Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.332
Filtrar
1.
Med Oncol ; 41(7): 166, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819709

RESUMEN

The full-length p200CUX1 protein encoded by the homology frame CUT-like protein (CUX1) plays an important role in tumors as a pro-oncogene or oncogene. However, its role and mechanism in acute myeloid leukemia remain unknown. p200CUX1 regulates several pathways, including the MAPK signaling pathway. Our data showed that p200CUX1 is lowly expressed in THP1 and U937 AML cell lines. Lentiviral overexpression of p200CUX1 reduced proliferation and promoted apoptosis and G0/G1 phase blockade, correlating with MAPK pathway suppression. Additionally, p200CUX1 regulated the expression of bone morphogenetic protein 8B (BMP8B), which is overexpressed in AML. Overexpression of p200CUX1 downregulated BMP8B expression and inhibited the MAPK pathway. Furthermore, BMP8B knockdown inhibited AML cell proliferation, enhanced apoptosis and the sensitivity of ATRA-induced cell differentiation, and blocked G0/G1 transition. Our findings demonstrate the pivotal function of the p200CUX1-BMP8B-MAPK axis in maintaining the viability of AML cells. Consequently, targeting p200CUX1 could represent a viable strategy in AML therapy.


Asunto(s)
Apoptosis , Proliferación Celular , Leucemia Mieloide Aguda , Sistema de Señalización de MAP Quinasas , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas/fisiología , Línea Celular Tumoral , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Progresión de la Enfermedad
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 758-760, 2024 Jun 10.
Artículo en Chino | MEDLINE | ID: mdl-38818565

RESUMEN

Char syndrome is a rare autosomal dominant genetic disorder characterized by patent ductus arteriosus, facial dysmorphism, and dysplasia of fingers/toes. It may also be associated with multiple papillae, dental dysplasia, and sleep disorders. TFAP2B has proven to be a pathogenic gene for neural crest derivation and development, and several variants of this gene have been identified. Bone morphogenetic protein signaling plays an important role in embryonic development by participating in limb growth and patterning, and regulation of neural crest cell development. TFAP2B is an upstream regulatory gene for bone morphogenetic proteins 2 and 4. Variants of the TFAP2B gene may lead to abnormal proliferation of neural crest cells by affecting the expression of bone morphogenetic proteins, resulting in multiple organ dysplasia syndrome. In addition, TFAP2B variants may only lead to patent ductus arteriosus instead of typical Char syndrome.


Asunto(s)
Conducto Arterioso Permeable , Humanos , Conducto Arterioso Permeable/genética , Factor de Transcripción AP-2/genética , Anomalías Múltiples/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Cresta Neural/metabolismo , Cresta Neural/embriología , Cara/anomalías , Dedos/anomalías
3.
Elife ; 122024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690987

RESUMEN

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Asunto(s)
Condrocitos , Microtia Congénita , Proteínas Quinasas Dependientes de AMP Cíclico , Transducción de Señal , Animales , Condrocitos/metabolismo , Microtia Congénita/genética , Microtia Congénita/metabolismo , Ratones , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Humanos , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Condrogénesis/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética
4.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1762-1773, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812188

RESUMEN

The study aimed to investigate the therapeutic effects of the n-butanol extract of Pulsatilla Decoction(BEPD) on ulcerative colitis(UC) via the bone morphogenetic protein(BMP) signaling pathway. C57BL/6 mice were divided into six groups: control, model, mesalazine, and BEPD low-, medium-, and high-dose groups. Except for the control group, the rest groups were treated with 3% dextran sulfate sodium(DSS) freely for seven consecutive days to establish the UC mouse model, followed by treatment with different concentrations of BEPD and mesalazine by gavage. The murine body weight and disease activity index(DAI) were recorded. After the mice were sacrificed, their colon tissues were collected for histological analysis. Alcian blue/periodic acid-Schiff(AB/PAS) staining was used to detect the number and mucus secretion status of goblet cells; immunohistochemistry was performed to measure the expression of ki67, cleaved caspase-3, mucin 2(Muc2), and matrix metalloproteinase-9(MMP9) in colon tissues; and immunofluorescence was used to analyze the expression of tight junction proteins in colon tissues, and enzyme linked immunosorbent assay(ELISA) was employed to quantify the levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1ß, and IL-6. Western blot was conducted to evaluate the expression of BMP pathway-related proteins in mouse colon tissues. Quantitative real-time PCR(qRT-PCR) was performed to measure the expression of genes related to goblet cell differentiation in mouse colon tissues. In addition, this study also examined the protective effect and underlying mechanism of BEPD-containing serum on lipopolysaccharide(LPS)-induced barrier damages in LS174T goblet cells in vitro. The results showed that BEPD significantly alleviated UC symptoms in mice, restored goblet cell diffe-rentiation function, promoted Muc2 secretion and tight junction protein expression, and suppressed inflammatory factor secretion while activating the BMP signaling pathway. Therefore, BEPD may exert its therapeutic effects on UC by activating the BMP signaling pathway, providing a new strategy for drug intervention in UC.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Pulsatilla , Transducción de Señal , Animales , Transducción de Señal/efectos de los fármacos , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Pulsatilla/química , Humanos , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética
5.
J Agric Food Chem ; 72(17): 9691-9702, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639219

RESUMEN

Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3ß, leading to the stabilization of ß-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/ß-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/ß-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.


Asunto(s)
Diferenciación Celular , Osteoblastos , Osteogénesis , Péptidos , Vía de Señalización Wnt , beta Catenina , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Animales , Diferenciación Celular/efectos de los fármacos , Ratones , Osteogénesis/efectos de los fármacos , beta Catenina/metabolismo , beta Catenina/genética , Vía de Señalización Wnt/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Transducción de Señal/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
6.
Eur Respir J ; 63(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514094

RESUMEN

BACKGROUND: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS: We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS: 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS: GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Telangiectasia Hemorrágica Hereditaria , Humanos , Masculino , Femenino , Adulto , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Hipertensión Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/complicaciones , Hipertensión Pulmonar Primaria Familiar , Telangiectasia Hemorrágica Hereditaria/complicaciones , Telangiectasia Hemorrágica Hereditaria/genética , Fenotipo , Factor 2 de Diferenciación de Crecimiento/genética , Estudios Multicéntricos como Asunto
7.
Stem Cell Res Ther ; 15(1): 83, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500216

RESUMEN

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease caused by a gain-of-function mutation in ACVR1, which is a bone morphogenetic protein (BMP) type I receptor. Moreover, it causes progressive heterotopic ossification (HO) in connective tissues. Using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) and mouse models, we elucidated the underlying mechanisms of FOP pathogenesis and identified a candidate drug for FOP. METHODS: In the current study, healthy mesenchymal stem/stromal cells derived from iPSCs (iMSCs) expressing ACVR2B-Fc (iMSCACVR2B-Fc), which is a neutralizing receptobody, were constructed. Furthermore, patient-derived iMSCs and FOP mouse model (ACVR1R206H, female) were used to confirm the inhibitory function of ACVR2B-Fc fusion protein secreted by iMSCACVR2B-Fc on BMP signaling pathways and HO development, respectively. RESULTS: We found that secreted ACVR2B-Fc attenuated BMP signaling initiated by Activin-A and BMP-9 in both iMSCs and FOP-iMSCs in vitro. Transplantation of ACVR2B-Fc-expressing iMSCs reduced primary HO in a transgenic mouse model of FOP. Notably, a local injection of ACVR2B-Fc-expressing iMSCs and not an intraperitoneal injection improved the treadmill performance, suggesting compound effects of ACVR2B-Fc and iMSCs. CONCLUSIONS: These results offer a new perspective for treating FOP through stem cell therapy.


