Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287436

RESUMEN

Iron-sulfur (Fe-S) proteins are crucial for many cellular functions, particularly those involving electron transfer and metabolic reactions. An essential monothiol glutaredoxin GRXS15 plays a key role in the maturation of plant mitochondrial Fe-S proteins. However, its specific molecular function is not clear, and may be different from that of the better characterized yeast and human orthologs, based on known properties. Hence, we report here a detailed characterization of the interactions between Arabidopsis thaliana GRXS15 and ISCA proteins using both in vivo and in vitro approaches. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that GRXS15 interacts with each of the three plant mitochondrial ISCA1a/1b/2 proteins. UV-visible absorption/CD and resonance Raman spectroscopy demonstrated that coexpression of ISCA1a and ISCA2 resulted in samples with one [2Fe-2S]2+ cluster per ISCA1a/2 heterodimer, but cluster reconstitution using as-purified [2Fe-2S]-ISCA1a/2 resulted in a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer. Cluster transfer reactions monitored by UV-visible absorption and CD spectroscopy demonstrated that [2Fe-2S]-GRXS15 mediates [2Fe-2S]2+ cluster assembly on mitochondrial ferredoxin and [4Fe-4S]2+ cluster assembly on the ISCA1a/2 heterodimer in the presence of excess glutathione. This suggests that ISCA1a/2 is an assembler of [4Fe-4S]2+ clusters, via two-electron reductive coupling of two [2Fe-2S]2+ clusters. Overall, the results provide new insights into the roles of GRXS15 and ISCA1a/2 in effecting [2Fe-2S]2+ to [4Fe-4S]2+ cluster conversions for the maturation of client [4Fe-4S] cluster-containing proteins in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/aislamiento & purificación , Glutarredoxinas/química , Glutarredoxinas/aislamiento & purificación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Mitocondrias/química , Mitocondrias/genética , Unión Proteica , Análisis Espectral
2.
Sci Rep ; 10(1): 14872, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913242

RESUMEN

Flavin-based electron bifurcation is a long hidden mechanism of energetic coupling present mainly in anaerobic bacteria and archaea that suffer from energy limitations in their environment. Electron bifurcation saves precious cellular ATP and enables lithotrophic life of acetate-forming (acetogenic) bacteria that grow on H2 + CO2 by the only pathway that combines CO2 fixation with ATP synthesis, the Wood-Ljungdahl pathway. The energy barrier for the endergonic reduction of NADP+, an electron carrier in the Wood-Ljungdahl pathway, with NADH as reductant is overcome by an electron-bifurcating, ferredoxin-dependent transhydrogenase (Nfn) but many acetogens lack nfn genes. We have purified a ferredoxin-dependent NADH:NADP+ oxidoreductase from Sporomusa ovata, characterized the enzyme biochemically and identified the encoding genes. These studies led to the identification of a novel, Sporomusa type Nfn (Stn), built from existing modules of enzymes such as the soluble [Fe-Fe] hydrogenase, that is widespread in acetogens and other anaerobic bacteria.


Asunto(s)
Acetobacterium/enzimología , Proteínas Bacterianas/metabolismo , Ferredoxinas/metabolismo , Firmicutes/enzimología , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Acetobacterium/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Transporte de Electrón , Electrones , Firmicutes/genética , Hidrogenasas/genética , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/aislamiento & purificación , Oxidación-Reducción , Homología de Secuencia de Aminoácido
3.
J Am Chem Soc ; 142(25): 10964-10977, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32470300

RESUMEN

Recent advances have led to numerous landmark discoveries of [4Fe4S] clusters coordinated by essential enzymes in repair, replication, and transcription across all domains of life. The cofactor has notably been challenging to observe for many nucleic acid processing enzymes due to several factors, including a weak bioinformatic signature of the coordinating cysteines and lability of the metal cofactor. To overcome these challenges, we have used sequence alignments, an anaerobic purification method, iron quantification, and UV-visible and electron paramagnetic resonance spectroscopies to investigate UvrC, the dual-incision endonuclease in the bacterial nucleotide excision repair (NER) pathway. The characteristics of UvrC are consistent with [4Fe4S] coordination with 60-70% cofactor incorporation, and additionally, we show that, bound to UvrC, the [4Fe4S] cofactor is susceptible to oxidative degradation with aggregation of apo species. Importantly, in its holo form with the cofactor bound, UvrC forms high affinity complexes with duplexed DNA substrates; the apparent dissociation constants to well-matched and damaged duplex substrates are 100 ± 20 nM and 80 ± 30 nM, respectively. This high affinity DNA binding contrasts reports made for isolated protein lacking the cofactor. Moreover, using DNA electrochemistry, we find that the cluster coordinated by UvrC is redox-active and participates in DNA-mediated charge transport chemistry with a DNA-bound midpoint potential of 90 mV vs NHE. This work highlights that the [4Fe4S] center is critical to UvrC.


