Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8009): 887-893, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538796

RESUMEN

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Asunto(s)
Microscopía por Crioelectrón , Exorribonucleasas , ARN Polimerasa II , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminación de la Transcripción Genética , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Exorribonucleasas/ultraestructura , Modelos Moleculares , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , ARN Mensajero/biosíntesis , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/ultraestructura , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Dominios Proteicos , ARN de Hongos/biosíntesis , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/ultraestructura
2.
Nat Struct Mol Biol ; 28(4): 382-387, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846633

RESUMEN

Efficient transcription of RNA polymerase II (Pol II) through nucleosomes requires the help of various factors. Here we show biochemically that Pol II transcription through a nucleosome is facilitated by the chromatin remodeler Chd1 and the histone chaperone FACT when the elongation factors Spt4/5 and TFIIS are present. We report cryo-EM structures of transcribing Saccharomyces cerevisiae Pol II-Spt4/5-nucleosome complexes with bound Chd1 or FACT. In the first structure, Pol II transcription exposes the proximal histone H2A-H2B dimer that is bound by Spt5. Pol II has also released the inhibitory DNA-binding region of Chd1 that is poised to pump DNA toward Pol II. In the second structure, Pol II has generated a partially unraveled nucleosome that binds FACT, which excludes Chd1 and Spt5. These results suggest that Pol II progression through a nucleosome activates Chd1, enables FACT binding and eventually triggers transfer of FACT together with histones to upstream DNA.


Asunto(s)
Proteínas Cromosómicas no Histona/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Proteínas del Grupo de Alta Movilidad/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Transcripción Genética , Factores de Elongación Transcripcional/ultraestructura , Cromatina/genética , Cromatina/ultraestructura , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Nucleosomas/genética , Nucleosomas/ultraestructura , ARN Polimerasa II/genética , ARN Polimerasa II/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética
3.
Nucleic Acids Res ; 49(8): 4534-4549, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849072

RESUMEN

The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein 'holo-complex' is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestructura , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/ultraestructura , ADN/metabolismo , Escherichia coli/metabolismo , Microscopía Electrónica de Transmisión , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
4.
Nat Struct Mol Biol ; 28(4): 337-346, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767452

RESUMEN

Interactions between the splicing machinery and RNA polymerase II increase protein-coding gene transcription. Similarly, exons and splicing signals of enhancer-generated long noncoding RNAs (elncRNAs) augment enhancer activity. However, elncRNAs are inefficiently spliced, suggesting that, compared with protein-coding genes, they contain qualitatively different exons with a limited ability to drive splicing. We show here that the inefficiently spliced first exons of elncRNAs as well as promoter-antisense long noncoding RNAs (pa-lncRNAs) in human and mouse cells trigger a transcription termination checkpoint that requires WDR82, an RNA polymerase II-binding protein, and its RNA-binding partner of previously unknown function, ZC3H4. We propose that the first exons of elncRNAs and pa-lncRNAs are an intrinsic component of a regulatory mechanism that, on the one hand, maximizes the activity of these cis-regulatory elements by recruiting the splicing machinery and, on the other, contains elements that suppress pervasive extragenic transcription.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , ARN Polimerasa II/ultraestructura , ARN Largo no Codificante/genética , Transcripción Genética , Empalme Alternativo/genética , Animales , Proteínas Cromosómicas no Histona/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Exones/genética , Humanos , Ratones , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , Empalme del ARN/genética , ARN sin Sentido/genética , ARN sin Sentido/ultraestructura , ARN Largo no Codificante/ultraestructura , ARN Mensajero/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
5.
EMBO J ; 40(5): e105671, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33463726

RESUMEN

The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Microscopía por Crioelectrón/métodos , Cinetocoros/metabolismo , Nucleosomas/metabolismo , Animales , Centrómero/ultraestructura , Proteína A Centromérica/ultraestructura , Pollos , Proteínas Cromosómicas no Histona/ultraestructura , Cinetocoros/ultraestructura , Modelos Moleculares , Nucleosomas/ultraestructura , Fosforilación , Conformación Proteica
6.
Mol Cell ; 80(6): 1039-1054.e6, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33301732

RESUMEN

Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities. Purified Smc5/6 exhibits DNA-dependent ATP hydrolysis and SUMO E3 ligase activity. We show that Smc5/6 binds DNA topologically with affinity for supercoiled and catenated DNA templates. Employing single-molecule assays to analyze the functional and dynamic characteristics of Smc5/6 bound to DNA, we show that Smc5/6 locks DNA plectonemes and can compact DNA in an ATP-dependent manner. These results demonstrate that the Smc5/6 complex recognizes DNA tertiary structures involving juxtaposed helices and might modulate DNA topology by plectoneme stabilization and local compaction.


