein-cytoskeleton connection. GPIbalpha binds in a groove formed between the C and D beta strands of FLNa domain 17. The interaction is strikingly similar to that between the beta7 integrin tail and a different FLNa domain, potentially defining a conserved motif for FLNa binding. Nevertheless, the structures also reveal specificity of the interfaces, which explains different regulatory mechanisms. To verify the topology of GPIb-FLNa interaction we also purified the native complex from platelets and showed that GPIb interacts with the C-terminus of FLNa, which is in accordance with our biochemical and structural data.


Asunto(s)
Proteínas Contráctiles/química , Proteínas de Microfilamentos/química , Complejos Multiproteicos/química , Complejo GPIb-IX de Glicoproteína Plaquetaria/química , Proteínas Contráctiles/ultraestructura , Filaminas , Humanos , Cadenas beta de Integrinas/química , Cadenas beta de Integrinas/ultraestructura , Proteínas de Microfilamentos/ultraestructura , Complejos Multiproteicos/ultraestructura , Complejo GPIb-IX de Glicoproteína Plaquetaria/ultraestructura , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
18.
Respir Physiol Neurobiol ; 137(2-3): 197-208, 2003 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-14516726

RESUMEN

There is an abundance of ultrastructural data in the literature on vascular, visceral, and other smooth muscles; such data on airway smooth muscle, however, are conspicuously missing. Here we present a series of electron micrographs depicting contractile and cytoskeletal elements as well as organelles in porcine trachealis. Myosin thick filaments are present in the relaxed muscle; thick filament density increases substantially when the muscle is activated. Actin thin filaments are present in large excess over the thick filaments; the thin/thick filament ratio is about 31/1 in the relaxed state; this ratio is reduced to about 22/1 when the muscle is activated. The sarcoplasmic reticulum is often found associated with caveolae and mitochondria. Cells within a bundle are well connected by intermediate and gap junctions. The results demonstrate that quantitative morphological analysis of ultrastructure of airway smooth muscle fixed under different functional states is possible and will be essential in elucidating the structural basis of adaptation and contraction of the muscle.


Asunto(s)
Proteínas Contráctiles/ultraestructura , Citoesqueleto/ultraestructura , Músculo Liso/ultraestructura , Miocitos del Músculo Liso/ultraestructura , Tráquea/ultraestructura , Actinas/ultraestructura , Animales , Miosinas/ultraestructura , Porcinos
19.
Protoplasma ; 222(1-2): 85-95, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14513314

RESUMEN

The localization of the actin-monomer-binding protein profilin during the cell cycle of living Tradescantia virginiana stamen hair cells has been studied by microinjection of a fluorescently labeled analog of the protein. In contrast to previously published studies performed on chemically fixed animal cells, we do not find a specific colocalization of profilin with actin filament arrays. Our results show that, besides a general cytoplasmic distribution, profilin specifically accumulates in the nucleus in interphase and prophase cells. This nuclear localization was confirmed by means of electron microscopic immunolocalization of endogenous profilin (in Gibasis scheldiana stamen hair cells). During mitosis, as the nuclear envelope and nuclear matrix break down at the onset of prometaphase, the nuclear profilin redistributes equally into the accessible volume (cytosol) of the cell. During metaphase and anaphase no specific localization of profilin can be observed associated with the mitotic apparatus. However, during telophase, as nuclear envelopes and nuclear matrices re-form and the sister chromatids start to decondense, a subset of the microinjected profilin again localizes to the nucleus. No accumulation of profilin could be observed in the phragmoplast, where a distinct array of actin filaments exists. The function of profilin in the nucleus remains unclear.


Asunto(s)
Ciclo Celular , Núcleo Celular/metabolismo , Proteínas Contráctiles/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas de Microfilamentos/metabolismo , Tradescantia/metabolismo , Actinas/metabolismo , Animales , Núcleo Celular/ultraestructura , Células Cultivadas , Pollos , Proteínas Contráctiles/ultraestructura , Técnica del Anticuerpo Fluorescente Indirecta , Células Ciliadas Auditivas/ultraestructura , Masculino , Proteínas de Microfilamentos/ultraestructura , Microinyecciones , Microscopía Confocal , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/ultraestructura , Polen/metabolismo , Profilinas , Tradescantia/ultraestructura
20.
J Comp Neurol ; 461(4): 539-47, 2003 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-12746867

RESUMEN

It is generally accepted that the cartilaginous frame of the reptilian cochlea has only a passive supportive function. In this study, a ribbon of contractile tissue was revealed within the cartilaginous frame of the cochlea of the gecko Teratoscincus scincus. It consisted of tightly packed cells and received an extensive blood supply. The cytoplasm of the cells was filled with cytoskeletal filaments 5-7 nm thick as revealed by electron microscopy. Isolated tissue permeabilized with Triton X-100 or glycerol reversibly contracted in the presence of ATP. Noradrenaline caused slow relaxation of the freshly isolated tissue placed in artificial perilymph. We suggest that slow motility of the contractile tissue may adjust passive cochlear mechanics to sounds of high intensities.


Asunto(s)
Cóclea/anatomía & histología , Proteínas Contráctiles/ultraestructura , Lagartos/anatomía & histología , Acetilcolina/fisiología , Adaptación Fisiológica , Animales , Fenómenos Biomecánicos , Cartílago/anatomía & histología , Cartílago/fisiología , Cóclea/fisiología , Proteínas Contráctiles/fisiología , Audición/fisiología , Neurotransmisores/fisiología , Norepinefrina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...