Asunto(s)
Endodesoxirribonucleasas/química , Proteínas de Escherichia coli/química , Proteínas Hierro-Azufre/química , Oxígeno/química , Secuencia de Aminoácidos , Cisteína/química , ADN/metabolismo , Endodesoxirribonucleasas/aislamiento & purificación , Endodesoxirribonucleasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Mutación , Oxidación-Reducción , Unión Proteica
4.
Nat Commun ; 10(1): 2210, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101807

RESUMEN

The core machinery for de novo biosynthesis of iron-sulfur clusters (ISC), located in the mitochondria matrix, is a five-protein complex containing the cysteine desulfurase NFS1 that is activated by frataxin (FXN), scaffold protein ISCU, accessory protein ISD11, and acyl-carrier protein ACP. Deficiency in FXN leads to the loss-of-function neurodegenerative disorder Friedreich's ataxia (FRDA). Here the 3.2 Å resolution cryo-electron microscopy structure of the FXN-bound active human complex, containing two copies of the NFS1-ISD11-ACP-ISCU-FXN hetero-pentamer, delineates the interactions of FXN with other component proteins of the complex. FXN binds at the interface of two NFS1 and one ISCU subunits, modifying the local environment of a bound zinc ion that would otherwise inhibit NFS1 activity in complexes without FXN. Our structure reveals how FXN facilitates ISC production through stabilizing key loop conformations of NFS1 and ISCU at the protein-protein interfaces, and suggests how FRDA clinical mutations affect complex formation and FXN activation.


Asunto(s)
Liasas de Carbono-Azufre/ultraestructura , Ataxia de Friedreich/patología , Proteínas de Unión a Hierro/ultraestructura , Proteínas Hierro-Azufre/ultraestructura , Mitocondrias/ultraestructura , Liasas de Carbono-Azufre/aislamiento & purificación , Liasas de Carbono-Azufre/metabolismo , Microscopía por Crioelectrón , Ataxia de Friedreich/genética , Hierro/metabolismo , Proteínas de Unión a Hierro/aislamiento & purificación , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Modelos Moleculares , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Azufre/metabolismo , Zinc/metabolismo , Frataxina
5.
J Proteome Res ; 17(11): 3704-3718, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30239205

RESUMEN

Trichomonas vaginalis is a sexually transmitted anaerobic parasite that infects humans causing trichomoniasis, a common and ubiquitous sexually transmitted disease. The life cycle of this parasite possesses a trophozoite form without a cystic stage. However, the presence of nonproliferative and nonmotile, yet viable and reversible spherical forms with internalized flagella, denominated pseudocysts, has been commonly observed for this parasite. To understand the mechanisms involved in the formation of pseudocysts, we performed a mass spectrometry-based high-throughput quantitative proteomics study using a label-free approach and functional assays by biochemical and flow cytometric methods. We observed that the morphological transformation of trophozoite to pseudocysts is coupled to (i) a metabolic shift toward a less glycolytic phenotype; (ii) alterations in the abundance of hydrogenosomal iron-sulfur cluster (ISC) assembly machinery; (iii) increased abundance of regulatory particles of the ubiquitin-proteasome system; (iv) significant alterations in proteins involved in adhesion and cytoskeleton reorganization; and (v) arrest in G2/M phase associated with alterations in the abundance of regulatory proteins of the cell cycle. These data demonstrate that pseudocysts experience important physiological and structural alterations for survival under unfavorable environmental conditions.


