Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 3069, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080237

RESUMEN

Low blood phosphate (Pi) reduces muscle function in hypophosphatemic disorders. Which Pi transporters are required and whether hormonal changes due to hypophosphatemia contribute to muscle function is unknown. To address these questions we generated a series of conditional knockout mice lacking one or both house-keeping Pi transporters Pit1 and Pit2 in skeletal muscle (sm), using the postnatally expressed human skeletal actin-cre. Simultaneous conditional deletion of both transporters caused skeletal muscle atrophy, resulting in death by postnatal day P13. smPit1-/-, smPit2-/- and three allele mutants are fertile and have normal body weights, suggesting a high degree of redundance for the two transporters in skeletal muscle. However, these mice show a gene-dose dependent reduction in running activity also seen in another hypophosphatemic model (Hyp mice). In contrast to Hyp mice, grip strength is preserved. Further evaluation of the mechanism shows reduced ERK1/2 activation and stimulation of AMP kinase in skeletal muscle from smPit1-/-; smPit2-/- mice consistent with energy-stress. Similarly, C2C12 myoblasts show a reduced oxygen consumption rate mediated by Pi transport-dependent and ERK1/2-dependent metabolic Pi sensing pathways. In conclusion, we here show that Pit1 and Pit2 are essential for normal myofiber function and survival, insights which may improve management of hypophosphatemic myopathy.


Asunto(s)
Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Factor de Transcripción Pit-1/metabolismo , Alelos , Animales , Línea Celular , Supervivencia Celular , Transporte de Electrón , Metabolismo Energético , Fuerza de la Mano , Ratones Noqueados , Modelos Biológicos , Células Musculares/metabolismo , Necrosis , Consumo de Oxígeno , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/deficiencia , Factor de Transcripción Pit-1/deficiencia
2.
Sci Rep ; 9(1): 17288, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754123

RESUMEN

Idiopathic basal ganglia calcification (IBGC) is a rare intractable disease characterized by abnormal mineral deposits, including mostly calcium in the basal ganglia, thalamus, and cerebellum. SLC20A2 is encoding the phosphate transporter PiT-2 and was identified in 2012 as the causative gene of familial IBGC. In this study, we investigated functionally two novel SLC20A2 variants (c.680C > T, c.1487G > A) and two SLC20A2 variants (c.82G > A, c.358G > C) previously reported from patients with IBGC. We evaluated the function of variant PiT-2 using stable cell lines. While inorganic phosphate (Pi) transport activity was abolished in the cells with c.82G > A, c.358G > C, and c.1487G > A variants, activity was maintained at 27.8% of the reference level in cells with the c.680C > T variant. Surprisingly, the c.680C > T variant had been discovered by chance in healthy members of an IBGC family, suggesting that partial preservation of Pi transport activity may avoid the onset of IBGC. In addition, we confirmed that PiT-2 variants could be translocated into the cell membrane to the same extent as PiT-2 wild type. In conclusion, we investigated the PiT-2 dysfunction of four SLC20A2 variants and suggested that a partial reduced Pi transport function of PiT-2 might not be sufficient to induce brain calcification of IBGC.


Asunto(s)
Enfermedades de los Ganglios Basales/genética , Ganglios Basales/patología , Calcinosis/genética , Enfermedades Neurodegenerativas/genética , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/deficiencia , Adulto , Anciano de 80 o más Años , Ganglios Basales/citología , Enfermedades de los Ganglios Basales/patología , Calcinosis/patología , Membrana Celular/metabolismo , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Enfermedades Neurodegenerativas/patología , Linaje , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética
3.
J Bone Miner Res ; 34(6): 1101-1114, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30721528

