Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(3): e0146827, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26937640

RESUMEN

Since their discovery, fluorescent proteins have been widely used to study protein function, localization or interaction, promoter activity and regulation, drug discovery or for non-invasive imaging. They have been extensively modified to improve brightness, stability, and oligomerization state. However, only a few studies have focused on understanding the dynamics of fluorescent proteins expression in bacteria. In this work, we developed a set plasmids encoding 12 fluorescent proteins for bacterial labeling to facilitate the study of pathogen-host interactions. These broad-spectrum plasmids can be used with a wide variety of Gram-negative microorganisms including Escherichia coli, Pseudomonas aeruginosa, Burkholderia cepacia, Bordetella bronchiseptica, Shigella flexneri or Klebsiella pneumoniae. For comparison, fluorescent protein expression and physical characteristics in Escherichia coli were analyzed using fluorescence microscopy, flow cytometry and in vivo imaging. Fluorescent proteins derived from the Aequorea Victoria family showed high photobleaching, while proteins form the Discosoma sp. and the Fungia coccina family were more photostable for microscopy applications. Only E2-Crimson, mCherry and mKeima were successfully detected for in vivo applications. Overall, E2-Crimson was the fastest maturing protein tested in E. coli with the best overall performance in the study parameters. This study provides a unified comparison and comprehensive characterization of fluorescent protein photostability, maturation and toxicity, and offers general recommendations on the optimal fluorescent proteins for in vitro and in vivo applications.


Asunto(s)
Escherichia coli/genética , Vectores Genéticos/química , Proteínas Luminiscentes/genética , Plásmidos/química , Coloración y Etiquetado/métodos , Animales , Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/metabolismo , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/metabolismo , Ratones , Modelos Biológicos , Fantasmas de Imagen/microbiología , Plásmidos/metabolismo , Regiones Promotoras Genéticas
2.
Open Biol ; 4: 130206, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24718596

RESUMEN

Green fluorescent proteins (GFPs) and calcium-activated photoproteins of the aequorin/clytin family, now widely used as research tools, were originally isolated from the hydrozoan jellyfish Aequora victoria. It is known that bioluminescence resonance energy transfer (BRET) is possible between these proteins to generate flashes of green light, but the native function and significance of this phenomenon is unclear. Using the hydrozoan Clytia hemisphaerica, we characterized differential expression of three clytin and four GFP genes in distinct tissues at larva, medusa and polyp stages, corresponding to the major in vivo sites of bioluminescence (medusa tentacles and eggs) and fluorescence (these sites plus medusa manubrium, gonad and larval ectoderms). Potential physiological functions at these sites include UV protection of stem cells for fluorescence alone, and prey attraction and camouflaging counter-illumination for bioluminescence. Remarkably, the clytin2 and GFP2 proteins, co-expressed in eggs, show particularly efficient BRET and co-localize to mitochondria, owing to parallel acquisition by the two genes of mitochondrial targeting sequences during hydrozoan evolution. Overall, our results indicate that endogenous GFPs and photoproteins can play diverse roles even within one species and provide a striking and novel example of protein coevolution, which could have facilitated efficient or brighter BRET flashes through mitochondrial compartmentalization.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Hidrozoos/metabolismo , Proteínas Luminiscentes/metabolismo , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Animales , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Hidrozoos/crecimiento & desarrollo , Estadios del Ciclo de Vida , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Óvulo/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Alineación de Secuencia
3.
Vet Parasitol ; 193(1-3): 1-7, 2013 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-23298569