Asunto(s)
Proteínas Hierro-Azufre/química , Estadios del Ciclo de Vida/genética , Proteómica/métodos , Proteínas Protozoarias/química , Trichomonas vaginalis/química , Trofozoítos/química , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Puntos de Control de la Fase G2 del Ciclo Celular , Ontología de Genes , Hierro/metabolismo , Proteínas Hierro-Azufre/clasificación , Proteínas Hierro-Azufre/aislamiento & purificación , Espectrometría de Masas , Anotación de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/aislamiento & purificación , Trichomonas vaginalis/genética , Trichomonas vaginalis/crecimiento & desarrollo , Trichomonas vaginalis/metabolismo , Trofozoítos/genética , Trofozoítos/crecimiento & desarrollo , Trofozoítos/metabolismo , Ubiquitina/química , Ubiquitina/aislamiento & purificación
7.
Methods Enzymol ; 606: 217-239, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097094

RESUMEN

Lipoyl synthase (LipA in bacteria) is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the second step of the de novo biosynthesis of the lipoyl cofactor: the insertion of sulfur at C6 and C8 of a pendant octanoyl chain. In addition to the [4Fe4S] cluster that is characteristic of the radical SAM (RS) enzymes, LipA contains a second [4Fe4S] cluster that, though controversial, has been proposed to be degraded during turnover to supply the inserted sulfur atoms. A consequence of this proposed role is that the destruction of its iron-sulfur cluster renders the enzyme in an inactive state. Recently, it was shown that Escherichia coli proteins NfuA or IscU can confer catalytic properties to E. coli LipA in vitro. In this chapter, we present methods for characterizing LipA and analyzing its activity in vitro, and provide strategies to monitor the pathway for the regeneration of LipA's auxiliary cluster by E. coli iron-sulfur carrier protein NfuA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biocatálisis , Pruebas de Enzimas/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo
8.
Methods Enzymol ; 599: 101-137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29746237

RESUMEN

Zinc finger (ZF) proteins are proteins that use zinc as a structural cofactor. The common feature among all ZFs is that they contain repeats of four cysteine and/or histidine residues within their primary amino acid sequence. With the explosion of genome sequencing in the early 2000s, a large number of proteins were annotated as ZFs based solely upon amino acid sequence. As these proteins began to be characterized experimentally, it was discovered that some of these proteins contain iron-sulfur sites either in place of or in addition to zinc. Here, we describe methods to isolate and characterize one such ZF protein, cleavage and polyadenylation specificity factor 30 (CPSF3O) with respect to its metal-loading and RNA-binding activity.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , ARN/metabolismo , Dedos de Zinc , Animales , Cromatografía en Gel/métodos , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/aislamiento & purificación , Clonación Molecular/métodos , Ensayo de Cambio de Movilidad Electroforética/métodos , Escherichia coli/genética , Polarización de Fluorescencia/métodos , Humanos , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Espectrometría de Masas/métodos , Modelos Moleculares , Espectroscopía de Absorción de Rayos X/métodos
9.
FEBS J ; 284(24): 4314-4327, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29076625

RESUMEN

Heme d1 is a modified tetrapyrrole playing an important role in denitrification by acting as the catalytically essential cofactor in the cytochrome cd1 nitrite reductase of many denitrifying bacteria. In the course of heme d1 biosynthesis, the two propionate side chains on pyrrole rings A and B of the intermediate 12,18-didecarboxysiroheme are removed from the tetrapyrrole macrocycle. In the final heme d1 molecule, the propionate groups are replaced by two keto functions. Although it was speculated that the Radical S-adenosyl-l-methionine (SAM) enzyme NirJ might be responsible for the removal of the propionate groups and introduction of the keto functions, this has not been shown experimentally, so far. Here, we demonstrate that NirJ is a Radical SAM enzyme carrying two iron-sulfur clusters. While the N-terminal [4Fe-4S] cluster is essential for the initial SAM cleavage reaction, it is not required for substrate binding. NirJ tightly binds its substrate 12,18-didecarboxysiroheme and, thus, can be purified in complex with the substrate. By using the purified NirJ/substrate complex in an in vitro enzyme activity assay, we show that NirJ indeed catalyzes the removal of the two propionate side chains under simultaneous SAM cleavage. However, under the reaction conditions employed, no keto group formation is observed indicating that an additional cofactor or enzyme is needed for this reaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemo/análogos & derivados , Proteínas Hierro-Azufre/metabolismo , Nitrato-Reductasa/metabolismo , Propionatos/metabolismo , Rhodobacteraceae/enzimología , S-Adenosilmetionina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Catálisis , Cromatografía Líquida de Alta Presión , Ditionita/farmacología , Hemo/biosíntesis , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/aislamiento & purificación , Modelos Químicos , Estructura Molecular , Mutagénesis Sitio-Dirigida , Nitrato-Reductasa/genética , Nitrato-Reductasa/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Sustancias Reductoras/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato , Tetrapirroles/metabolismo
11.
Biochim Biophys Acta Bioenerg ; 1858(9): 771-778, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28647463

RESUMEN

Hydrogenases from green algae are linked to the photosynthetic electron transfer chain via the plant-type ferredoxin PetF. In this work the [FeFe]-hydrogenase from the Trebouxiophycean alga Chlorella variabilis NC64A (CvHydA1), which in contrast to other green algal hydrogenases contains additional FeS-cluster binding domains, was purified and specific enzyme activities for both hydrogen (H2) production and H2 oxidation were determined. Interestingly, although C. variabilis NC64A, like many Chlorophycean algal strains, exhibited light-dependent H2 production activity upon sulfur deprivation, CvHydA1 did not interact in vitro with several plant-type [2Fe-2S]-ferredoxins, but only with a bacterial2[4Fe4S]-ferredoxin. In an electrochemical characterization, the enzyme exhibited features typical of bacterial [FeFe]-hydrogenases (e.g. minor anaerobic oxidative inactivation), as well as of algal enzymes (very high oxygen sensitivity).


Asunto(s)
Proteínas Algáceas/metabolismo , Chlorella/enzimología , Ferredoxinas/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/aislamiento & purificación , Secuencia de Aminoácidos , Monóxido de Carbono/farmacología , Chlamydomonas reinhardtii/química , Chlorella/efectos de la radiación , Técnicas Electroquímicas , Transporte de Electrón , Hidrógeno/metabolismo , Hidrogenasas/antagonistas & inhibidores , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Luz , Modelos Moleculares , Oxidación-Reducción , Oxígeno/farmacología , Fotosíntesis , Conformación Proteica , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Azufre/metabolismo
12.
J Am Chem Soc ; 139(28): 9544-9550, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28635269

RESUMEN

An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fdox/Fdred ratio at which CpI can operate, consistent with the role of CpI in recycling Fdred that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.


Asunto(s)
Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Protones , Termodinámica , Biocatálisis , Clostridium/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Potenciometría
13.
J Biol Inorg Chem ; 22(4): 545-557, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28197737

RESUMEN

Rieske proteins play an essential role in electron transfer in the bc 1 complex. Rieske proteins contain a [2Fe-2S] cluster with one iron ligated by two histidines and the other iron ligated by two cysteines. All Rieske proteins have pH-dependent reduction potentials with the histidines ligating the cluster deprotonating in response to increases in pH. The addition of diethylpyrocarbonate (DEPC) modifies deprotonated histidines. The previous studies on the isolated Thermus thermophilus Rieske protein have used large excesses of DEPC, and this study examines what amino acids become modified under different molar equivalents of DEPC to protein. Increasing amounts of DEPC result in more modification, and higher pH values result in faster reaction. Upon modification, the protein also becomes reduced and ~6 equivalents of DEPC are needed for 50% of the reduction to occur. Which amino acids are modified first also points to the most reactive species on the protein. Mass spectrometry analysis shows that lysine 68 is the most reactive amino acid, followed by the ligating histidine 154 and two other surfaces lysines, 76 and 43. The modification of the ligating histidine at low numbers of DEPC equivalents and correlation with a similar number of equivalents needed to reduce the protein shows that this histidine can interact with neighboring groups, and these results can be extended to the protein within the bc 1 complex, where interaction with neighboring residues or molecules may allow reduction to occur. These results may shed light on how Rieske transfers electrons and protons in the bc 1 complex.