Asunto(s)
Proteínas de Ciclo Celular/genética , Complejos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Fenómenos Biofísicos , Proteínas de Ciclo Celular/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/ultraestructura , Proteínas de Unión al ADN/genética , Humanos , Interfase/genética , Mitosis/genética , Complejos Multiproteicos/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Sumoilación/genética , Cohesinas
7.
Curr Biol ; 30(24): 4869-4881.e5, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33035484

RESUMEN

The nanoscale protein architecture of the kinetochore plays an integral role in specifying the mechanisms underlying its functions in chromosome segregation. However, defining this architecture in human cells remains challenging because of the large size and compositional complexity of the kinetochore. Here, we use Förster resonance energy transfer to reveal the architecture of individual kinetochore-microtubule attachments in human cells. We find that the microtubule-binding domains of the Ndc80 complex cluster at the microtubule plus end. This clustering occurs only after microtubule attachment, and it increases proportionally with centromeric tension. Surprisingly, Ndc80 complex clustering is independent of the organization and number of its centromeric receptors. Moreover, this clustering is similar in yeast and human kinetochores despite significant differences in their centromeric organizations. These and other data suggest that the microtubule-binding interface of the human kinetochore behaves like a flexible "lawn" despite being nucleated by repeating biochemical subunits.


Asunto(s)
Centrómero/metabolismo , Segregación Cromosómica , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/aislamiento & purificación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/aislamiento & purificación , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/ultraestructura , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Silenciamiento del Gen , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Saccharomyces cerevisiae
8.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32755595

RESUMEN

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Intercambio de Cromátides Hermanas/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Microscopía por Crioelectrón , ADN/genética , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Cohesinas
9.
Nat Struct Mol Biol ; 27(8): 743-751, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32661420

RESUMEN

Complexes containing a pair of structural maintenance of chromosomes (SMC) family proteins are fundamental for the three-dimensional (3D) organization of genomes in all domains of life. The eukaryotic SMC complexes cohesin and condensin are thought to fold interphase and mitotic chromosomes, respectively, into large loop domains, although the underlying molecular mechanisms have remained unknown. We used cryo-EM to investigate the nucleotide-driven reaction cycle of condensin from the budding yeast Saccharomyces cerevisiae. Our structures of the five-subunit condensin holo complex at different functional stages suggest that ATP binding induces the transition of the SMC coiled coils from a folded-rod conformation into a more open architecture. ATP binding simultaneously triggers the exchange of the two HEAT-repeat subunits bound to the SMC ATPase head domains. We propose that these steps result in the interconversion of DNA-binding sites in the catalytic core of condensin, forming the basis of the DNA translocation and loop-extrusion activities.


Asunto(s)
Proteínas Portadoras/química , Proteínas Cromosómicas no Histona/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
10.
Nature ; 579(7799): 452-455, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188938

RESUMEN

The chromatin-remodelling complex SWI/SNF is highly conserved and has critical roles in various cellular processes, including transcription and DNA-damage repair1,2. It hydrolyses ATP to remodel chromatin structure by sliding and evicting histone octamers3-8, creating DNA regions that become accessible to other essential factors. However, our mechanistic understanding of the remodelling activity is hindered by the lack of a high-resolution structure of complexes from this family. Here we report the cryo-electron microscopy structure of Saccharomyces cerevisiae SWI/SNF bound to a nucleosome, at near-atomic resolution. In the structure, the actin-related protein (Arp) module is sandwiched between the ATPase and the rest of the complex, with the Snf2 helicase-SANT associated (HSA) domain connecting all modules. The body contains an assembly scaffold composed of conserved subunits Snf12 (also known as SMARCD or BAF60), Snf5 (also known as SMARCB1, BAF47 or INI1) and an asymmetric dimer of Swi3 (also known as SMARCC, BAF155 or BAF170). Another conserved subunit, Swi1 (also known as ARID1 or BAF250), resides in the core of SWI/SNF, acting as a molecular hub. We also observed interactions between Snf5 and the histones at the acidic patch, which could serve as an anchor during active DNA translocation. Our structure enables us to map and rationalize a subset of cancer-related mutations in the human SWI/SNF complex and to propose a model for how SWI/SNF recognizes and remodels the +1 nucleosome to generate nucleosome-depleted regions during gene activation9.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/ultraestructura , Microscopía por Crioelectrón , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Nucleosomas/química , Nucleosomas/ultraestructura , Saccharomyces cerevisiae/química , Factores de Transcripción/química , Factores de Transcripción/ultraestructura , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Ratones , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/ultraestructura , Factores de Transcripción/metabolismo , Xenopus
11.
Mol Cell ; 78(2): 250-260.e5, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32097603

RESUMEN

Structural maintenance of chromosomes (SMC) complexes organize chromosomes ubiquitously, thereby contributing to their faithful segregation. We demonstrate that under conditions of increased chromosome occupancy of the Escherichia coli SMC complex, MukBEF, the chromosome is organized as a series of loops around a thin (<130 nm) MukBEF axial core, whose length is ∼1,100 times shorter than the chromosomal DNA. The linear order of chromosomal loci is maintained in the axial cores, whose formation requires MukBEF ATP hydrolysis. Axial core structure in non-replicating chromosomes is predominantly linear (1 µm) but becomes circular (1.5 µm) in the absence of MatP because of its failure to displace MukBEF from the 800 kbp replication termination region (ter). Displacement of MukBEF from ter by MatP in wild-type cells directs MukBEF colocalization with the replication origin. We conclude that MukBEF individualizes and compacts the chromosome lengthwise, demonstrating a chromosome organization mechanism similar to condensin in mitotic chromosome formation.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Cromosomas Bacterianos/genética , Proteínas de Escherichia coli/genética , Proteínas Represoras/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/genética , Proteínas Cromosómicas no Histona/ultraestructura , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Mitosis/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Origen de Réplica/genética , Proteínas Represoras/ultraestructura
12.
Genetics ; 214(3): 589-604, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31980450

RESUMEN

Ribosome biogenesis is tightly regulated through stress-sensing pathways that impact genome stability, aging and senescence. In Saccharomyces cerevisiae, ribosomal RNAs are transcribed from rDNA located on the right arm of chromosome XII. Numerous studies reveal that rDNA decondenses into a puff-like structure during interphase, and condenses into a tight loop-like structure during mitosis. Intriguingly, a novel and additional mechanism of increased mitotic rDNA compaction (termed hypercondensation) was recently discovered that occurs in response to temperature stress (hyperthermic-induced) and is rapidly reversible. Here, we report that neither changes in condensin binding or release of DNA during mitosis, nor mutation of factors that regulate cohesin binding and release, appear to play a critical role in hyperthermic-induced rDNA hypercondensation. A candidate genetic approach revealed that deletion of either HSP82 or HSC82 (Hsp90 encoding heat shock paralogs) result in significantly reduced hyperthermic-induced rDNA hypercondensation. Intriguingly, Hsp inhibitors do not impact rDNA hypercondensation. In combination, these findings suggest that Hsp90 either stabilizes client proteins, which are sensitive to very transient thermic challenges, or directly promotes rDNA hypercondensation during preanaphase. Our findings further reveal that the high mobility group protein Hmo1 is a negative regulator of mitotic rDNA condensation, distinct from its role in promoting premature condensation of rDNA during interphase upon nutrient starvation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN Ribosómico/genética , Proteínas del Grupo de Alta Movilidad/genética , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Proteínas de Ciclo Celular/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , Cromosomas Fúngicos/genética , ADN Ribosómico/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Proteínas HSP90 de Choque Térmico/genética , Proteínas del Grupo de Alta Movilidad/ultraestructura , Mitosis/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Conformación de Ácido Nucleico , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Cohesinas
13.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-31965993

RESUMEN

Besides the fundamental components of the chromatin, DNA and octameric histone, the non-histone chromatin proteins and non-coding RNA play a critical role in the organization of functional chromatin domains. The non-histone chromatin proteins therefore regulate the transcriptional outcome in both physiological and pathophysiological state as well. They also help to maintain the epigenetic state of the genome indirectly. Several transcription factors and histone interacting factors also contribute in the maintenance of the epigenetic states, especially acetylation by the induction of autoacetylation ability of p300/CBP. Alterations of KAT activity have been found to be causally related to disease manifestation, and thus could be potential therapeutic target.


