Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
FASEB J ; 38(2): e23406, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193601

RESUMEN

Cancer-associated fibroblast (CAF) has emerged as a key contributor to the remodeling of tumor microenvironment through the expression and secretion of extracellular matrix (ECM) proteins, thereby promoting carcinogenesis. However, the precise contribution of ECM proteins from CAFs to gastric carcinogenesis remains poorly understood. In this study, we find that matrilin-3 (MATN3), an upregulated ECM protein associated with poorer prognosis in gastric cancer patients, originates from CAFs in gastric cancer tissues. Ectopic expression of MATN3 in CAFs significantly promotes the invasion of gastric cancer cells, which can be attenuated by neutralizing MATN3 with its antibody. Notably, a portion of MATN3 protein is found to form puncta in gastric cancer tissues ECM. MATN3 undergoes phase separation, which is mediated by its low complexity (LC) and coiled-coil (CC) domains. Moreover, overexpression of MATN3 deleted with either LC or CC in CAFs is unable to promote the invasion of gastric cancer cells, suggesting that LC or CC domain is required for the effect of CAF-secreted MATN3 in gastric cancer cell invasion. Additionally, orthotopic co-injection of gastric cancer cells and CAFs expressing MATN3, but not its ΔLC and ΔCC mutants, leads to enhanced gastric cancer cell invasion in mouse models. Collectively, our works suggest that MATN3 is secreted by CAFs and undergoes phase separation, which promotes gastric cancer invasion.


Asunto(s)
Fibroblastos Asociados al Cáncer , Proteínas Matrilinas , Neoplasias Gástricas , Animales , Humanos , Ratones , Carcinogénesis , Proteínas Matrilinas/genética , Invasividad Neoplásica , Separación de Fases , Neoplasias Gástricas/genética , Microambiente Tumoral
2.
Front Endocrinol (Lausanne) ; 14: 1267946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075060

RESUMEN

Pseudoachondroplasia (PSACH) is a rare, dominant genetic disorder affecting bone and cartilage development, characterized by short-limb short stature, brachydactyly, loose joints, joint stiffness, and pain. The disorder is caused by mutations in the COMP gene, which encodes a protein that plays a role in the formation of collagen fibers. In this study, we present the clinical and genetic characteristics of PSACH in two Chinese families. Whole-exome sequencing (WES) analysis revealed two novel missense variants in the COMP gene: NM_000095.3: c.1319G>T (p.G440V, maternal) and NM_000095.3: c.1304A>T (p.D435V, paternal-mosaic). Strikingly, both the G440V and D435V mutations were located in the same T3 repeat motif and exhibited the potential to form hydrogen bonds with each other. Upon further analysis using Missense3D and PyMOL, we ascertained that these mutations showed the propensity to disrupt the protein structure of COMP, thus hampering its functioning. Our findings expand the existing knowledge of the genetic etiology underlying PSACH. The identification of new variants in the COMP gene can broaden the range of mutations linked with the condition. This information can contribute to the diagnosis and genetic counseling of patients with PSACH.


Asunto(s)
Acondroplasia , Proteína de la Matriz Oligomérica del Cartílago , Osteocondrodisplasias , Humanos , Acondroplasia/genética , Proteína de la Matriz Oligomérica del Cartílago/genética , Secuenciación del Exoma , Proteínas Matrilinas/genética , Osteocondrodisplasias/genética
3.
Nature ; 619(7969): 378-384, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37225990

RESUMEN

Pioneer transcription factors have the ability to access DNA in compacted chromatin1. Multiple transcription factors can bind together to a regulatory element in a cooperative way, and cooperation between the pioneer transcription factors OCT4 (also known as POU5F1) and SOX2 is important for pluripotency and reprogramming2-4. However, the molecular mechanisms by which pioneer transcription factors function and cooperate on chromatin remain unclear. Here we present cryo-electron microscopy structures of human OCT4 bound to a nucleosome containing human LIN28B or nMATN1 DNA sequences, both of which bear multiple binding sites for OCT4. Our structural and biochemistry data reveal that binding of OCT4 induces changes to the nucleosome structure, repositions the nucleosomal DNA and facilitates cooperative binding of additional OCT4 and of SOX2 to their internal binding sites. The flexible activation domain of OCT4 contacts the N-terminal tail of histone H4, altering its conformation and thus promoting chromatin decompaction. Moreover, the DNA-binding domain of OCT4 engages with the N-terminal tail of histone H3, and post-translational modifications at H3K27 modulate DNA positioning and affect transcription factor cooperativity. Thus, our findings suggest that the epigenetic landscape could regulate OCT4 activity to ensure proper cell programming.


