Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-34785626

RESUMEN

Mitochondria-nucleus communications and DNA damage response (DDR) play roles in cellular stress and closely associate with a range of diseases. Mitochondrial uncoupling proteins (UCPs) are capable of uncoupling mitochondrial oxidative phosphorylation and protecting against oxidative stress. However, the potential role of UCPs in DDR and DDR-related mitochondria-nucleus communications remains unknown. The review deduces UCPs functions in mitochondria-nucleus communications implicated in metabolite regulation (e.g., reactive oxygen species) and Ca2+ signaling, and in DDR (e.g., base excision repair, double-strand DNA break repair, mitophagy and nuclear DNA degradation). Represented are shared microRNAs that regulate UCPs and DDR. It would provide novel insight into UCPs-mediated mitochondria-nucleus communications and DDR, and potentially promote drug target identification, drug discovery and clinical therapy of DDR-related diseases.


Asunto(s)
Núcleo Celular/metabolismo , Reparación del ADN/fisiología , Mitocondrias/genética , Proteínas Desacopladoras Mitocondriales/fisiología , Animales , Núcleo Celular/genética , Roturas del ADN de Doble Cadena , Daño del ADN , Humanos , Mitocondrias/metabolismo
2.
Rejuvenation Res ; 22(5): 409-419, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30595087

RESUMEN

Circadian rhythms (CRs) are intrinsic clocks organizing the behavior and physiology of organisms. These clocks are thought to have coevolved with cellular redox regulation. Metabolism, redox homeostasis, circadian clock, and diet offer insights into aging. Mitochondria play a pivotal role in redox homeostasis, CR, and aging. Melatonin is synthesized in mitochondria, is the key regulator of CRs, and shows substantial antioxidative effects. Melatonin levels tend to decrease significantly with advancing age. Recent reports showed that disruptions of CRs may render aging populations even more susceptible to age-related disorders. Recent and high-quality articles investigating CR, redox homeostasis, aging, and their relationship during aging process were included. Putting special emphasis on the possible effects of melatonin on redox homeostasis and mitochondrial dynamics, recent clinical evidence highlighting the importance of circadian mechanisms was utilized. A deeper understanding of the role of altered mitochondrial redox homeostasis in the pathogenesis of age-related disorders and its relationship with CR could offer novel therapeutic interventions. Chronotherapy, a therapeutic approach considering CR of organisms and best therapeutic times, could potentially reduce side effects and improve therapeutic efficiency. Redox homeostasis, energy metabolism, and CR are all intertwined.


Asunto(s)
Envejecimiento/fisiología , Ritmo Circadiano/fisiología , Melatonina/fisiología , Animales , Restricción Calórica , Cronoterapia , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Homeostasis , Humanos , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/fisiopatología , Mitocondrias/fisiología , Proteínas Desacopladoras Mitocondriales/fisiología , Modelos Biológicos , Neoplasias/etiología , Neoplasias/fisiopatología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/fisiopatología , Oxidación-Reducción , Sirtuina 1/fisiología
3.
Sci Rep ; 9(1): 881, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696927

RESUMEN

Diabetic peripheral neuropathy (DPN), diabetic kidney disease (DKD), and diabetic retinopathy (DR) contribute to significant morbidity and mortality in diabetes patients. The incidence of these complications is increasing with the diabetes epidemic, and current therapies minimally impact their pathogenesis in type 2 diabetes (T2D). Improved mechanistic understanding of each of the diabetic complications is needed in order to develop disease-modifying treatments for patients. We recently identified fundamental differences in mitochondrial responses of peripheral nerve, kidney, and retinal tissues to T2D in BKS-db/db mice. However, whether these mitochondrial adaptations are the cause or consequence of tissue dysfunction remains unclear. In the current study BKS-db/db mice were treated with the mitochondrial uncoupler, niclosamide ethanolamine (NEN), to determine the effects of mitochondrial uncoupling therapy on T2D, and the pathogenesis of DPN, DKD and DR. Here we report that NEN treatment from 6-24 wk of age had little effect on the development of T2D and diabetic complications. Our data suggest that globally targeting mitochondria with an uncoupling agent is unlikely to provide therapeutic benefit for DPN, DKD, or DR in T2D. These data also highlight the need for further insights into the role of tissue-specific metabolic reprogramming in the pathogenesis of diabetic complications.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Animales , Nefropatías Diabéticas/metabolismo , Neuropatías Diabéticas/metabolismo , Retinopatía Diabética/metabolismo , Modelos Animales de Enfermedad , Etanolamina/farmacología , Riñón/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/fisiología , Niclosamida/farmacología , Desacopladores/farmacología
4.
Pharmacol Res ; 137: 11-24, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30223086