RESUMEN

Eimeria parasites are obligate intracellular apicomplexan protists that can cause coccidiosis, resulting in substantial economic losses in the poultry industry annually. As the component of anticoccidial vaccines, seven Eimeria spp. of chickens are characterized with potent immunogenicity. Whether genetically modified Eimeria spp. maintains this property or not needs to be verified. In this study, two identical transgenic lines of Eimeria tenella were developed by virtue of single sporocyst isolation from a stably transfected population expressing fused protein of M2 ectodomain of avian influenza virus (M2e) and enhanced yellow fluorescent protein (EYFP). The chromosomal integration and expression of M2e-EYFP were confirmed by Southern blot, plasmid rescue and Western blot analysis. We found that the reproduction of transgenic parasites was higher than that of the parental strain. Chickens challenged with wild type E. tenella after immunization with 200 oocysts of transgenic parasites had similar performance compared to those in non-immunized and non-challenged group. In another trial, the performance of transgenic parasite-immunized birds was also comparable to that of the Decoquinate Premix-treated chickens. These results suggest that this transgenic line of E. tenella is capable of inducing potent protection against homologous challenge as a live anticoccidial vaccine. Taking together, our study indicates that transgenic eimerian parasites have the potential to be developed as a vaccine vehicle for animal use in the future.


Asunto(s)
Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Eimeria tenella/genética , Eimeria tenella/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/metabolismo , Animales , Proteínas Bacterianas/genética , Pollos , Coccidiosis/parasitología , Coccidiosis/veterinaria , Proteínas Luminiscentes/genética , Organismos Modificados Genéticamente , Enfermedades de las Aves de Corral/parasitología
4.
Biochem Biophys Res Commun ; 431(2): 360-6, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23262181

RESUMEN

Calcium-binding photoproteins have been discovered in a variety of luminous marine organisms [1]. Recent interest in photoproteins from the phylum Ctenophora has stemmed from cloning and expression of several photoproteins from this group [2-5]. Additional characterization has revealed unique biochemical properties found only in ctenophore photoproteins, such as inactivation by light. Here we report the cloning, expression, and characterization of the photoprotein responsible for luminescence in the deep-sea ctenophore Bathocyroe fosteri. This animal was of particular interest due to the unique broad color spectrum observed in live specimens [6]. Full-length sequences were identified by BLAST searches of known photoprotein sequences against Bathocyroe transcripts obtained from 454 sequencing. Recombinantly expressed Bathocyroe photoprotein (BfosPP) displayed an optimal coelenterazine-loading pH of 8.5, and produced calcium-triggered luminescence with peak wavelengths closely matching the 493 nm peak observed in the spectrum of live B. fosteri specimens. Luminescence from recombinant BfosPP was inactivated most efficiently by UV and blue light. Primary structure alignment of BfosPP with other characterized photoproteins showed very strong sequence similarity to other ctenophore photoproteins and conservation of EF-hand motifs. Both alignment and structural prediction data provide more insight into the formation of the coelenterazine-binding domain and the probable mechanism of photoinactivation.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/efectos de la radiación , Ctenóforos/metabolismo , Luminiscencia , Proteínas Luminiscentes/química , Proteínas Luminiscentes/efectos de la radiación , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/clasificación , Proteínas de Unión al Calcio/genética , Clonación Molecular , Imidazoles/química , Sustancias Luminiscentes/química , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Pirazinas/química
5.
Photochem Photobiol Sci ; 11(4): 637-44, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22251928

RESUMEN

Proteins homologous to Green Fluorescent Protein (GFP) are widely used as genetically encoded fluorescent labels. Many developments of this technology were spurred by discoveries of novel types of GFP-like proteins (FPs) in nature. Here we report two proteins displaying primary structures never before encountered in natural FPs: they consist of multiple GFP-like domains repeated within the same polypeptide chain. A two-domain green FP (abeGFP) and a four-domain orange-fluorescent FP (Ember) were isolated from the siphonophore Abylopsis eschscholtzii and an unidentified juvenile jellyfish (order Anthoathecata), respectively. Only the most evolutionary ancient domain of Ember is able to synthesize an orange-emitting chromophore (emission at 571 nm), while the other three are purely green (emission at 520 nm) and putatively serve to maintain the stability and solubility of the multidomain protein. When expressed individually, two of the green Ember domains form dimers and the third one exists as a monomer. The low propensity for oligomerization of these domains would simplify their adoption as in vivo labels. Our results reveal a previously unrecognized direction in which natural FPs have diversified, suggesting new avenues to look for FPs with novel and potentially useful features.