Asunto(s)
Epigénesis Genética , Código de Histonas , Histonas , Nucleosomas , Factor 3 de Transcripción de Unión a Octámeros , Factores de Transcripción SOXB1 , Humanos , Microscopía por Crioelectrón , ADN/química , ADN/genética , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/ultraestructura , Procesamiento Proteico-Postraduccional , Factores de Transcripción SOXB1/metabolismo , Regulación Alostérica , Proteínas de Unión al ARN/genética , Proteínas Matrilinas/genética , Sitios de Unión , Ensamble y Desensamble de Cromatina , Diferenciación Celular/genética , Dominios Proteicos
4.
Matrix Biol ; 119: 101-111, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37001593

RESUMEN

Cartilage oligomeric matrix protein (COMP), an extracellular matrix protein, has been shown to enhance proliferation and mechanical integrity in the matrix, supporting functions of the growth plate and articular cartilage. Mutations in COMP cause pseudoachondroplasia (PSACH), a severe dwarfing condition associated with premature joint degeneration and significant lifelong joint pain. The MT (mutant)-COMP mouse mimics PSACH with decreased limb growth, early joint degeneration and pain. Ablation of endoplasmic reticulum stress CHOP signaling eliminated pain and prevented joint degeneration. The health effects of mutant COMP are discussed in relation to cellular/chondrocyte stress in the growth plate, articular cartilage and nearby tissues, and the implications for therapeutic approaches. There are many similarities between osteoarthritis and mutant-COMP protein-induced joint degeneration, suggesting that the relevance of findings in the joints may extend beyond PSACH to idiopathic primary OA.


Asunto(s)
Acondroplasia , Ratones , Animales , Proteína de la Matriz Oligomérica del Cartílago/genética , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Acondroplasia/genética , Acondroplasia/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Condrocitos/metabolismo , Mutación , Dolor/metabolismo , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835255

RESUMEN

Mutations in cartilage oligomeric matrix protein (COMP) causes protein misfolding and accumulation in chondrocytes that compromises skeletal growth and joint health in pseudoachondroplasia (PSACH), a severe dwarfing condition. Using the MT-COMP mice, a murine model of PSACH, we showed that pathological autophagy blockage was key to the intracellular accumulation of mutant-COMP. Autophagy is blocked by elevated mTORC1 signaling, preventing ER clearance and ensuring chondrocyte death. We demonstrated that resveratrol reduces the growth plate pathology by relieving the autophagy blockage allowing the ER clearance of mutant-COMP, which partially rescues limb length. To expand potential PSACH treatment options, CurQ+, a uniquely absorbable formulation of curcumin, was tested in MT-COMP mice at doses of 82.3 (1X) and 164.6 mg/kg (2X). CurQ+ treatment of MT-COMP mice from 1 to 4 weeks postnatally decreased mutant COMP intracellular retention, inflammation, restoring both autophagy and chondrocyte proliferation. CurQ+ reduction of cellular stress in growth plate chondrocytes dramatically reduced chondrocyte death, normalized femur length at 2X 164.6 mg/kg and recovered 60% of lost limb growth at 1X 82.3 mg/kg. These results indicate that CurQ+ is a potential therapy for COMPopathy-associated lost limb growth, joint degeneration, and other conditions involving persistent inflammation, oxidative stress, and a block of autophagy.