Asunto(s)
Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Enfermedades Genéticas Congénitas/genética , Acetilación , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , Proteína p300 Asociada a E1A/genética , Humanos , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , ARN no Traducido/genética , Factores de Transcripción/genética
14.
Nat Commun ; 10(1): 3916, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477705

RESUMEN

Transcription by RNA polymerase V (Pol V) in plants is required for RNA-directed DNA methylation, leading to transcriptional gene silencing. Global chromatin association of Pol V requires components of the DDR complex DRD1, DMS3 and RDM1, but the assembly process of this complex and the underlying mechanism for Pol V recruitment remain unknown. Here we show that all DDR complex components co-localize with Pol V, and we report the cryoEM structures of two complexes associated with Pol V recruitment-DR (DMS3-RDM1) and DDR' (DMS3-RDM1-DRD1 peptide), at 3.6 Å and 3.5 Å resolution, respectively. RDM1 dimerization at the center frames the assembly of the entire complex and mediates interactions between DMS3 and DRD1 with a stoichiometry of 1 DRD1:4 DMS3:2 RDM1. DRD1 binding to the DR complex induces a drastic movement of a DMS3 coiled-coil helix bundle. We hypothesize that both complexes are functional intermediates that mediate Pol V recruitment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/ultraestructura , Microscopía por Crioelectrón , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/ultraestructura , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica , Conformación Proteica , ARN de Planta/química , ARN de Planta/genética
15.
EMBO Rep ; 20(10): e48913, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31475439

RESUMEN

Centromeres are defined epigenetically by nucleosomes containing the histone H3 variant CENP-A, upon which the constitutive centromere-associated network of proteins (CCAN) is built. CENP-C is considered to be a central organizer of the CCAN. We provide new molecular insights into the structure of human CENP-A nucleosomes, in isolation and in complex with the CENP-C central region (CENP-CCR ), the main CENP-A binding module of human CENP-C. We establish that the short αN helix of CENP-A promotes DNA flexibility at the nucleosome ends, independently of the sequence it wraps. Furthermore, we show that, in vitro, two regions of human CENP-C (CENP-CCR and CENP-Cmotif ) both bind exclusively to the CENP-A nucleosome. We find CENP-CCR to bind with high affinity due to an extended hydrophobic area made up of CENP-AV532 and CENP-AV533 . Importantly, we identify two key conformational changes within the CENP-A nucleosome upon CENP-C binding. First, the loose DNA wrapping of CENP-A nucleosomes is further exacerbated, through destabilization of the H2A C-terminal tail. Second, CENP-CCR rigidifies the N-terminal tail of H4 in the conformation favoring H4K20 monomethylation, essential for a functional centromere.


Asunto(s)
Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/química , Nucleosomas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteína A Centromérica/química , Proteína A Centromérica/ultraestructura , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/ultraestructura , ADN/metabolismo , Histonas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Nucleosomas/ultraestructura , Unión Proteica , Conformación Proteica , Estabilidad Proteica
16.
J Biol Chem ; 294(38): 14119-14134, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31366733

RESUMEN

The successful assembly and regulation of the kinetochore are critical for the equal and accurate segregation of genetic material during the cell cycle. CENP-C (centromere protein C), a conserved inner kinetochore component, has been broadly characterized as a scaffolding protein and is required for the recruitment of multiple kinetochore proteins to the centromere. At its C terminus, CENP-C harbors a conserved cupin domain that has an established role in protein dimerization. Although the crystal structure of the Saccharomyces cerevisiae Mif2CENP-C cupin domain has been determined, centromeric organization and kinetochore composition vary greatly between S. cerevisiae (point centromere) and other eukaryotes (regional centromere). Therefore, whether the structural and functional role of the cupin domain is conserved throughout evolution requires investigation. Here, we report the crystal structures of the Schizosaccharomyces pombe and Drosophila melanogaster CENP-C cupin domains at 2.52 and 1.81 Å resolutions, respectively. Although the central jelly roll architecture is conserved among the three determined CENP-C cupin domain structures, the cupin domains from organisms with regional centromeres contain additional structural features that aid in dimerization. Moreover, we found that the S. pombe Cnp3CENP-C jelly roll fold harbors an inner binding pocket that is used to recruit the meiosis-specific protein Moa1. In summary, our results unveil the evolutionarily conserved and unique features of the CENP-C cupin domain and uncover the mechanism by which it functions as a recruitment factor.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Animales , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Cristalografía por Rayos X/métodos , Proteínas de Unión al ADN/metabolismo , Dimerización , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Curr Biol ; 29(16): 2625-2639.e5, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31353180

RESUMEN

Centromeric nucleosomes are at the interface of the chromosome and the kinetochore that connects to spindle microtubules in mitosis. The core centromeric nucleosome complex (CCNC) harbors the histone H3 variant, CENP-A, and its binding proteins, CENP-C (through its central domain; CD) and CENP-N (through its N-terminal domain; NT). CENP-C can engage nucleosomes through two domains: the CD and the CENP-C motif (CM). CENP-CCD is part of the CCNC by virtue of its high specificity for CENP-A nucleosomes and ability to stabilize CENP-A at the centromere. CENP-CCM is thought to engage a neighboring nucleosome, either one containing conventional H3 or CENP-A, and a crystal structure of a nucleosome complex containing two copies of CENP-CCM was reported. Recent structures containing a single copy of CENP-NNT bound to the CENP-A nucleosome in the absence of CENP-C were reported. Here, we find that one copy of CENP-N is lost for every two copies of CENP-C on centromeric chromatin just prior to kinetochore formation. We present the structures of symmetric and asymmetric forms of the CCNC that vary in CENP-N stoichiometry. Our structures explain how the central domain of CENP-C achieves its high specificity for CENP-A nucleosomes and how CENP-C and CENP-N sandwich the histone H4 tail. The natural centromeric DNA path in our structures corresponds to symmetric surfaces for CCNC assembly, deviating from what is observed in prior structures using artificial sequences. At mitosis, we propose that CCNC asymmetry accommodates its asymmetric connections at the chromosome/kinetochore interface. VIDEO ABSTRACT.


Asunto(s)
Centrómero/ultraestructura , Mitosis/fisiología , Nucleosomas/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , Microscopía por Crioelectrón , Humanos
18.
Elife ; 82019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31210637

RESUMEN

The SNF2h remodeler slides nucleosomes most efficiently as a dimer, yet how the two protomers avoid a tug-of-war is unclear. Furthermore, SNF2h couples histone octamer deformation to nucleosome sliding, but the underlying structural basis remains unknown. Here we present cryo-EM structures of SNF2h-nucleosome complexes with ADP-BeFx that capture two potential reaction intermediates. In one structure, histone residues near the dyad and in the H2A-H2B acidic patch, distal to the active SNF2h protomer, appear disordered. The disordered acidic patch is expected to inhibit the second SNF2h protomer, while disorder near the dyad is expected to promote DNA translocation. The other structure doesn't show octamer deformation, but surprisingly shows a 2 bp translocation. FRET studies indicate that ADP-BeFx predisposes SNF2h-nucleosome complexes for an elemental translocation step. We propose a model for allosteric control through the nucleosome, where one SNF2h protomer promotes asymmetric octamer deformation to inhibit the second protomer, while stimulating directional DNA translocation.


Asunto(s)
Adenosina Trifosfatasas/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , Nucleosomas/ultraestructura , Adenosina Trifosfatasas/metabolismo , Regulación Alostérica , Proteínas Cromosómicas no Histona/metabolismo , Microscopía por Crioelectrón , Histonas/ultraestructura , Humanos , Conformación Proteica , Multimerización de Proteína
19.
J Cell Sci ; 132(3)2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733374

RESUMEN

Condensins and cohesins are highly conserved complexes that tether together DNA loci within a single DNA molecule to produce DNA loops. Condensin and cohesin structures, however, are different, and the DNA loops produced by each underlie distinct cell processes. Condensin rods compact chromosomes during mitosis, with condensin I and II complexes producing spatially defined and nested looping in metazoan cells. Structurally adaptive cohesin rings produce loops, which organize the genome during interphase. Cohesin-mediated loops, termed topologically associating domains or TADs, antagonize the formation of epigenetically defined but untethered DNA volumes, termed compartments. While condensin complexes formed through cis-interactions must maintain chromatin compaction throughout mitosis, cohesins remain highly dynamic during interphase to allow for transcription-mediated responses to external cues and the execution of developmental programs. Here, I review differences in condensin and cohesin structures, and highlight recent advances regarding the intramolecular or cis-based tetherings through which condensins compact DNA during mitosis and cohesins organize the genome during interphase.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Genoma , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestructura , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/ultraestructura , ADN/genética , ADN/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Interfase , Mitosis , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Cohesinas
20.
Chromosoma ; 128(1): 7-13, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30175387

RESUMEN

The high-order structure of metaphase chromosomes remains still under investigation, especially the 30-nm structure that is still controversial. Advanced 3D imaging has provided useful information for our understanding of this detailed structure. It is evident that new technologies together with improved sample preparations and image analyses should be adequately combined. This mini review highlights 3D imaging used for chromosome analysis so far with future imaging directions also highlighted.


Asunto(s)
Cromosomas/ultraestructura , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Coloración y Etiquetado/métodos , Animales , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Histonas/ultraestructura , Hordeum/genética , Hordeum/ultraestructura , Humanos , Imagenología Tridimensional/instrumentación , Inmunohistoquímica/métodos , Metafase , Microscopía de Fuerza Atómica , Microscopía Electrónica/instrumentación , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...