Asunto(s)
Hidrozoos/metabolismo , Proteínas Luminiscentes/química , Secuencia de Aminoácidos , Animales , Dimerización , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia
6.
Cell Mol Life Sci ; 66(3): 537-52, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19151920

RESUMEN

Two classes of sponges (animal phylum Porifera) possess a siliceous skeleton which is composed of spicules. Studying the optical fiber-mechanical properties of large spicules from hexactinellid sponges (> 5 cm) it was demonstrated that they are effective light-collecting optical fibers. Here, we report that the demosponge Suberites domuncula is provided with a biosensor system composed of the (organic) light producing luciferase and the (inorganic) light transducing silica spicules. The light transmission feature of these smaller spicules (200 microm) has been demonstrated and the ability of sponge tissue to generate light has been proven. Screening for a luciferase gene in S. domuncula was successful; the recombinant luciferase was prepared and shown to be bioactive. The luciferase protein is abundantly present in the close neighborhood of the spicules. The expression of the luciferase gene is under the control of light.


Asunto(s)
Técnicas Biosensibles , Luz , Luciferasas/metabolismo , Poríferos , Dióxido de Silicio/metabolismo , Secuencia de Aminoácidos , Animales , Luciferasas/clasificación , Luciferasas/genética , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Poríferos/anatomía & histología , Poríferos/metabolismo , Alineación de Secuencia
7.
Curr Protein Pept Sci ; 9(4): 338-69, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18691124

RESUMEN

Green fluorescent protein (GFP) from jellyfish Aequorea victoria is the most extensively studied and widely used in cell biology protein. GFP-like proteins constitute a fast growing family as several naturally occurring GFP-like proteins have been discovered and enhanced mutants of Aequorea GFP have been created. These mutants differ from wild-type GFP by conformational stability, quantum yield, spectroscopic properties (positions of absorption and fluorescence spectra) and by photochemical properties. GFP-like proteins are very diverse, as they can be not only green, but also blue, orange-red, far-red, cyan, and yellow. They also can have dual-color fluorescence (e.g., green and red) or be non-fluorescent. Some of them possess kindling property, some are photoactivatable, and some are photoswitchable. This review is an attempt to characterize the main color groups of GFP-like proteins, describe their structure and mechanisms of chromophore formation, systemize data on their conformational stability and summarize the main trends of their utilization as markers and biosensors in cell and molecular biology.


Asunto(s)
Biomarcadores/química , Técnicas Biosensibles , Color , Proteínas Luminiscentes/química , Conformación Proteica , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Genes Reporteros , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Desnaturalización Proteica , Alineación de Secuencia
8.
J Neurosci ; 25(20): 4889-97, 2005 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-15901770

RESUMEN

The olfactory epithelium of fish contains two major types of olfactory sensory neurons (OSNs) that are distinct morphologically (ciliated vs microvillous) and possibly functionally. Here, we found that these OSNs express different sets of signal transduction machineries: the ciliated OSNs express OR-type odorant receptors, cyclic nucleotide-gated channel A2 subunit, and olfactory marker protein (OMP), whereas the microvillous OSNs express V2R-type receptors and transient receptor potential channel C2 (TRPC2). To visualize patterns of axonal projection from the two types of OSNs to the olfactory bulb (OB), we generated transgenic zebrafish in which spectrally distinct fluorescent proteins are expressed in the ciliated and microvillous OSNs under the control of OMP and TRPC2 gene promoters, respectively. An observation of whole-mount OB in adult double-transgenic zebrafish revealed that the ciliated OSNs project axons mostly to the dorsal and medial regions of the OB, whereas the microvillous OSNs project axons to the lateral region of the OB. A careful histological examination of OB sections clarified that the axons from the two distinct types of OSNs target different glomeruli in a mutually exclusive manner. This segregation is already established at very early developmental stages in zebrafish embryos. These findings clearly demonstrate the relationships among cell morphology, molecular signatures, and axonal terminations of the two distinct types of OSNs and suggest that the two segregated neural pathways are responsible for coding and processing of different types of odor information in the zebrafish olfactory system.