RESUMEN

Osteoporosis is characterized by low bone mineral density (BMD) and fragility fracture and affects over 200 million people worldwide. Bone quality describes the material properties that contribute to strength independently of BMD, and its quantitative analysis is a major priority in osteoporosis research. Tissue mineralization is a fundamental process requiring calcium and phosphate transporters. Here we identify impaired bone quality and strength in Slc20a2-/- mice lacking the phosphate transporter SLC20A2. Juveniles had abnormal endochondral and intramembranous ossification, decreased mineral accrual, and short stature. Adults exhibited only small reductions in bone mass and mineralization but a profound impairment of bone strength. Bone quality was severely impaired in Slc20a2-/- mice: yield load (-2.3 SD), maximum load (-1.7 SD), and stiffness (-2.7 SD) were all below values predicted from their bone mineral content as determined in a cohort of 320 wild-type controls. These studies identify Slc20a2 as a physiological regulator of tissue mineralization and highlight its critical role in the determination of bone quality and strength. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Asunto(s)
Huesos/fisiología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Animales , Animales Recién Nacidos , Desarrollo Óseo , Resorción Ósea/fisiopatología , Huesos/diagnóstico por imagen , Calcificación Fisiológica , Calcinosis/diagnóstico por imagen , Calcinosis/genética , Células Cultivadas , Condrocitos/metabolismo , Humanos , Incisivo/ultraestructura , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/metabolismo , Fenotipo , Cráneo/diagnóstico por imagen , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/deficiencia , Diente/crecimiento & desarrollo , Microtomografía por Rayos X
4.
Brain Pathol ; 27(1): 64-76, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26822507

RESUMEN

Idiopathic basal ganglia calcification is a brain calcification disorder that has been genetically linked to autosomal dominant mutations in the sodium-dependent phosphate co-transporter, SLC20A2. The mechanisms whereby deficiency of Slc20a2 leads to basal ganglion calcification are unknown. In the mouse brain, we found that Slc20a2 was expressed in tissues that produce and/or regulate cerebrospinal fluid, including choroid plexus, ependyma and arteriolar smooth muscle cells. Haploinsufficient Slc20a2 +/- mice developed age-dependent basal ganglia calcification that formed in glymphatic pathway-associated arterioles. Slc20a2 deficiency uncovered phosphate homeostasis dysregulation characterized by abnormally high cerebrospinal fluid phosphate levels and hydrocephalus, in addition to basal ganglia calcification. Slc20a2 siRNA knockdown in smooth muscle cells revealed increased susceptibility to high phosphate-induced calcification. These data suggested that loss of Slc20a2 led to dysregulated phosphate homeostasis and enhanced susceptibility of arteriolar smooth muscle cells to elevated phosphate-induced calcification. Together, dysregulated cerebrospinal fluid phosphate and enhanced smooth muscle cell susceptibility may predispose to glymphatic pathway-associated arteriolar calcification.


Asunto(s)
Arteriolas/patología , Enfermedades de los Ganglios Basales/patología , Calcinosis/patología , Proteínas del Tejido Nervioso/deficiencia , Enfermedades Neurodegenerativas/patología , Fosfatos/líquido cefalorraquídeo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/deficiencia , Animales , Enfermedades de los Ganglios Basales/líquido cefalorraquídeo , Calcinosis/líquido cefalorraquídeo , Catarata/genética , Plexo Coroideo/metabolismo , Epéndimo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microftalmía/genética , Modelos Biológicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Neuroimagen , Fosfatos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/fisiología
5.
Mech Dev ; 133: 189-202, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25138534