Asunto(s)
Proteínas Hierro-Azufre/química , Concentración de Iones de Hidrógeno , Proteínas Hierro-Azufre/aislamiento & purificación , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción
14.
Appl Microbiol Biotechnol ; 100(24): 10417-10428, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27376793

RESUMEN

The reductase component (MhpP) of the Sulfobacillus acidophilus TPY multicomponent phenol hydroxylase exhibits only 40 % similarity to Pseudomonas sp. strain CF600 phenol hydroxylase reductase. Amino acid sequence alignment analysis revealed that four cysteine residues (Cys-X 4 -Cys-X 2 -Cys-X 29-35 -Cys) are conserved in the N terminus of MhpP for [2Fe-2S] cluster binding, and two other motifs (RXYS and GXXS/T) are conserved in the C terminus for binding the isoalloxazine and phosphate groups of flavin adenine dinucleotide (FAD). Two motifs (S/T-R and yXCGp) responsible for binding to reduce nicotinamide adenine dinucleotide phosphate (NADPH) are also conserved in MhpP, although some residues differ. To confirm the function of this reductase, MhpP was heterologously expressed in Escherichia coli BL21(DE3) and purified. UV-visible spectroscopy and electron paramagnetic resonance spectroscopy revealed that MhpP contains a [2Fe-2S] cluster. MhpP mutants in which the four cysteine residues were substituted via site-directed mutagenesis lost the ability to bind the [2Fe-2S] cluster, resulting in a decrease in enzyme-specific oxidation of NADPH. Thin-layer chromatography revealed that MhpP contains FAD. Substrate specificity analyses confirmed that MhpP uses NADPH rather than NADH as an electron donor. MhpP oxidizes NADPH using cytochrome c, potassium ferricyanide, or nitro blue tetrazolium as an electron acceptor, with a specific activity of 1.7 ± 0.36, 0.78 ± 0.13, and 0.16 ± 0.06 U/mg, respectively. Thus, S. acidophilus TPY MhpP is a novel NADPH-dependent reductase component of phenol hydroxylase that utilizes FAD and a [2Fe-2S] cluster as cofactors.


Asunto(s)
Clostridiales/enzimología , Coenzimas/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , NADP/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Secuencias de Aminoácidos , Clostridiales/genética , Secuencia Conservada , Escherichia coli/genética , Flavina-Adenina Dinucleótido/análisis , Expresión Génica , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/aislamiento & purificación , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxidorreductasas/química , Oxidorreductasas/aislamiento & purificación , Pseudomonas/enzimología , Pseudomonas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Análisis Espectral , Especificidad por Sustrato
15.
Mol Microbiol ; 100(5): 877-92, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26879449

RESUMEN

The hybrid cluster protein, Hcp, contains a 4Fe-2S-2O iron-sulfur-oxygen cluster that is currently considered to be unique in biology. It protects various bacteria from nitrosative stress, but the mechanism is unknown. We demonstrate that the Escherichia coli Hcp is a high affinity nitric oxide (NO) reductase that is the major enzyme for reducing NO stoichiometrically to N2 O under physiologically relevant conditions. Deletion of hcp results in extreme sensitivity to NO during anaerobic growth and inactivation of the iron-sulfur proteins, aconitase and fumarase, by accumulated cytoplasmic NO. Site directed mutagenesis revealed an essential role in NO reduction for the conserved glutamate 492 that coordinates the hybrid cluster. The second gene of the hcp-hcr operon encodes an NADH-dependent reductase, Hcr. Tight interaction between Hcp and Hcr was demonstrated. Although Hcp and Hcr purified individually were inactive or when recombined, a co-purified preparation reduced NO in vitro with a Km for NO of 500 nM. In an hcr mutant, Hcp is reversibly inactivated by NO concentrations above 200 nM, indicating that Hcr protects Hcp from nitrosylation by its substrate, NO.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Estrés Fisiológico , Anaerobiosis , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Mutagénesis Sitio-Dirigida , Nitrosación , Operón , Oxidorreductasas/química , Oxidorreductasas/aislamiento & purificación , Estrés Fisiológico/genética
16.
Protein Expr Purif ; 121: 1-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26748213

RESUMEN

Ferredoxins are small, acidic proteins containing iron-sulfur clusters that are widespread in living organisms. They play key roles as electron carriers in various metabolic processes, including respiration, photosynthesis, fermentation, nitrogen fixation, carbon dioxide fixation, and hydrogen production. However, only several kinds of ferredoxins are commercially available now, greatly limiting the investigation of ferredoxin-related enzymes and metabolic processes. Here we describe the heterologous overproduction of 2[4Fe4S]- and [2Fe2S]-type clostridial ferredoxins and [2Fe2S]-type agrobacterial ferredoxin. Adding extra iron and sulfur sources to the medium in combination with using Escherichia coli C41(DE3) harboring pCodonplus and pRKISC plasmids as host greatly enhanced iron-sulfur cluster synthesis in the three ferredoxins. After induction for 12 h in terrific broth and purification by affinity chromatography and anion exchange chromatography, approximately 3.4 mg of streptavidin (Strep)-tagged and 3.7 mg of polyhistidine (His)-tagged clostridial 2[4Fe4S] ferredoxins were obtained from 1 l of culture. Excitingly, after induction for 24 h in terrific broth, around 40 mg of His-tagged clostridial [2Fe2S] and 23 mg of His-tagged agrobacterial [2Fe2S] ferredoxins were purified from 1 l of culture. The recombinant ferredoxins apparently exhibited identical properties and physiological function to native ferredoxins. No negative impact of two different affinity tags on ferredoxin activity was found. In conclusion, we successfully developed a convenient method for heterologous overproduction of the three kinds of ferredoxins with satisfactory yields and activities, which would be very helpful for the ferredoxin-related researches.


Asunto(s)
Ferredoxinas/biosíntesis , Proteínas Hierro-Azufre/biosíntesis , Proteínas Recombinantes/biosíntesis , Agrobacterium/genética , Cromatografía de Afinidad , Clostridium/genética , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Ferredoxinas/química , Ferredoxinas/aislamiento & purificación , Hierro/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Plásmidos/biosíntesis , Plásmidos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
17.
Bioelectrochemistry ; 109: 9-23, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26774688

RESUMEN

The influence of additional chemical molecules, necessary for the purification process of [Fe]-hydrogenase from Clostridium acetobutylicum, was studied on the anaerobic corrosion of mild steel. At the end of the purification process, the pure [Fe-Fe]-hydrogenase was recovered in a Tris-HCl medium containing three other chemicals at low concentration: DTT, dithionite and desthiobiotin. Firstly, mild steel coupons were exposed in parallel to a 0.1 M pH7 Tris-HCl medium with or without pure hydrogenase. The results showed that hydrogenase and the additional molecules were in competition, and the electrochemical response could not be attributed solely to hydrogenase. Then, solutions with additional chemicals of different compositions were studied electrochemically. DTT polluted the electrochemical signal by increasing the Eoc by 35 mV 24 h after the injection of 300 µL of control solutions with DTT, whereas it drastically decreased the corrosion rate by increasing the charge transfer resistance (Rct 10 times the initial value). Thus, DTT was shown to have a strong antagonistic effect on corrosion and was removed from the purification process. An optimal composition of the medium was selected (0.5 mM dithionite, 7.5 mM desthiobiotin) that simultaneously allowed a high activity of hydrogenase and a lower impact on the electrochemical response for corrosion tests.


Asunto(s)
Biotina/análogos & derivados , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/metabolismo , Ditionita/metabolismo , Ditiotreitol/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Acero/química , Biotina/metabolismo , Clostridium acetobutylicum/química , Corrosión , Técnicas Electroquímicas , Diseño de Equipo , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación
18.
PLoS One ; 11(1): e0147333, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26808202

RESUMEN

Archaea use glycolytic pathways distinct from those found in bacteria and eukaryotes, where unique enzymes catalyze each reaction step. In this study, we isolated three isozymes of glyceraldehyde oxidoreductase (GAOR1, GAOR2 and GAOR3) from the thermoacidophilic archaeon Sulfolobus tokodaii. GAOR1-3 belong to the xanthine oxidoreductase superfamily, and are composed of a molybdo-pyranopterin subunit (L), a flavin subunit (M), and an iron-sulfur subunit (S), forming an LMS hetero-trimer unit. We found that GAOR1 is a tetramer of the STK17810/STK17830/STK17820 hetero-trimer, GAOR2 is a dimer of the STK23390/STK05620/STK05610 hetero-trimer, and GAOR3 is the STK24840/STK05620/STK05610 hetero-trimer. GAOR1-3 exhibited diverse substrate specificities for their electron donors and acceptors, due to their different L-subunits, and probably participate in the non-phosphorylative Entner-Doudoroff glycolytic pathway. We determined the crystal structure of GAOR2, as the first three-dimensional structure of an archaeal molybdenum-containing hydroxylase, to obtain structural insights into their substrate specificities and subunit assemblies. The gene arrangement and the crystal structure suggested that the M/S-complex serves as a structural scaffold for the binding of the L-subunit, to construct the three enzymes with different specificities. Collectively, our findings illustrate a novel principle of a prokaryotic multicomponent isozyme system.


Asunto(s)
Proteínas Arqueales/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Sulfolobus/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/aislamiento & purificación , Cristalografía por Rayos X , Flavinas/análisis , Glucólisis , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Molibdeno/análisis , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Xantina Deshidrogenasa/clasificación
19.
J Virol ; 90(3): 1544-56, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608318

RESUMEN

UNLABELLED: Merkel cell polyomavirus (MCPyV) plays an important role in Merkel cell carcinoma (MCC). MCPyV small T (sT) antigen has emerged as the key oncogenic driver in MCC carcinogenesis. It has also been shown to promote MCPyV LT-mediated replication by stabilizing LT. The importance of MCPyV sT led us to investigate sT functions and to identify potential ways to target this protein. We discovered that MCPyV sT purified from bacteria contains iron-sulfur (Fe/S) clusters. Electron paramagnetic resonance analysis showed that MCPyV sT coordinates a [2Fe-2S] and a [4Fe-4S] cluster. We also observed phenotypic conservation of Fe/S coordination in the sTs of other polyomaviruses. Since Fe/S clusters are critical cofactors in many nucleic acid processing enzymes involved in DNA unwinding and polymerization, our results suggested the hypothesis that MCPyV sT might be directly involved in viral replication. Indeed, we demonstrated that MCPyV sT enhances LT-mediated replication in a manner that is independent of its previously reported ability to stabilize LT. MCPyV sT translocates to nuclear foci containing actively replicating viral DNA, supporting a direct role for sT in promoting viral replication. Mutations of Fe/S cluster-coordinating cysteines in MCPyV sT abolish its ability to stimulate viral replication. Moreover, treatment with cidofovir, a potent antiviral agent, robustly inhibits the sT-mediated enhancement of MCPyV replication but has little effect on the basal viral replication driven by LT alone. This finding further indicates that MCPyV sT plays a direct role in stimulating viral DNA replication and introduces cidofovir as a possible drug for controlling MCPyV infection. IMPORTANCE: MCPyV is associated with a highly aggressive form of skin cancer in humans. Epidemiological surveys for MCPyV seropositivity and sequencing analyses of healthy human skin suggest that MCPyV may represent a common component of the human skin microbial flora. However, much of the biology of the virus and its oncogenic ability remain to be investigated. In this report, we identify MCPyV sT as a novel Fe/S cluster protein and show that conserved cysteine clusters are important for sT's ability to enhance viral replication. Moreover, we show that sT sensitizes MCPyV replication to cidofovir inhibition. The discovery of Fe/S clusters in MCPyV sT opens new avenues to the study of the structure and functionality of this protein. Moreover, this study supports the notion that sT is a potential drug target for dampening MCPyV infection.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Replicación del ADN , Proteínas Hierro-Azufre/metabolismo , Poliomavirus de Células de Merkel/fisiología , Replicación Viral , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/aislamiento & purificación , Antivirales/metabolismo , Línea Celular , Núcleo Celular/química , Cidofovir , Citosina/análogos & derivados , Citosina/metabolismo , Análisis Mutacional de ADN , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Poliomavirus de Células de Merkel/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Organofosfonatos/metabolismo , Transporte de Proteínas
20.
Nucleic Acids Res ; 42(12): 7960-70, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24914049

RESUMEN

TtcA catalyzes the post-transcriptional thiolation of cytosine 32 in some tRNAs. The enzyme from Escherichia coli was homologously overexpressed in E. coli. The purified enzyme is a dimer containing an iron-sulfur cluster and displays activity in in vitro assays. The type and properties of the cluster were investigated using a combination of UV-visible absorption, EPR and Mössbauer spectroscopy, as well as by site-directed mutagenesis. These studies demonstrated that the TtcA enzyme contains a redox-active and oxygen-sensitive [4Fe-4S] cluster, chelated by only three cysteine residues and absolutely essential for activity. TtcA is unique tRNA-thiolating enzyme using an iron-sulfur cluster for catalyzing a non-redox reaction.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Glutarredoxinas/química , Proteínas Hierro-Azufre/química , Sulfurtransferasas/química , Clonación Molecular , Cisteína/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Glutarredoxinas/genética , Glutarredoxinas/aislamiento & purificación , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Sulfurtransferasas/genética , Sulfurtransferasas/aislamiento & purificación , Sulfurtransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...