Asunto(s)
Acondroplasia , Condrocitos , Curcumina , Animales , Ratones , Acondroplasia/tratamiento farmacológico , Acondroplasia/genética , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Placa de Crecimiento/metabolismo , Inflamación/metabolismo , Proteínas Matrilinas/genética , Mutación
6.
Function (Oxf) ; 3(2): zqac008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399495

RESUMEN

Targeting chondrocyte dynamics is a strategy for slowing osteoarthritis progression during aging. We describe a stable-isotope method using in vivo deuterium oxide labeling and mass spectrometry to measure protein concentration, protein half-life, cell proliferation, and ribosomal biogenesis in a single sample of murine articular cartilage. We hypothesized that a 60-d labeling period would capture age-related declines in cartilage matrix protein content, protein synthesis rates, and cellular proliferation. Knee cartilage was harvested to the subchondral bone from 25- to 90-wk-old female C57BL/6J mice treated with deuterium oxide for 15, 30, 45, and 60 d. We measured protein concentration and half-lives using targeted high resolution accurate mass spectrometry and d2ome data processing software. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Most collagen isoforms were less abundant in aged animals, with negligible collagen synthesis at either age. In contrast, age altered the concentration and half-lives of many proteoglycans and other matrix proteins, including several with greater concentration and half-lives in older mice such as proteoglycan 4, clusterin, and fibronectin-1. Cellular proteins were less abundant in older animals, consistent with reduced cellularity. Nevertheless, deuterium was maximally incorporated into 60% of DNA and RNA by 15 d of labeling in both age groups, suggesting the presence of two large pools of either rapidly (<15 d) or slowly (>60 d) proliferating cells. Our findings indicate that age-associated changes in cartilage matrix protein content and synthesis occur without detectable changes in the relative number of proliferating cells.


Asunto(s)
Cartílago Articular , Ratones , Animales , Femenino , Proteínas Matrilinas/genética , Marcaje Isotópico/métodos , Óxido de Deuterio/metabolismo , Deuterio/metabolismo , Ratones Endogámicos C57BL , Colágeno/genética , Proliferación Celular , ADN/metabolismo , Biosíntesis de Proteínas , ARN/metabolismo
7.
Mutat Res ; 824: 111774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35077910

RESUMEN

Pseudoachondroplasia (PSACH) is known as an autosomal dominant disorder associated with mutations in the gene of cartilage oligomeric matrix protein (COMP). The pathomolecular mechanisms of PSACH as a result of C-terminal globular region (CTD) mutations remain unclear. A heterozygous mutation (E559 K) in a Chinese family diagnosed with PSACH was reported in this study. To understand the pathogenesis of this mutation, we studied chondrogenic differentiation of patient menstrual blood-derived stem cells (MenSCs), and the impact of the mutation on structural changes of COMP was investigated using all-atom molecular dynamics simulation. The results suggested that the interactions with calcium and other molecules in the mutant structure were affected resulting in misfolding of the protein, which leads to ER stress and finally affects the survival of chondrocytes. The findings may promote the understanding of the pathomolecular mechanisms of PSACH, and possibly the development of drugs to treat the disease.


Asunto(s)
Glicoproteínas , Acondroplasia , Proteína de la Matriz Oligomérica del Cartílago/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Proteínas Matrilinas/genética , Mutación
8.
Calcif Tissue Int ; 110(3): 313-323, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34709441

RESUMEN

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia type 1 (MED1) are two rare skeletal disorders caused by cartilage oligomeric matrix protein (COMP) variants. This study aims to analyze the genotype and phenotype of patients with COMP variants. Clinical information for 14 probands was collected; DNA was extracted from blood for COMP variant detection. Clinical manifestations and radiology scoring systems were established to evaluate the severity of each patient's condition. Serum COMP levels in PSACH patients and healthy subjects were measured. Thirty-nine patients were included, along with 12 PSACH probands and two MED1 probands. Disproportionate short stature, waddling gait, early-onset osteoarthritis and skeletal deformities were the most common features. The height Z-score of PSACH patients correlated negatively with age at evaluation (r = - 0.603, p = 0.01) and the clinical manifestation score (r = - 0.556, p = 0.039). Over 50% of the PSACH patients were overweight/obese. The median serum COMP level in PSACH patients was 16.75 ng/ml, which was significantly lower than that in healthy controls (98.53 ng/ml; p < 0.001). The condition of MED1 patients was better than that of PSACH patients. Four novel variants of COMP were detected: c.874T>C, c.1123_1134del, c.1531G>A, and c.1576G>T. Height Z-scores and serum COMP levels were significantly lower in patients carrying mutations located in calmodulin-like domains 6, 7, and 8. As the two phenotypes overlap to different degrees, PSACH and MED1 are suggested to combine to produce "spondyloepiphyseal dysplasia, COMP type". Clinical manifestations and radiology scoring systems, serum COMP levels and genotype are important for evaluating patient condition severity.


Asunto(s)
Acondroplasia , Proteína de la Matriz Oligomérica del Cartílago , Acondroplasia/diagnóstico por imagen , Acondroplasia/genética , Acondroplasia/terapia , Proteína de la Matriz Oligomérica del Cartílago/genética , Proteínas de la Matriz Extracelular/genética , Glicoproteínas , Humanos , Proteínas Matrilinas/genética , Mutación
9.
Mol Biotechnol ; 64(1): 66-74, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34542816

RESUMEN

Long non-coding RNAs show essential roles in various cancer processes. This study aimed at the expression features, prognosis significance, and biological effect of lnc MATN1-AS1 in osteosarcoma (OS). Five kinds of cell lines and 117 pairs of tissues were analyzed by qRT-PCR for quantification of lnc MATN1-AS1 and miR-1299 level. Clinical data were analyzed using Chi-Square Tests to show the association with lnc MATN1-AS1 level. Kaplan-Meier analysis and Cox regression were used to judge the prognostic value. Cell counting kit-8 and Transwell assay were conducted, respectively, to analyze the effect of lnc MATN1-AS1 on cell proliferation and metastasis. The target miRNA was predicted. lnc MATN1-AS1 level was significantly elevated in OS cells and tissues and related to Enneking staging, lung metastasis, and histologic type. Patients with high lnc MATN1-AS1 level showed a shorter overall survival and recurrence-free survival. Lnc MATN1-AS1 knockdown inhibited OS cell proliferation, migration, and invasion by sponging miR-1299. Lnc MATN1-AS1 has oncogenic features and prognostic significance in OS and is a novel therapeutic strategy for OS.


Asunto(s)
Neoplasias Óseas/genética , Osteosarcoma/genética , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Adolescente , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Proteínas Matrilinas/genética , MicroARNs/genética , Osteosarcoma/patología , Osteosarcoma/secundario , Pronóstico , Regulación hacia Arriba
10.
Am J Med Genet A ; 188(3): 751-759, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34750995

RESUMEN

Pseudoachondroplasia (PSACH) is an autosomal dominant disorder characterized by rhizomelic short-limbed skeletal dysplasia. The primary clinical and radiographic features include disproportionate dwarfism, joint laxity and hyperextensibility, exaggerated lumbar lordosis, and late ossification of the epiphyses. Identification of disease-causing variants in heterozygous state in COMP establishes the molecular diagnosis of PSACH. We examined 11 families with clinical features suggestive of PSACH. In nine families, we used Sanger sequencing of exons 8-19 of COMP (NM_000095.2) and in two families exome sequencing was used for confirming the diagnosis. We identified 10 de novo variants, including five known variants (c.925G>A, c.976G>A, c.1201G>T, c.1417_1419del, and c.1511G>A) and five variants (c.874T>C, c.1201G>C, c.1309G>A, c.1416_1421delCGACAA, and c.1445A>T) which are not reported outside Indian ethnicity. We hereby report the largest series of individuals with molecular diagnosis of PSACH from India and reiterate the well-known genotype-phenotype corelation in PSACH.