Asunto(s)
Axones/metabolismo , Bulbo Olfatorio/citología , Mucosa Olfatoria/inervación , Vías Olfatorias/anatomía & histología , Neuronas Receptoras Olfatorias/citología , Animales , Animales Modificados Genéticamente/metabolismo , Axones/fisiología , Embrión no Mamífero , Regulación Enzimológica de la Expresión Génica/fisiología , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Proteínas Luminiscentes/clasificación , Proteínas Luminiscentes/metabolismo , Biología Molecular/métodos , Proteína Marcadora Olfativa/genética , Proteína Marcadora Olfativa/metabolismo , Mucosa Olfatoria/metabolismo , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
J Neurosci ; 25(19): 4766-78, 2005 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-15888652

RESUMEN

Genetically encoded fluorescent probes of neural activity represent new promising tools for systems neuroscience. Here, we present a comparative in vivo analysis of 10 different genetically encoded calcium indicators, as well as the pH-sensitive synapto-pHluorin. We analyzed their fluorescence changes in presynaptic boutons of the Drosophila larval neuromuscular junction. Robust neural activity did not result in any or noteworthy fluorescence changes when Flash-Pericam, Camgaroo-1, and Camgaroo-2 were expressed. However, calculated on the raw data, fractional fluorescence changes up to 18% were reported by synapto-pHluorin, Yellow Cameleon 2.0, 2.3, and 3.3, Inverse-Pericam, GCaMP1.3, GCaMP1.6, and the troponin C-based calcium sensor TN-L15. The response characteristics of all of these indicators differed considerably from each other, with GCaMP1.6 reporting high rates of neural activity with the largest and fastest fluorescence changes. However, GCaMP1.6 suffered from photobleaching, whereas the fluorescence signals of the double-chromophore indicators were in general smaller but more photostable and reproducible, with TN-L15 showing the fastest rise of the signals at lower activity rates. We show for GCaMP1.3 and YC3.3 that an expanded range of neural activity evoked fairly linear fluorescence changes and a corresponding linear increase in the signal-to-noise ratio (SNR). The expression level of the indicator biased the signal kinetics and SNR, whereas the signal amplitude was independent. The presented data will be useful for in vivo experiments with respect to the selection of an appropriate indicator, as well as for the correct interpretation of the optical signals.


Asunto(s)
Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Técnicas de Sonda Molecular , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Relación Dosis-Respuesta en la Radiación , Drosophila , Estimulación Eléctrica/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/metabolismo , Regulación de la Expresión Génica/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Ingeniería Genética/métodos , Inmunohistoquímica/métodos , Técnicas In Vitro , Larva , Proteínas Luminiscentes/clasificación , Microscopía Confocal/métodos , Unión Neuromuscular/metabolismo , Neuronas/efectos de la radiación , Terminales Presinápticos/metabolismo , Terminales Presinápticos/efectos de la radiación , Reproducibilidad de los Resultados , Factores de Tiempo
11.
Biochemistry ; 43(16): 4764-72, 2004 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15096045

RESUMEN

The yellow fluorescent protein (zFP538) from coral Zoanthus sp. belongs to a family of green fluorescent protein (GFP). Absorption and emission spectra of zFP538 show an intermediate bathochromic shift as compared with a number of recently cloned GFP-like red fluorescent and nonfluorescent chromoproteins of the DsRed subfamily. Here we report that the zFP538 chromophore is very close, if not identical, in chemical structure to that of DsRed. To gain insight into the mechanism of zFP538 fluorescence and chromophore structure and chemistry, we studied three chromophore-containing peptides isolated from enzymatic digests of zFP538. Like GFP and DsRed chromophores, these contain a p-hydroxybenzylideneimidazolinone moiety formed by Lys-66, Tyr-67, and Gly-68 of zFP538. One of the peptides studied, the hexapeptide FKYGDR derivative, is a proteolysis product of the zFP538 full-length polypeptide containing a GFP-type chromophore already formed and arrested at an earlier stage of maturation. The two other peptides are the derivatives of the pentapeptide KYGDR resulted from the protein in which the chromophore maturation process had been completed. One of these has an oxogroup at Lys-66 C(alpha) and is a hydrolysis product of another one, with the imino group at Lys-66 C(alpha). The N-unsubstituted imino moiety of the latter is generated by spontaneous polypeptide chain fragmentation at a very unexpected site, the former peptide bond between Phe-65 C' and Lys-66 N(alpha). Also observed in the entire protein under mild denaturing conditions, this fragmentation is likely the feature of native zFP538 chromophore that distinguishes it chemically from the DsRed chromophore.