RESUMEN

PiT-1 protein is a transmembrane sodium-dependent phosphate (Pi) transporter. PiT-1 knock out (KO) embryos die from largely unknown causes by embryonic day (E) 12.5. We tested the hypothesis that PiT-1 is required for endocytosis in the embryonic yolk sac (YS) visceral endoderm (VE). Here we present data supporting that PiT-1 KO results in a YS remodeling defect and decreased endocytosis in the YS VE. The remodeling defect is not due to an upstream cardiomyocyte requirement for PiT-1, as SM22αCre-specific KO of PiT-1 in the developing heart and the YS mesodermal layer (ME) does not recapitulate the PiT-1 global KO phenotype. Furthermore, we find that high levels of PiT-1 protein localize to the YS VE apical membrane. Together these data support that PiT-1 is likely required in YS VE. During normal development maternal immunoglobulin (IgG) is endocytosed into YS VE and accumulates in the apical side of the VE in a specialized lysosome termed the apical vacuole (AV). We have identified a reduction in PiT-1 KO VE cell height and a striking loss of IgG accumulation in the PiT-1 KO VE. The endocytosis genes Tfeb, Lamtor2 and Snx2 are increased at the RNA level. Lysotracker Red staining reveals a loss of distinct AVs, and yolk sacs incubated ex vivo with phRODO Green Dextran for Endocytosis demonstrate a functional loss of endocytosis. As yolk sac endocytosis is controlled in part by microautophagy, but expression of LC3 had not been examined, we investigated LC3 expression during yolk sac development and found stage-specific LC3 RNA expression that is predominantly from the YS VE layer at E9.5. Normalized LC3-II protein levels are decreased in the PiT-1 KO YS, supporting a requirement for PiT-1 in autophagy in the YS. Therefore, we propose the novel idea that PiT-1 is central to the regulation of endocytosis and autophagy in the YS VE.


Asunto(s)
Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/deficiencia , Saco Vitelino/embriología , Saco Vitelino/metabolismo , Animales , Autofagia/genética , Autofagia/fisiología , Endocitosis/genética , Endocitosis/fisiología , Endodermo/embriología , Endodermo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunoglobulina G/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Distribución Tisular
6.
PLoS One ; 5(2): e9148, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20161774

RESUMEN

BACKGROUND: PiT1 (or SLC20a1) encodes a widely expressed plasma membrane protein functioning as a high-affinity Na(+)-phosphate (Pi) cotransporter. As such, PiT1 is often considered as a ubiquitous supplier of Pi for cellular needs regardless of the lack of experimental data. Although the importance of PiT1 in mineralizing processes have been demonstrated in vitro in osteoblasts, chondrocytes and vascular smooth muscle cells, in vivo evidence is missing. METHODOLOGY/PRINCIPAL FINDINGS: To determine the in vivo function of PiT1, we generated an allelic series of PiT1 mutations in mice by combination of wild-type, hypomorphic and null PiT1 alleles expressing from 100% to 0% of PiT1. In this report we show that complete deletion of PiT1 results in embryonic lethality at E12.5. PiT1-deficient embryos display severely hypoplastic fetal livers and subsequent reduced hematopoiesis resulting in embryonic death from anemia. We show that the anemia is not due to placental, yolk sac or vascular defects and that hematopoietic progenitors have no cell-autonomous defects in proliferation and differentiation. In contrast, mutant fetal livers display decreased proliferation and massive apoptosis. Animals carrying two copies of hypomorphic PiT1 alleles (resulting in 15% PiT1 expression comparing to wild-type animals) survive at birth but are growth-retarded and anemic. The combination of both hypomorphic and null alleles in heterozygous compounds results in late embryonic lethality (E14.5-E16.5) with phenotypic features intermediate between null and hypomorphic mice. In the three mouse lines generated we could not evidence defects in early skeleton formation. CONCLUSION/SIGNIFICANCE: This work is the first to illustrate a specific in vivo role for PiT1 by uncovering it as being a critical gene for normal developmental liver growth.


Asunto(s)
Embrión de Mamíferos/metabolismo , Hígado/metabolismo , Mutación , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Animales , Apoptosis , Recuento de Células , Proliferación Celular , Células Cultivadas , Embrión de Mamíferos/anomalías , Eritrocitos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Esenciales , Genotipo , Células Madre Hematopoyéticas/metabolismo , Hígado/citología , Hígado/embriología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/deficiencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...