Asunto(s)
Acondroplasia , Acondroplasia/diagnóstico , Acondroplasia/genética , Proteína de la Matriz Oligomérica del Cartílago/genética , Proteínas de la Matriz Extracelular/genética , Genotipo , Humanos , Proteínas Matrilinas/genética , Mutación , Fenotipo
11.
Biomed Res Int ; 2021: 9026918, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746312

RESUMEN

OBJECTIVE: Epithelial-mesenchymal transition (EMT) exerts a key function in cancer initiation and progression. Herein, we aimed to develop an EMT-based prognostic signature in gastric cancer. METHODS: The gene expression profiles of gastric cancer were obtained from TCGA dataset as a training set and GSE66229 and GSE84437 datasets as validation sets. By LASSO regression and Cox regression analyses, key prognostic EMT-related genes were screened for developing a risk score (RS) model. Potential small molecular compounds were predicted by the CMap database based on the RS model. GSEA was employed to explore signaling pathways associated with the RS. ESTIMATE and seven algorithms (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC) were applied to assess the RS and immune microenvironment. RESULTS: This study developed an EMT-related gene signature comprised of SERPINE1, PCOLCE2, MATN3, and DKK1. High-RS patients displayed poorer survival outcomes than those with low RS. ROC curves demonstrated the robustness of the model in predicting the prognosis. After external validation, the RS model was an independent risk factor for gastric cancer. Several compounds were predicted for gastric cancer treatment based on the RS model. ECM receptor interaction, focal adhesion, pathway in cancer, TGF-beta, and WNT pathways were distinctly activated in high-RS samples. Also, high RS was significantly associated with increased stromal and immune scores and increased infiltration of CD4+ T cell, CD8+ T cell, cancer-associated fibroblast, and macrophage in gastric cancer tissues. CONCLUSION: Our findings suggested that the EMT-related gene model may robustly predict gastric cancer prognosis, which could improve the efficacy of personalized therapy.


Asunto(s)
Neoplasias Gástricas/genética , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Transición Epitelial-Mesenquimal , Proteínas de la Matriz Extracelular/genética , Expresión Génica , Genómica/métodos , Glicoproteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas Matrilinas/genética , Inhibidor 1 de Activador Plasminogénico/genética , Pronóstico , Curva ROC , Reproducibilidad de los Resultados , Factores de Riesgo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Transcriptoma/genética , Microambiente Tumoral/genética
12.
Stem Cell Reports ; 16(3): 610-625, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33636111

RESUMEN

Chondrodysplasias are hereditary diseases caused by mutations in the components of growth cartilage. Although the unfolded protein response (UPR) has been identified as a key disease mechanism in mouse models, no suitable in vitro system has been reported to analyze the pathology in humans. Here, we developed a three-dimensional culture protocol to differentiate hypertrophic chondrocytes from induced pluripotent stem cells (iPSCs) and examine the phenotype caused by MATN3 and COL10A1 mutations. Intracellular MATN3 or COL10 retention resulted in increased ER stress markers and ER size in most mutants, but activation of the UPR was dependent on the mutation. Transcriptome analysis confirmed a UPR with wide-ranging changes in bone homeostasis, extracellular matrix composition, and lipid metabolism in the MATN3 T120M mutant, which further showed altered cellular morphology in iPSC-derived growth-plate-like structures in vivo. We then applied our in vitro model to drug testing, whereby trimethylamine N-oxide led to a reduction of ER stress and intracellular MATN3.


Asunto(s)
Cartílago/fisiología , Condrocitos/fisiología , Colágeno Tipo X/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Animales , Huesos/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Cultivadas , Condrocitos/citología , Condrogénesis , Colágeno Tipo X/genética , Estrés del Retículo Endoplásmico , Matriz Extracelular/metabolismo , Edición Génica , Perfilación de la Expresión Génica , Homeostasis , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Ratones , Modelos Biológicos , Mutación , Osteocondrodisplasias/patología , Fenotipo , Respuesta de Proteína Desplegada
13.
Osteoarthritis Cartilage ; 29(1): 78-88, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33227438

RESUMEN

OBJECTIVE: The human matrilin-3 T303M (in mouse T298M) mutation has been proposed to predispose for osteoarthritis, but due to the lack of an appropriate animal model this hypothesis could not be tested. This study was carried out to identify pathogenic mechanisms in a transgenic mouse line by which the mutation might contribute to disease development. METHODS: A mouse line carrying the T298M point mutation in the Matn3 locus was generated and features of skeletal development in ageing animals were characterized by immunohistology, micro computed tomography, transmission electron microscopy and atomic force microscopy. The effect of transgenic matrilin-3 was also studied after surgically induced osteoarthritis. RESULTS: The matrilin-3 T298M mutation influences endochondral ossification and leads to larger cartilage collagen fibril diameters. This in turn leads to an increased compressive stiffness of the articular cartilage, which, upon challenge, aggravates osteoarthritis development. CONCLUSIONS: The mouse matrilin-3 T298M mutation causes a predisposition for post-traumatic osteoarthritis and the corresponding knock-in mouse line therefore represents a valid model for investigating the pathogenic mechanisms involved in osteoarthritis development.


Asunto(s)
Artritis Experimental/genética , Osteoartritis de la Rodilla/genética , Osteogénesis/genética , Animales , Artritis Experimental/diagnóstico por imagen , Artritis Experimental/metabolismo , Artritis Experimental/patología , Cartílago Articular/metabolismo , Cartílago Articular/ultraestructura , Colágeno/ultraestructura , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Proteínas Matrilinas/genética , Meniscectomía , Meniscos Tibiales/cirugía , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Mutación Puntual , Microtomografía por Rayos X
14.
Prague Med Rep ; 121(3): 153-162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33030144

RESUMEN

Dominantly inherited mutations in COMP gene encoding cartilage oligomeric matrix protein may cause two dwarfing skeletal dysplasias, milder multiple epiphyseal dysplasia (MED) and more severe pseudoachondroplasia (PSACH). We studied the phenotype and X-rays of 11 patients from 5 unrelated families with different COMP mutations. Whole exome and/or Sangers sequencing were used for molecular analyses. Four to ten X-ray images of hands hips, knees or spine were available for each patient for retrospective analyses. Eight patients with MED have mutation c.1220G>A and 3 children with PSACH mutations c.1359C>A, c.1336G>A, or the novel mutation c.1126G>T in COMP. Progressive failure in growth developed in all patients from early childhood and resulted in short stature < 3rd percentile in 7 patients and very short stature < 1st percentile in four. Most patients had joint pain since childhood, severe stiffness in shoulders and elbows but increased mobility in wrists. Six children had bowlegs and two had knock knees. In all patients, X-rays of hands, hips and knees showed progressive, age-dependent skeletal involvement more pronounced in the epiphyses of long rather than short tubular bones. Anterior elongation and biconvex configuration of vertebral bodies were more conspicuous for kids. Six children had correction of knees and two adults had hip replacement. Skeletal and joint impairment in patients with MED and PSACH due to COMP mutation start in early childhood. Although the clinical severity is mutation and age dependent, many symptoms represent a continuous phenotypic spectrum between both diseases. Most patients may benefit from orthopaedic surgeries.


Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago , Mutación , Osteocondrodisplasias , Acondroplasia , Adulto , Proteína de la Matriz Oligomérica del Cartílago/genética , Niño , Preescolar , Humanos , Proteínas Matrilinas/genética , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/genética , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
15.
Stem Cell Res Ther ; 11(1): 363, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831130

