Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nat Struct Mol Biol ; 29(8): 781-790, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948766

RESUMEN

Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Secuencia de Aminoácidos , Proteínas Intrínsecamente Desordenadas/química , Unión Proteica , Dominios Proteicos , Proteína de Retinoblastoma/metabolismo
2.
J Mol Biol ; 434(10): 167563, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35351519

RESUMEN

Over one hundred Mastadenovirus types infect seven orders of mammals. Virus-host coevolution may involve cospeciation, duplication, host switch and partial extinction events. We reconstruct Mastadenovirus diversification, finding that while cospeciation is dominant, the other three events are also common in Mastadenovirus evolution. Linear motifs are fast-evolving protein functional elements and key mediators of virus-host interactions, thus likely to partake in adaptive viral evolution. We study the evolution of eleven linear motifs in the Mastadenovirus E1A protein, a hub of virus-host protein-protein interactions, in the context of host diversification. The reconstruction of linear motif gain and loss events shows fast linear motif turnover, corresponding a virus-host protein-protein interaction turnover orders of magnitude faster than in model host proteomes. Evolution of E1A linear motifs is coupled, indicating functional coordination at the protein scale, yet presents motif-specific patterns suggestive of convergent evolution. We report a pervasive association between Mastadenovirus host diversification events and the evolution of E1A linear motifs. Eight of 17 host switches associate with the gain of one linear motif and the loss of four different linear motifs, while five of nine partial extinctions associate with the loss of one linear motif. The specific changes in E1A linear motifs during a host switch or a partial extinction suggest that changes in the host molecular environment lead to modulation of the interactions with the retinoblastoma protein and host transcriptional regulators. Altogether, changes in the linear motif repertoire of a viral hub protein are associated with adaptive evolution events during Mastadenovirus evolution.


Asunto(s)
Proteínas E1A de Adenovirus , Evolución Molecular , Interacciones Huésped-Patógeno , Mastadenovirus , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Secuencias de Aminoácidos , Animales , Mamíferos/virología , Mastadenovirus/química , Mastadenovirus/genética , Mapeo de Interacción de Proteínas
3.
Biochem Biophys Res Commun ; 548: 98-103, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33640611

RESUMEN

E1A is an adenoviral protein which is expressed at the early phase after viral infection and contains four conserved regions (CR1, CR2, CR3 and CR4). Our previous work suggests that E1A facilitates the formation of cyclin A-CDK2 complex and thereby enhances CDK2 activity. However, the molecular function of E1A in CDK2 activation has been unclear. Here, we studied the mechanism of enhancement of CDK2 activity by E1A, using the E1A variant forms which selectively contain CR domains. We isolated four E1A variant forms, i.e. 13S (containing CR1, CR2, CR3, CR4), 12S (CR1, CR2, CR4), 10S (CR2, CR4) and 9S (CR4), derived from HEK293 cells which express E1A. 13S promoted G2/M-phase arrest, upon CDK2 hyper-activation by co-expressing a stabilized cyclin A mutant, most strongly among those E1A variant forms. Concomitantly, the specific activity of the 13S-associated CDK2 was highest among them. 10S exhibited lower affinity for CDK2 than the 13S while the affinity for CDK2 was comparable between 13S and 12S. Nonetheless, 12S did not enhance the CDK2 specific activity. On the other hand, a mutation in CR2 domain, which is essential for binding to p107, suppressed both the binding and activation of CDK2. These results suggest that CR1 domain, in addition to CR2 domain via p107 interaction, is important for binding to CycA-CDK2 complex while CR3 domain facilitates CDK2 activation. Since the function of CR3 in cell cycle regulation has been relatively unknown, we propose the enhancement of CDK2 activity as a novel function of CR3 domain.


Asunto(s)
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Ciclo Celular , Activación Enzimática , Células HEK293 , Humanos , Dominios Proteicos
4.
Virology ; 525: 117-131, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30265888

RESUMEN

E1A is the main transforming protein in mastadenoviruses. This work uses bioinformatics to extrapolate experimental knowledge from Human adenovirus serotype 5 and 12 E1A proteins to all known serotypes. A conserved domain architecture with a high degree of intrinsic disorder acts as a scaffold for multiple linear motifs with variable occurrence mediating the interaction with over fifty host proteins. While linear motifs contribute strongly to sequence conservation within intrinsically disordered E1A regions, motif repertoires can deviate significantly from those found in prototypical serotypes. Close to one hundred predicted residue-residue contacts suggest the presence of stable structure in the CR3 domain and of specific conformational ensembles involving both short- and long-range intramolecular interactions. Our computational results suggest that E1A sequence conservation and co-evolution reflect the evolutionary pressure to maintain a mainly disordered, yet non-random conformation harboring a high number of binding motifs that mediate viral hijacking of the cell machinery.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Conformación Proteica , Dominios Proteicos , Modificación Traduccional de las Proteínas
5.
J Mol Biol ; 429(20): 2975-2995, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28728983

RESUMEN

The recruitment of transcriptional cofactors by sequence-specific transcription factors challenges the basis of high affinity and selective interactions. Extending previous studies that the N-terminal activation domain (AD) of ETV5 interacts with Mediator subunit 25 (MED25), we establish that similar, aromatic-rich motifs located both in the AD and in the DNA-binding domain (DBD) of the related ETS factor ETV4 interact with MED25. These ETV4 regions bind MED25 independently, display distinct kinetics, and combine to contribute to a high-affinity interaction of full-length ETV4 with MED25. High-affinity interactions with MED25 are specific for the ETV1/4/5 subfamily as other ETS factors display weaker binding. The AD binds to a single site on MED25 and the DBD interacts with three MED25 sites, allowing for simultaneous binding of both domains in full-length ETV4. MED25 also stimulates the in vitro DNA binding activity of ETV4 by relieving autoinhibition. ETV1/4/5 factors are often overexpressed in prostate cancer and genome-wide studies in a prostate cancer cell line indicate that ETV4 and MED25 occupy enhancers that are enriched for ETS-binding sequences and are both functionally important for the transcription of genes regulated by these enhancers. AP1-motifs, which bind JUN and FOS transcription factor families, were observed in MED25-occupied regions and JUN/FOS also contact MED25; FOS strongly binds to the same MED25 site as ETV4 AD and JUN interacts with the other two MED25 sites. In summary, we describe features of the multivalent ETV4- and AP1-MED25 interactions, thereby implicating these factors in the recruitment of MED25 to transcriptional control elements.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Complejo Mediador/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas E1A de Adenovirus/química , Línea Celular Tumoral , Ensayo de Cambio de Movilidad Electroforética , Humanos , Espectroscopía de Resonancia Magnética , Complejo Mediador/química , Modelos Biológicos , Simulación del Acoplamiento Molecular , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas c-ets , Proteínas Proto-Oncogénicas c-fos/química
6.
Nucleic Acids Res ; 45(5): 2223-2241, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28161714

RESUMEN

Autoinhibition enables spatial and temporal regulation of cellular processes by coupling protein activity to surrounding conditions, often via protein partnerships or signaling pathways. We report the molecular basis of DNA-binding autoinhibition of ETS transcription factors ETV1, ETV4 and ETV5, which are often overexpressed in prostate cancer. Inhibitory elements that cooperate to repress DNA binding were identified in regions N- and C-terminal of the ETS domain. Crystal structures of these three factors revealed an α-helix in the C-terminal inhibitory domain that packs against the ETS domain and perturbs the conformation of its DNA-recognition helix. Nuclear magnetic resonance spectroscopy demonstrated that the N-terminal inhibitory domain (NID) is intrinsically disordered, yet utilizes transient intramolecular interactions with the DNA-recognition helix of the ETS domain to mediate autoinhibition. Acetylation of selected lysines within the NID activates DNA binding. This investigation revealed a distinctive mechanism for DNA-binding autoinhibition in the ETV1/4/5 subfamily involving a network of intramolecular interactions not present in other ETS factors. These distinguishing inhibitory elements provide a platform through which cellular triggers, such as protein-protein interactions or post-translational modifications, may specifically regulate the function of these oncogenic proteins.


Asunto(s)
Proteínas E1A de Adenovirus/química , Proteínas de Unión al ADN/química , ADN/química , Proteínas Intrínsecamente Desordenadas/química , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/química , Factores de Transcripción/química , Acetilación , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Lisina/química , Lisina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Virology ; 500: 11-21, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769014

RESUMEN

Human adenovirus infects terminally differentiated cells and to replicate it must induce S-phase. The chief architects that drive adenovirus-infected cells into S-phase are the E1A proteins, with 5 different isoforms expressed during infection. E1A remodels the infected cell by associating with cellular factors and modulating their activity. The C-terminus of E1A is known to bind to only a handful of proteins. We have identified a novel E1A C-terminus binding protein, Ku70 (XRCC6), which was found to bind directly within the CR4 of E1A from human adenovirus type 5. Depletion of Ku70 reduced virus growth, possibly by activating the DNA damage response pathway. Ku70 was found to localize to viral replication centers and associate with the viral genome. Ku70 was also recruited to cellular cell cycle regulated promoters following viral infection. Our study has identified, for the first time, Ku70 as a novel E1A-binding protein which affects virus life cycle.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Autoantígeno Ku/metabolismo , Infecciones por Adenoviridae/genética , Infecciones por Adenoviridae/fisiopatología , Infecciones por Adenoviridae/virología , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Adenovirus Humanos/química , Adenovirus Humanos/genética , Ciclo Celular , Regulación Viral de la Expresión Génica , Humanos , Autoantígeno Ku/genética , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Replicación Viral
8.
Protein Sci ; 25(12): 2256-2267, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27699893

RESUMEN

Many viruses deregulate the cell and force transcription of viral genes by competing with cellular proteins for binding to the transcriptional co-activators CREB-binding protein (CBP) and p300. Through its interactions with CBP/p300 and the retinoblastoma protein, the adenovirus (AdV) early region 1A (E1A) oncoprotein hijacks the cell cycle and, in rodents, transforms the cell; the mechanistic and structural basis for these effects remain unclear. In this study we compare the affinity of protein constructs from the E1A proteins from two adenovirus serotypes, non-oncogenic AdV5 and highly oncogenic AdV12, for binding to the nuclear receptor coactivator binding domain (NCBD) of CBP. NMR spectra show that the E1A constructs from both serotypes are intrinsically disordered in the free state and that each contains three homologous binding sites for the NCBD, one in the N-terminal region and two within conserved region 1 (CR1) of E1A. The binding sites in CR1 correspond to the motifs that bind the retinoblastoma protein and the TAZ2 domain of CBP/p300. The E1A and NCBD peptides fold synergistically upon complex formation. Binding affinities determined from NMR titrations show that, although the overall affinities for AdV5 and AdV12 E1A are comparable, there are significant differences between the two E1A serotypes in the relative strength with which their constituent interaction motifs bind to the NCBD. The individual E1A interaction motifs were unable to compete effectively with p53 for binding to the NCBD and both the N-terminal region and CR1 region of E1A are required for efficient competition with p53.


Asunto(s)
Adenoviridae/química , Proteínas E1A de Adenovirus/química , Proteína de Unión a CREB/química , Proteína p300 Asociada a E1A/química , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Secuencias de Aminoácidos , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Dominios Proteicos , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Virology ; 499: 178-184, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27664947

RESUMEN

The adenovirus E1A 243R oncoprotein targets TRRAP, a scaffold protein that assembles histone acetyltransferase (HAT) complexes, such as the NuA4/Tip60 complex which mediates transcriptional activity of the proto-oncogene MYC and helps determine the cancer cell phenotype. How E1A transforms cells through TRRAP remains obscure. We performed proteomic analysis with the N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) and showed that E1A 1-80 interacts with TRRAP, p400, and three other members of the NuA4 complex - DMAP1, RUVBL1 and RUVBL2 - not previously shown to associate with E1A 243R. E1A 1-80 interacts with these NuA4 components and MYC through the E1A TRRAP-targeting domain. E1A 243R association with the NuA4 complex was demonstrated by co-immunoprecipitation and analysis with DMAP1, Tip60, and MYC. Significantly, E1A 243R promotes association of MYC/MAX with the NuA4/Tip60 complex, implicating the importance of the MYC/NuA4 pathway in cellular transformation by both MYC and E1A.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Histona Acetiltransferasas/metabolismo , Complejos Multiproteicos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas E1A de Adenovirus/química , Proteínas Portadoras/metabolismo , Línea Celular , Transformación Celular Neoplásica/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/genética , Humanos , Lisina Acetiltransferasa 5 , Modelos Biológicos , Proteínas Oncogénicas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteómica/métodos , Proto-Oncogenes Mas
10.
Chemistry ; 22(37): 13010-3, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27490777

RESUMEN

The small-DNA human adenovirus encodes one of the most versatile molecular hubs, the E1A protein. This protein is essential for productive viral infection in human cells and a vast amount of biologically relevant data are available on its interactions with host proteins. Up to now, however, no high-resolution structural and dynamic information on E1A is available despite its important biological role. Among the different spliced variants of E1A, two are expressed at high level in the early stage of infection. These are 243 and 289 residues isoforms. Herein, we present their NMR characterization, showing that they are both highly disordered, but also demonstrate a certain heterogeneous behavior in terms of structural and dynamic properties. Furthermore, we present the characterization of the isolated domain of the longer variant, known as CR3. This study opens the way to understanding at the molecular level how E1A functions.


Asunto(s)
Proteínas E1A de Adenovirus/química , Adenovirus Humanos/química , Humanos , Agregado de Proteínas , Dominios Proteicos , Isoformas de Proteínas/química
11.
Sci Rep ; 6: 28241, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27307198

RESUMEN

DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas E1A de Adenovirus/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas E1A de Adenovirus/química , Sitios de Unión , Proteínas Portadoras/química , Dictyostelium/metabolismo , Células HeLa , Humanos , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química , Fracciones Subcelulares/metabolismo , Quinasas DyrK
12.
PLoS Pathog ; 12(5): e1005621, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27137912

RESUMEN

The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP). E1A interacts with and relocalizes protein kinase A (PKA) to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A's role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Imitación Molecular , Proteínas de Anclaje a la Quinasa A/química , Adenoviridae/química , Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/química , Secuencia de Aminoácidos , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas Quinasas Dependientes de AMP Cíclico/química , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunoprecipitación , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Secundaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Biol Chem ; 291(27): 14363-14372, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27143356

RESUMEN

The adenovirus early region 1A (E1A) oncoprotein hijacks host cells via direct interactions with many key cellular proteins, such as KAT2B, also known as PCAF (p300/CBP associated factor). E1A binds the histone acetyltransferase (HAT) domain of KAT2B to repress its transcriptional activation. However, the molecular mechanism by which E1A inhibits the HAT activity is not known. Here we demonstrate that a short and relatively conserved N-terminal motif (cNM) in the intrinsically disordered E1A protein is crucial for KAT2B interaction, and inhibits its HAT activity through a direct competition with acetyl-CoA, but not its substrate histone H3. Molecular modeling together with a series of mutagenesis experiments suggests that the major helix of E1A cNM binds to a surface of the acetyl-CoA pocket of the KAT2B HAT domain. Moreover, transient expression of the cNM peptide is sufficient to inhibit KAT2B-specific H3 acetylation H3K14ac in vivo Together, our data define an essential motif cNM in N-terminal E1A as an acetyl-CoA entry blocker that directly associates with the entrance of acetyl-CoA binding pocket to block the HAT domain access to its cofactor.


Asunto(s)
Proteínas E1A de Adenovirus/fisiología , Lisina Acetiltransferasas/antagonistas & inhibidores , Acetilación , Proteínas E1A de Adenovirus/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Homología de Secuencia de Aminoácido
14.
Science ; 350(6260): 568-71, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26405230

RESUMEN

Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) detects intracellular DNA and signals through the adapter protein STING to initiate the antiviral response to DNA viruses. Whether DNA viruses can prevent activation of the cGAS-STING pathway remains largely unknown. Here, we identify the oncogenes of the DNA tumor viruses, including E7 from human papillomavirus (HPV) and E1A from adenovirus, as potent and specific inhibitors of the cGAS-STING pathway. We show that the LXCXE motif of these oncoproteins, which is essential for blockade of the retinoblastoma tumor suppressor, is also important for antagonizing DNA sensing. E1A and E7 bind to STING, and silencing of these oncogenes in human tumor cells restores the cGAS-STING pathway. Our findings reveal a host-virus conflict that may have shaped the evolution of viral oncogenes.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Virus ADN Tumorales/inmunología , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Nucleótidos Cíclicos/antagonistas & inhibidores , Proteínas Oncogénicas Virales/metabolismo , Escape del Tumor , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , ADN de Neoplasias/inmunología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Evolución Molecular , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/genética , Proteína de Retinoblastoma/antagonistas & inhibidores
15.
J Biol Chem ; 290(22): 13692-709, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25866208

RESUMEN

Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40-200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors.


Asunto(s)
Proteínas E1A de Adenovirus/química , Proteínas de Unión al ADN/química , Disulfuros/química , Proteínas Nucleares/química , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Proto-Oncogénicas/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Cromatografía Liquida , ADN/química , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neoplasias/metabolismo , Oxidación-Reducción , Oxígeno/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray
16.
Virology ; 468-470: 238-243, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25194920

RESUMEN

The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285-289, as well as a second basic patch situated between residues 258 and 263 ((258)RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP(289)). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Señales de Localización Nuclear/fisiología , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Adenovirus Humanos/genética , Secuencia de Aminoácidos , Línea Celular , Regulación Viral de la Expresión Génica/fisiología , Humanos , Datos de Secuencia Molecular
17.
J Gen Virol ; 95(Pt 1): 142-152, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24136366

RESUMEN

The early region 1A (E1A) of human adenovirus types 2 and 5 is differentially spliced to yield five distinct mRNAs that encode different proteins. The smallest E1A RNA transcript encodes a 55 residue (55R) protein that shares only 28 amino acid residues with the other E1A proteins. Even though it is the most abundant E1A transcript at late times post-infection, little is known about the functions of this E1A isoform. In this study, we show that the E1A 55R protein interacts with, and modulates the activity of the unliganded thyroid hormone receptor (TR). We demonstrate that E1A 55R contains a signature motif known as the CoRNR box that confers interaction with the unliganded TR; this motif was originally identified in cellular corepressors. Using a system reconstituted in the yeast Saccharomyces cerevisiae, which lack endogenous TR and TR coregulators, we show that E1A 55R nonetheless differs from cellular corepressors as it functions as a strong co-activator of TR-dependent transcription and that it possesses an intrinsic transcriptional activation domain. These data indicate that the E1A 55R protein functions as a transcriptional regulator.


Asunto(s)
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Infecciones por Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Regiones Promotoras Genéticas , Receptores de Hormona Tiroidea/genética , Transactivadores/metabolismo , Proteínas E1A de Adenovirus/genética , Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/química , Adenovirus Humanos/genética , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Transactivadores/química , Transactivadores/genética , Activación Transcripcional
19.
Nature ; 498(7454): 390-4, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23783631

RESUMEN

Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.


Asunto(s)
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Animales , Anisotropía , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Termodinámica , Factores de Transcripción p300-CBP/química
20.
PLoS One ; 8(3): e58854, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23536830

RESUMEN

Orf virus-encoded protein 002 (ORFV002) inhibits NF-κB signaling pathway by decreasing the acetylation of NF-κB-p65 through interference of NF-κB p65's association with NF-κB p300. However, the precise mechanism of how ORFV002 interferes with the NF-κB p65/p300 association is still unknown. Due to similarities of the amino acid sequences of ORFV002 and the adenovirus type 12 (Ad12) E1A protein (E1A-12), we hypothesized that the N-terminal 52 amino acids of ORFV002 might play an important role in this inhibition and constructed several in-frame fusions of ORFV002 to an enhanced green fluorescent protein (EGFP) reporter, including C-terminal and N-terminal deletion mutants of ORFV002. When the N-terminus of ORFV002 was absent, the localization of ORFV002 shifted mainly from the nucleus to the cytoplasm, and it's inhibition of NF-κB transactivation was lost. NF-κB p65 Lys(310) acetylation and Ser(276) phosphorylation were detected in co-transfection experiments with NF-κB p65 and ORFV002 or its mutants with, or without, the N-terminal region. The results showed that the N-terminus of ORFV002 plays a crucial role in inhibiting both the acetylation and phosphorylation of NF-κB p65. Further investigation indicated that ORFV002 and its C-terminal deletion mutants interfered with NF-κB p65 (Ser(276)) phosphorylation induced by mitogen- and stress-activated protein kinase-1 (MSK1) and the interaction between NF-κB p65 and MSK1. Since phosphorylated NF-κB p65 recruits transcriptional co-activators such as p300 and CBP, we concluded that the N-terminus of ORFV002 inhibits acetylation of NF-κB p65 by blocking phosphorylation of NF-κB p65 at Ser(276).


Asunto(s)
Virus del Orf/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteínas Virales/metabolismo , Acetilación , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Datos de Secuencia Molecular , Mutación , Virus del Orf/genética , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Alineación de Secuencia , Ovinos , Activación Transcripcional , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...