Asunto(s)
Antozoos/química , Proteínas Luminiscentes/química , Homología Estructural de Proteína , Animales , Proteínas Fluorescentes Verdes , Hidrólisis , Proteínas Luminiscentes/clasificación , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Desnaturalización Proteica , Análisis de Secuencia de Proteína , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta , Termolisina/química , Tripsina/química , Urea , Proteína Fluorescente Roja
12.
Mol Biol Evol ; 20(7): 1125-33, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12777529

RESUMEN

Natural pigments are normally products of complex biosynthesis pathways where many different enzymes are involved. Corals and related organisms of class Anthozoa represent the only known exception: in these organisms, each of the host-tissue colors is essentially determined by a sequence of a single protein, homologous to the green fluorescent protein (GFP) from Aequorea victoria. This direct sequence-color linkage provides unique opportunity for color evolution studies. We previously reported the general phylogenetic analysis of GFP-like proteins, which suggested that the present-day diversity of reef colors originated relatively recently and independently within several lineages. The present work was done to get insight into the mechanisms that gave rise to this diversity. Three colonies of the great star coral Montastraea cavernosa (Scleractinia, Faviida) were studied, representing distinct color morphs. Unexpectedly, these specimens were found to express the same collection of GFP-like proteins, produced by at least four, and possibly up to seven, different genetic loci. These genes code for three basic colors-cyan, green, and red-and are expressed differently relative to one another in different morphs. Phylogenetic analysis of the new sequences indicated that the three major gene lineages diverged before separation of some coral families. Our results suggest that color variation in M. cavernosa is not a true polymorphism, but rather a manifestation of phenotypic plasticity (polyphenism). The family level depth of its evolutionary roots indicates that the color diversity is adaptively significant. Relative roles of gene duplication, gene conversion, and point mutations in its evolution are discussed.


Asunto(s)
Antozoos/genética , Evolución Biológica , Color , Variación Genética , Proteínas Luminiscentes/química , Animales , Conversión Génica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/clasificación , Filogenia , Polimorfismo Genético
13.
Bioessays ; 24(10): 953-9, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12325128

RESUMEN

Members of the family of the Green Fluorescent Protein (GFP) are the only known type of natural pigments that are essentially encoded by a single gene, since both the substrate for pigment biosynthesis and the necessary catalytic moieties are provided within a single polypeptide chain. In sharp contrast to the state of knowledge just three years ago when GFP was the only known protein of its kind, a whole family of related proteins, exhibiting striking diversity of features have now been identified. This provides new possibilities for a variety of studies ranging from applied biotechnology to evolutionary ecology.


Asunto(s)
Proteínas Luminiscentes/química , Proteínas Luminiscentes/clasificación , Animales , Biotecnología/métodos , Catálisis , Proteínas Fluorescentes Verdes , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Filogenia , Ratas , Escifozoos
14.
Proc Natl Acad Sci U S A ; 99(7): 4256-61, 2002 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11929996

RESUMEN

The family of proteins homologous to the green fluorescent protein (GFP) from Aequorea victoria exhibits striking diversity of features, including several different types of autocatalytically synthesized chromophores. Here we report 11 new members of the family, among which there are 3 red-emitters possessing unusual features, and discuss the similarity relationships within the family in structural, spectroscopic, and evolutionary terms. Phylogenetic analysis has shown that GFP-like proteins from representatives of subclass Zoantharia fall into at least four distinct clades, each clade containing proteins of more than one emission color. This topology suggests multiple recent events of color conversion. Combining this result with previous mutagenesis and structural data, we propose that (i) different chromophore structures are alternative products synthesized within a similar autocatalytic environment, and (ii) the phylogenetic pattern and color diversity in reef Anthozoa is a result of a balance between selection for GFP-like proteins of particular colors and mutation pressure driving the color conversions.


Asunto(s)
Proteínas Luminiscentes/química , Secuencia de Bases , Color , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/clasificación , Datos de Secuencia Molecular , Filogenia , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...