RESUMEN

BACKGROUND: Chronic low back pain is a prevalent disability, often caused by intervertebral disc (IVD) degeneration. Mesenchymal stem cell (MSC) therapy could be a safe and feasible option for repairing the degenerated disc. However, for successful translation to the clinic, various challenges need to be overcome including unwanted adverse effects due to acidic pH, hypoxia, and limited nutrition. Matrilin-3 is an essential extracellular matrix (ECM) component during cartilage development and ossification and exerts chondrocyte protective effects. METHODS: This study evaluated the effects of matrilin-3-primed adipose-derived MSCs (Ad-MSCs) on the repair of the degenerated disc in vitro and in vivo. We determined the optimal priming concentration and duration and developed an optimal protocol for Ad-MSC spheroid generation. RESULTS: Priming with 10 ng/ml matrilin-3 for 5 days resulted in the highest mRNA expression of type 2 collagen and aggrecan in vitro. Furthermore, Ad-MSC spheroids with a density of 250 cells/microwell showed the increased secretion of favorable growth factors such as transforming growth factor beta (TGF-ß1), TGF-ß2, interleukin-10 (IL-10), granulocyte colony-stimulating factor (G-CSF), and matrix metalloproteinase 1 (MMP1) and decreased secretion of hypertrophic ECM components. In addition, matrilin-3-primed Ad-MSC spheroid implantation was associated with optimal repair in a rabbit model. CONCLUSION: Our results suggest that priming MSCs with matrilin-3 and spheroid formation could be an effective strategy to overcome the challenges associated with the use of MSCs for the treatment of IVD degeneration.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Degeneración del Disco Intervertebral/terapia , Proteínas Matrilinas/genética , Conejos
16.
Eur J Med Genet ; 63(8): 103958, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32470407

RESUMEN

Spondylo-epimetaphyseal dysplasia Matrilin 3 type (SEMD) is a rare autosomal recessive skeletal dysplasia characterized by short stature, abnormalities in the vertebral bodies and long bones, especially the lower limbs. We enrolled a consanguineous family from Pakistan in which multiple siblings suffered from severe skeletal dysplasia. The six affected subjects ranged in heights from 100 to 136 cm (~-6 standard deviation). Lower limb abnormalities with variable varus and valgus deformities and joint dysplasia were predominant features of the clinical presentation. Whole exome sequencing (WES) followed by Sanger sequencing identified a missense variant, c.542G > A, p.(Arg181Gln) in MATN3 as the genetic cause of the disorder. The variant was homozygous in all affected individuals while the obligate carriers had normal heights with no skeletal symptoms, consistent with a recessive pattern of inheritance. Multiple sequence alignment revealed that MATN3 domain affected by the variant is highly conserved in orthologous proteins. The c.542G > A, p.(Arg181Gln) variant is only the fourth variant in MATN3 causing an autosomal recessive disorder and thus expands the genotypic spectrum.


Asunto(s)
Mutación Missense , Osteocondrodisplasias/genética , Consanguinidad , Femenino , Homocigoto , Humanos , Masculino , Proteínas Matrilinas/química , Proteínas Matrilinas/genética , Osteocondrodisplasias/patología , Linaje , Dominios Proteicos
17.
BMC Musculoskelet Disord ; 21(1): 216, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264862

RESUMEN

BACKGROUND: Multiple epiphyseal dysplasia (MED) is a common skeletal dysplasia that is characterized by variable degrees of epiphyseal abnormality primarily involving the hip and knee joints. Mutations in a gene encoding matrilin-3 (MATN3) have been reported as disease causing of autosomal dominant MED. The current study identified a novel c.572 C > A variant (p.A191D) in exon 2 of MATN3 in a Vietnamese family with MED. CASE PRESENTATION: A standard clinical tests and radiological examination were performed in an 8-year-old Vietnamese girl patient. The clinical examination showed that patient height was under average, with bent lower limbs, limited mobility and dislocation of the joints at both knees. Radiological documentation revealed abnormal cartilage development at the epiphysis of the femur and patella. The patient has a varus deformity of the lower limbs. The patient was diagnosed with autosomal dominant MED using molecular testing in the order of the coding sequences and flanking sequences of five genes: COMP (exons 8-19), MATN3 (exon 2), COL9A2 (exon 3), COL9A3 (exon 3), COL9A1 (exon 8) by Sanger sequencing. A novel heterozygous missense variant (c.572 C > A, p.A191D) in MATN3 was identified in this family, which were not inherited from parents. The p.A191D was predicted and classified as a pathogenic variant. When the two predicted structures of the wild type and mutant matrilin-3 were compared, the p.A191D substitution caused conformational changes near the substitution site, resulting in deformity of the ß-sheet of the single A domain of matrilin- 3. CONCLUSIONS: This is the first Vietnamese MED family attributed to p.A191D matrilin-3 variant, and our clinical, radiological and molecular data suggest that the novel de novo missense variant in MATN3 contributed to MED.


Asunto(s)
Mutación Missense , Osteocondrodisplasias/genética , Pueblo Asiatico/genética , Niño , Exones/genética , Familia , Femenino , Humanos , Proteínas Matrilinas/genética , Osteocondrodisplasias/diagnóstico por imagen , Linaje , Radiografía
18.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963938

RESUMEN

Matrilins (MATN1, MATN2, MATN3 and MATN4) are adaptor proteins of the cartilage extracellular matrix (ECM), which bridge the collagen II and proteoglycan networks. In humans, dominant-negative mutations in MATN3 lead to various forms of mild chondrodysplasias. However, single or double matrilin knockout mice generated previously in our laboratory do not show an overt skeletal phenotype, suggesting compensation among the matrilin family members. The aim of our study was to establish a mouse line, which lacks all four matrilins and analyze the consequence of matrilin deficiency on endochondral bone formation and cartilage function. Matn1-4-/- mice were viable and fertile, and showed a lumbosacral transition phenotype characterized by the sacralization of the sixth lumbar vertebra. The development of the appendicular skeleton, the structure of the growth plate, chondrocyte differentiation, proliferation, and survival were normal in mutant mice. Biochemical analysis of knee cartilage demonstrated moderate alterations in the extractability of the binding partners of matrilins in Matn1-4-/- mice. Atomic force microscopy (AFM) revealed comparable compressive stiffness but higher collagen fiber diameters in the growth plate cartilage of quadruple mutant compared to wild-type mice. Importantly, Matn1-4-/- mice developed more severe spontaneous osteoarthritis at the age of 18 months, which was accompanied by changes in the biomechanical properties of the articular cartilage. Interestingly, Matn4-/- mice also developed age-associated osteoarthritis suggesting a crucial role of MATN4 in maintaining the stability of the articular cartilage. Collectively, our data provide evidence that matrilins are important to protect articular cartilage from deterioration and are involved in the specification of the vertebral column.


Asunto(s)
Envejecimiento/genética , Proteínas Matrilinas/genética , Músculo Esquelético/patología , Osteoartritis/patología , Animales , Proliferación Celular , Células Cultivadas , Condrocitos/citología , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía de Fuerza Atómica , Osteoartritis/genética
19.
Genet Test Mol Biomarkers ; 24(2): 105-111, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31999490

RESUMEN

Aims: To investigate the possible roles of the single nucleotide polymorphisms (SNPs) MATN3 (rs77245812) and DOT1L (rs12982744) with susceptibility to knee osteoarthritis (KOA) among mestizos from the northeast region of Mexico. In addition, we analyzed the relationship of their urinary levels of carboxy terminal telopeptide of collagen type II (CTX-II) and the radiological grade of disease. Materials and Methods: A total of 223 individuals from a Northeast Mexico Mestizo population were included in this study: 110 patients with primary KOA and 113 healthy controls. Genotyping of the MATN3 (rs77245812) and DOT1L (rs12982744) SNPs was performed by real-time polymerase chain reaction. Results: No association was found between the polymorphisms MATN3 (rs77245812), DOT1L (rs12982744), and the risk of developing KOA (odds ratio [OR] = 1.33, 95% confidence interval [CI] = 0.42-6.48, p = 0.621) (OR = 2.03, 95% CI = 0.35-11.5, p = 0.422). However, urinary CTX-II levels were considerably higher by radiographic grade. Conclusions: An increase in CTX-II per radiographic grade was observed in the case group, but no association was found between MATN3 and DOT1L genes and the risk of KOA in Mexican mestizos.


Asunto(s)
Colágeno Tipo II/orina , N-Metiltransferasa de Histona-Lisina/genética , Osteoartritis de la Rodilla , Fragmentos de Péptidos/orina , Polimorfismo de Nucleótido Simple , Adulto , Femenino , Humanos , Masculino , Proteínas Matrilinas/genética , México , Persona de Mediana Edad , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...