RESUMEN

Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.


Asunto(s)
Cardiotónicos/uso terapéutico , Diabetes Mellitus , Corazón/fisiología , Proteínas Desacopladoras Mitocondriales/fisiología , Animales , Cardiotónicos/farmacología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Humanos , Mitocondrias Cardíacas/efectos de los fármacos
5.
Biochim Biophys Acta Bioenerg ; 1858(8): 655-664, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28088333

RESUMEN

Acquisition of the endosymbiotic ancestor of mitochondria was a critical event in eukaryote evolution. Mitochondria offered an unparalleled source of metabolic energy through oxidative phosphorylation and allowed the development of multicellular life. However, as molecular oxygen had become the terminal electron acceptor in most eukaryotic cells, the electron transport chain proved to be the largest intracellular source of superoxide, contributing to macromolecular injury, aging, and cancer. Hence, the 'contract of endosymbiosis' represents a compromise between the possibilities and perils of multicellular life. Uncoupling proteins (UCPs), a group of the solute carrier family of transporters, may remove some of the physiologic constraints that link mitochondrial respiration and ATP synthesis by mediating inducible proton leak and limiting oxidative cell injury. This important property makes UCPs an ancient partner in the metabolic adaptation of cancer cells. Efforts are underway to explore the therapeutic opportunities stemming from the intriguing relationship of UCPs and cancer. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/fisiología , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacocinética , Hipoxia de la Célula , Línea Celular Tumoral , Reprogramación Celular , Resistencia a Antineoplásicos/fisiología , Sinergismo Farmacológico , Metabolismo Energético , Humanos , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Proteínas de Neoplasias/fisiología , Neoplasias/tratamiento farmacológico , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Simbiosis , Desacopladores/farmacología , Desacopladores/uso terapéutico
6.
Biochim Biophys Acta ; 1863(10): 2443-56, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27091404

RESUMEN

The first member of the uncoupling protein (UCP) family, brown adipose tissue uncoupling protein 1 (UCP1), was identified in 1976. Twenty years later, two closely related proteins, UCP2 and UCP3, were described in mammals. Homologs of these proteins exist in other organisms, including plants. Uncoupling refers to a deterioration of energy conservation between substrate oxidation and ADP phosphorylation. Complete energy conservation loss would be fatal but fine-tuning can be beneficial for processes such as thermogenesis, redox control, and prevention of mitochondrial ROS release. The coupled/uncoupled state of mitochondria is related to the permeability of the inner membrane and the proton transport mediated by activated UCPs underlies the uncoupling activity of these proteins. Proton transport by UCP1 is activated by fatty acids and this ensures thermogenesis. In vivo in absence of this activation UCP1 remains inhibited with no transport activity. A similar situation now seems unlikely for UCP2 and UCP3 and while activation of their proton transport has been described its physiological relevance remains uncertain and their influence can be envisaged as a result of another transport pathway that takes place in the absence of activation. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Proteínas Desacopladoras Mitocondriales/fisiología , Animales , Transporte Biológico , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Humanos , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Familia de Multigenes , Nucleótidos/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Permeabilidad , Protones , Proteínas de Saccharomyces cerevisiae/metabolismo , Termogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA