Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.232
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743629

RESUMEN

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Asunto(s)
Citosol , Glutarredoxinas , Glutatión , Proteínas Hierro-Azufre , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutatión/metabolismo , Mitocondrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Mitocondriales/metabolismo
2.
Inorg Chem ; 63(19): 8730-8738, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38687645

RESUMEN

Iron-sulfur (Fe-S) clusters are essential inorganic cofactors dedicated to a wide range of biological functions, including electron transfer and catalysis. Specialized multiprotein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein, on which Fe-S clusters are assembled before being transferred to cellular targets. Here, we describe the first characterization of the native Fe-S cluster of the anaerobically purified SufBC2D scaffold from Escherichia coli by XAS and Mössbauer, UV-visible absorption, and EPR spectroscopies. Interestingly, we propose that SufBC2D harbors two iron-sulfur-containing species, a [2Fe-2S] cluster and an as-yet unidentified species. Mutagenesis and biochemistry were used to propose amino acid ligands for the [2Fe-2S] cluster, supporting the hypothesis that both SufB and SufD are involved in the Fe-S cluster ligation. The [2Fe-2S] cluster can be transferred to ferredoxin in agreement with the SufBC2D scaffold function. These results are discussed in the context of Fe-S cluster biogenesis.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Mossbauer , Espectroscopía de Absorción de Rayos X , Proteínas Portadoras
3.
Adv Biol (Weinh) ; 8(5): e2300545, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574244

RESUMEN

HapX and SreA are transcription factors that regulate the response of the fungus Aspergillus fumigatus to the availability of iron. During iron starvation, HapX represses genes involved in iron consuming pathways and upon a shift to iron excess, HapX activates these same genes. SreA blocks the expression of genes needed for iron uptake during periods of iron availability. Both proteins possess cysteine-rich regions (CRR) that are hypothesized to be necessary for the sensing of iron levels. However, the contribution of each of these domains to the function of the protein has remained unclear. Here, the ability of peptide analogs of each CRR is determined to bind an iron-sulfur cluster in vitro. UV-vis and resonance Raman (RR) spectroscopies reveal that each CRR is capable of coordinating a [2Fe-2S] cluster with comparable affinities. The iron-sulfur cluster coordinated to the CRR-B domain of HapX displays particularly high stability. The data are consistent with HapX and SreA mediating responses to cellular iron levels through the direct coordination of [2Fe-2S] clusters. The high stability of the CRR-B peptide may also find use as a starting point for the development of new green catalysts.


Asunto(s)
Cisteína , Proteínas Fúngicas , Proteínas Hierro-Azufre , Péptidos , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Cisteína/metabolismo , Cisteína/química , Péptidos/metabolismo , Péptidos/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Hierro/metabolismo , Unión Proteica , Espectrometría Raman , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
4.
Nat Commun ; 15(1): 3269, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627381

RESUMEN

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.


Asunto(s)
Frataxina , Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/metabolismo , Sulfuros/metabolismo , Azufre/metabolismo , Liasas de Carbono-Azufre/metabolismo , Proteínas de Unión a Hierro/metabolismo
5.
Zool Res ; 45(3): 468-477, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38583938

RESUMEN

Iron-sulfur clusters are essential cofactors for proteins involved in various biological processes, such as electron transport, biosynthetic reactions, DNA repair, and gene expression regulation. Iron-sulfur cluster assembly protein IscA1 (or MagR) is found within the mitochondria of most eukaryotes. Magnetoreceptor (MagR) is a highly conserved A-type iron and iron-sulfur cluster-binding protein, characterized by two distinct types of iron-sulfur clusters, [2Fe-2S] and [3Fe-4S], each conferring unique magnetic properties. MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome (Cry) and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation. Although the N-terminal sequences of MagR vary among species, their specific function remains unknown. In the present study, we found that the N-terminal sequences of pigeon MagR, previously thought to serve as a mitochondrial targeting signal (MTS), were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound. Moreover, the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex. Thus, the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting. These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.


Asunto(s)
Proteínas Hierro-Azufre , Animales , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Hierro/metabolismo , Azufre/metabolismo
6.
J Biol Chem ; 300(4): 107142, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452854

RESUMEN

It was generally postulated that when intracellular free iron content is elevated in bacteria, the ferric uptake regulator (Fur) binds its corepressor a mononuclear ferrous iron to regulate intracellular iron homeostasis. However, the proposed iron-bound Fur had not been identified in any bacteria. In previous studies, we have demonstrated that Escherichia coli Fur binds a [2Fe-2S] cluster in response to elevation of intracellular free iron content and that binding of the [2Fe-2S] cluster turns on Fur as an active repressor to bind a specific DNA sequence known as the Fur-box. Here we find that the iron-sulfur cluster assembly scaffold protein IscU is required for the [2Fe-2S] cluster assembly in Fur, as deletion of IscU inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in E. coli cells in response to elevation of intracellular free iron content. Additional studies reveal that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur and restores its Fur-box binding activity in vitro. While IscU is also required for the [2Fe-2S] cluster assembly in the Haemophilus influenzae Fur in E. coli cells, deletion of IscU does not significantly affect the [2Fe-2S] cluster assembly in the E. coli ferredoxin and siderophore-reductase FhuF. Our results suggest that IscU may have a unique role for the [2Fe-2S] cluster assembly in Fur and that regulation of intracellular iron homeostasis is closely coupled with iron-sulfur cluster biogenesis in E. coli.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Proteínas Hierro-Azufre , Hierro , Proteínas Represoras , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Hierro/metabolismo
7.
J Biol Chem ; 300(3): 105745, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354784

RESUMEN

The NEET proteins, an important family of iron-sulfur (Fe-S) proteins, have generated a strong interest due to their involvement in diverse diseases such as cancer, diabetes, and neurodegenerative disorders. Among the human NEET proteins, CISD3 has been the least studied, and its functional role is still largely unknown. We have investigated the biochemical features of CISD3 at the atomic and in cellulo levels upon challenge with different stress conditions i.e., iron deficiency, exposure to hydrogen peroxide, and nitric oxide. The redox and cellular stability properties of the protein agree on a predominance of reduced form of CISD3 in the cells. Upon the addition of iron chelators, CISD3 loses its Fe-S clusters and becomes unstructured, and its cellular level drastically decreases. Chemical shift perturbation measurements suggest that, upon cluster oxidation, the protein undergoes a conformational change at the C-terminal CDGSH domain, which determines the instability of the oxidized state. This redox-associated conformational change may be the source of cooperative electron transfer via the two [Fe2S2] clusters in CISD3, which displays a single sharp voltammetric signal at -31 mV versus SHE. Oxidized CISD3 is particularly sensitive to the presence of hydrogen peroxide in vitro, whereas only the reduced form is able to bind nitric oxide. Paramagnetic NMR provides clear evidence that, upon NO binding, the cluster is disassembled but iron ions are still bound to the protein. Accordingly, in cellulo CISD3 is unaffected by oxidative stress induced by hydrogen peroxide but it becomes highly unstable in response to nitric oxide treatment.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Mitocondriales , Óxido Nítrico , Humanos , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Células HEK293 , Estabilidad Proteica
8.
Orphanet J Rare Dis ; 19(1): 72, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365830

RESUMEN

BACKGROUND: Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common lipid storage myopathy. There are sex differences in fat metabolism and it is not known whether late-onset MADD affects men and women equally. METHODS: In this systematic review and meta-analysis, the PubMed, Embase, Web of Science, CNKI, CBM, and Wanfang databases were searched until 01/08/2023. Studies reporting sex distribution in patients with late-onset MADD were included. Two authors independently screened studies for eligibility, extracted data, and assessed risk of bias. Pre-specified outcomes of interest were the male-to-female ratio (MFR) of patients with late-onset MADD, the differences of clinical characteristics between the sexes, and factors influencing the MFR. RESULTS: Of 3379 identified studies, 34 met inclusion criteria, yielding a total of 609 late-onset MADD patients. The overall pooled percentage of males was 58% (95% CI, 54-63%) with low heterogeneity across studies (I2 = 2.99%; P = 0.42). The mean onset ages, diagnostic delay, serum creatine kinase (CK), and allelic frequencies of 3 hotspot variants in ETFDH gene were similar between male and female patients (P > 0.05). Meta-regressions revealed that ethnic group was associated with the MFR in late-onset MADD, and subgroup meta-analyses demonstrated that East-Asian patients had a higher percentage of male, lower CK, and higher proportion of hotspot variants in ETFDH gene than non-East-Asian patients (P < 0.05). CONCLUSIONS: Male patients with late-onset MADD were more common than female patients. Ethnicity was proved to be a factor influencing the MFR in late-onset MADD. These findings suggest that male sex may be a risk factor for the disease.


Asunto(s)
Proteínas Hierro-Azufre , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Humanos , Masculino , Femenino , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Mutación , Diagnóstico Tardío , Flavoproteínas Transportadoras de Electrones/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo
9.
Mol Cell ; 84(2): 359-374.e8, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199006

RESUMEN

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Asunto(s)
Ataxia de Friedreich , Proteínas Hierro-Azufre , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Microscopía por Crioelectrón , Frataxina , Biosíntesis de Proteínas , Mitocondrias/genética , Mitocondrias/metabolismo , Ataxia de Friedreich/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
10.
ChemSusChem ; 17(3): e202301365, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37830175

RESUMEN

[FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O2 ) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4FeH ) and a unique diiron moiety (2FeH ). Previous attempts to prevent O2 -induced damage have focused on enhancing the protein's sieving effect for O2 by blocking the hydrophobic gas channels that connect the protein surface and the 2FeH . In this study, we aimed to block an O2 diffusion pathway and shield 4FeH instead. Molecular dynamics (MD) simulations identified a novel water channel (WH ) surrounding the H-cluster. As this hydrophilic path may be accessible for O2 molecules we applied site-directed mutagenesis targeting amino acids along WH in proximity to 4FeH to block O2 diffusion. Protein film electrochemistry experiments demonstrate increased O2 stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O2 in the environment of the 4FeH in both cases. The results strongly suggest that, in wild type proteins, O2 diffuses from the 4FeH to the 2FeH . These results reveal new strategies for improving the O2 stability of [FeFe]-hydrogenases by focusing on the O2 diffusion network near the active site.


Asunto(s)
Acuaporinas , Hidrogenasas , Proteínas Hierro-Azufre , Hidrógeno/química , Hidrogenasas/química , Protones , Oxígeno/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo
11.
FEBS J ; 291(3): 527-546, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37899720

RESUMEN

Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe-2S, and FAD-binding domains, respectively. XoC was found to be stable when co-expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe-2S clusters, whereas XoC bears a single-bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O2 ) during oxidative half-reaction yielded no flavin semiquinones, implying ultrafast single-electron transfer from 2Fe-2Sred to FAD. In the presence of XoA, XoBC and fusXoBC exhibited comparable XoA affinity and exploited a shared overall mechanism. Nonetheless, the linkage may accelerate the two-step, single-electron transfer cascade from 2Fe-2Sred to FAD while augmenting protein stability. Collectively, our findings provide novel insights into SaXOR properties and oxidation mechanisms divergent from prior mammalian and bacterial XOR paradigms.


Asunto(s)
Clostridiales , Proteínas Hierro-Azufre , Xantina Deshidrogenasa , Animales , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Hierro/metabolismo , Oxidación-Reducción , Flavinas/metabolismo , Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mamíferos/metabolismo
12.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139142

RESUMEN

Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Hidrogenasas/química , Filogenia , Ferredoxinas/metabolismo , Fotosíntesis , Hidrógeno/química , Proteínas Hierro-Azufre/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(47): e2314696120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956301

RESUMEN

Enzymes of the radical S-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5'C is covalently bound to the unique iron of the [4Fe-4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe-C5' bond generates the nominally "free" 5'-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5'-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5'-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.


Asunto(s)
Proteínas Hierro-Azufre , S-Adenosilmetionina , S-Adenosilmetionina/química , Acetiltransferasas/metabolismo , Metionina , Espectroscopía de Resonancia por Spin del Electrón , Péptidos/metabolismo , Proteínas Hierro-Azufre/metabolismo
15.
Science ; 382(6672): 820-828, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37917749

RESUMEN

Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.


Asunto(s)
Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Glutatión , Mitocondrias , Proteínas Mitocondriales , Proteínas de Transporte de Fosfato , Glutatión/metabolismo , Homeostasis , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteómica , Retroalimentación Fisiológica , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Humanos , Proteínas Hierro-Azufre/metabolismo , Proteolisis , Células HEK293 , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo
16.
J Biol Chem ; 299(12): 105419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923140

RESUMEN

The Bol2 homolog Fra2 and monothiol glutaredoxin Grx4 together play essential roles in regulating iron homeostasis in Schizosaccharomyces pombe. In vivo studies indicate that Grx4 and Fra2 act as coinhibitory partners that inactivate the transcriptional repressor Fep1 in response to iron deficiency. In Saccharomyces cerevisiae, Bol2 is known to form a [2Fe-2S]-bridged heterodimer with the monothiol Grxs Grx3 and Grx4, with the cluster ligands provided by conserved residues in Grx3/4 and Bol2 as well as GSH. In this study, we characterized this analogous [2Fe-2S]-bridged Grx4-Fra2 complex in S. pombe by identifying the specific residues in Fra2 that act as ligands for the Fe-S cluster and are required to regulate Fep1 activity. We present spectroscopic and biochemical evidence confirming the formation of a [2Fe-2S]-bridged Grx4-Fra2 heterodimer with His66 and Cys29 from Fra2 serving as Fe-S cluster ligands in S. pombe. In vivo transcription and growth assays confirm that both His66 and Cys29 are required to fully mediate the response of Fep1 to low iron conditions. Furthermore, we analyzed the interaction between Fep1 and Grx4-Fra2 using CD spectroscopy to monitor changes in Fe-S cluster coordination chemistry. These experiments demonstrate unidirectional [2Fe-2S] cluster transfer from Fep1 to Grx4-Fra2 in the presence of GSH, revealing the Fe-S cluster dependent mechanism of Fep1 inactivation mediated by Grx4 and Fra2 in response to iron deficiency.


Asunto(s)
Antígeno 2 Relacionado con Fos , Factores de Transcripción GATA , Glutarredoxinas , Homeostasis , Proteínas Hierro-Azufre , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
PLoS Biol ; 21(11): e3002374, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37939146

RESUMEN

Establishing the origin of mitochondria and plastids is key to understand 2 founding events in the origin and early evolution of eukaryotes. Recent advances in the exploration of microbial diversity and in phylogenomics approaches have indicated a deep origin of mitochondria and plastids during the diversification of Alphaproteobacteria and Cyanobacteria, respectively. Here, we strongly support these placements by analyzing the machineries for assembly of iron-sulfur ([Fe-S]) clusters, an essential function in eukaryotic cells that is carried out in mitochondria by the ISC machinery and in plastids by the SUF machinery. We assessed the taxonomic distribution of ISC and SUF in representatives of major eukaryotic supergroups and analyzed the phylogenetic relationships with their prokaryotic homologues. Concatenation datasets of core ISC proteins show an early branching of mitochondria within Alphaproteobacteria, right after the emergence of Magnetococcales. Similar analyses with the SUF machinery place primary plastids as sister to Gloeomargarita within Cyanobacteria. Our results add to the growing evidence of an early emergence of primary organelles and show that the analysis of essential machineries of endosymbiotic origin provide a robust signal to resolve ancient and fundamental steps in eukaryotic evolution.


Asunto(s)
Proteínas Hierro-Azufre , Filogenia , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Plastidios/genética , Plastidios/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Hierro/metabolismo , Azufre/metabolismo
18.
J Chem Theory Comput ; 19(23): 8930-8941, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37974307

RESUMEN

The midpoint potential of the [Fe2S2]-Cys4-cluster in proteins is known to vary between -200 and -450 mV. This variation is caused by the different electrostatic environment of the cluster in the respective proteins. Continuum electrostatics can quantify the impact of the protein environment on the redox potential. Thus, if the redox potential of a [Fe2S2]-Cys4-cluster model compound in aqueous solution would be known, then redox potentials in various protein complexes could be calculated. However, [Fe2S2]-Cys4-cluster models are not water-soluble, and thus, their redox potential can not be measured in aqueous solution. To overcome this problem, we introduce a method that we call Virtual Model Compound Approach (VMCA) to extrapolate the model redox potential from known redox potentials of proteins. We carefully selected high-resolution structures for our analysis and divide them into a fit set, for fitting the model redox potential, and an independent test set, to check the validity of the model redox potential. However, from our analysis, we realized that the some structures can not be used as downloaded from the PDB but had to be re-refined in order to calculate reliable redox potentials. Because of the re-refinement, we were able to significantly reduce the standard deviation of our derived model redox potential for the [Fe2S2]-Cys4-cluster from 31 mV to 10 mV. As the model redox potential, we obtained -184 mV. This model redox potential can be used to analyze the redox behavior of [Fe2S2]-Cys4-clusters in larger protein complexes.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Oxidación-Reducción
19.
Proc Natl Acad Sci U S A ; 120(44): e2311057120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883440

RESUMEN

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.


Asunto(s)
Proteínas Hierro-Azufre , Humanos , Proteínas Hierro-Azufre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Hierro/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
20.
PLoS Pathog ; 19(10): e1010773, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792908

RESUMEN

Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them to client proteins. Here, we characterized the late ISC pathway in one of the simplest mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory chain and other hallmarks of mitochondria. In addition to IscA2, Nfu1 and Grx5 we identified a novel BolA1 homologue in G. intestinalis mitosomes. It specifically interacts with Grx5 and according to the high-affinity pulldown also with other core mitosomal components. Using CRISPR/Cas9 we were able to establish full bolA1 knock out, the first cell line lacking a mitosomal protein. Despite the ISC pathway being the only metabolic role of the mitosome no significant changes in the mitosome biology could be observed as neither the number of the mitosomes or their capability to form [2Fe-2S] clusters in vitro was affected. We failed to identify natural client proteins that would require the [2Fe-2S] or [4Fe-4S] cluster within the mitosomes, with the exception of [2Fe-2S] ferredoxin, which is itself part of the ISC pathway. The overall uptake of iron into the cellular proteins remained unchanged as also observed for the grx5 knock out cell line. The pull-downs of all late ISC components were used to build the interactome of the pathway showing specific position of IscA2 due to its interaction with the outer mitosomal membrane proteins. Finally, the comparative analysis across Metamonada species suggested that the adaptation of the late ISC pathway identified in G. intestinalis occurred early in the evolution of this supergroup of eukaryotes.


Asunto(s)
Giardia lamblia , Proteínas Hierro-Azufre , Humanos , Giardia lamblia/genética , Giardia lamblia/metabolismo , Anaerobiosis , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...