Asunto(s)
Miositis Osificante , Osificación Heterotópica , Femenino , Humanos , Ratones , Animales , Miositis Osificante/genética , Miositis Osificante/terapia , Osificación Heterotópica/terapia , Osificación Heterotópica/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Transducción de Señal , Ratones Transgénicos , Mutación , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/farmacología
8.
J Neurooncol ; 167(3): 455-465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38446374

RESUMEN

PURPOSE: Meningiomas are the most common type of brain tumors and are generally benign, but malignant atypical meningiomas and anaplastic meningiomas frequently recur with poor prognosis. The metabolism of meningiomas is little known, so few effective treatment options other than surgery and radiation are available, and the targets for treatment of recurrence are not well defined. The Aim of this paper is to find the therapeutic target. METHODS: The effects of bone morphogenetic protein (BMP) signal inhibitor (K02288) and upstream regulator Gremlin2 (GREM2) on meningioma's growth and senescence were examined. In brief, we examined as follows: 1) Proliferation assay by inhibiting BMP signaling. 2) Comprehensive analysis of forced expression GREM2.3) Correlation between GREM2 mRNA expression and proliferation marker in 87 of our clinical samples. 4) Enrichment analysis between GREM2 high/low expressed groups using RNA-seq data (42 cases) from the public database GREIN. 5) Changes in metabolites and senescence markers associated with BMP signal suppression. RESULTS: Inhibitors of BMP receptor (BMPR1A) and forced expression of GREM2 shifted tryptophan metabolism from kynurenine/quinolinic acid production to serotonin production in malignant meningiomas, reduced NAD + /NADH production, decreased gene cluster expression involved in oxidative phosphorylation, and caused decrease in ATP. Finally, malignant meningiomas underwent cellular senescence, decreased proliferation, and eventually formed psammoma bodies. Reanalyzed RNA-seq data of clinical samples obtained from GREIN showed that increased expression of GREM2 decreased the expression of genes involved in oxidative phosphorylation, similar to our experimental results. CONCLUSIONS: The GREM2-BMPR1A-tryptophan metabolic pathway in meningiomas is a potential new therapeutic target.


Asunto(s)
Proteínas Morfogenéticas Óseas , Calcinosis , Neoplasias Meníngeas , Meningioma , Transducción de Señal , Humanos , Meningioma/metabolismo , Meningioma/patología , Meningioma/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Calcinosis/patología , Calcinosis/metabolismo , Calcinosis/genética , Proliferación Celular , Senescencia Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética
9.
J Cell Mol Med ; 28(7): e18140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494851

RESUMEN

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fibrosis , Cirrosis Hepática/patología , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Hepáticas/patología
10.
Sci Rep ; 14(1): 6524, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499638

RESUMEN

Wnt signaling is critically involved in fracture healing. Existing data predominantly relies on rodent models. Here, we explored local and circulating Dickkopf-1 (DKK1) levels in patients with respect to fracture healing and explore its association to sclerostin (SOST). 69 patients after surgical stabilization of long bone fractures of which six patients had impaired fracture healing were included in this study. Life-style and patient related factors with a known effect on DKK1 and SOST were recorded. DKK1 and SOST concentrations were measured using enzyme-linked immunosorbent assay (ELISA) at the fracture site and in circulation. DKK1 and SOST showed a close inverse correlation. In fracture hematoma and immediately after trauma DKK1 levels were significantly reduced while SOST levels were significantly increased, compared to healthy control. Postoperatively, DKK1 peaked at week 2 and SOST at week 8, again demonstrating a close negative correlation. Age and smoking status affected the balance of DKK1 and SOST, while type 2 diabetes and sex did not demonstrate a significant influence. Early postoperative elevation of SOST without compensatory DKK1 decrease was associated with fracture non-union in younger patients (< 50a). The close inverse correlation and very rapid dynamics of DKK1 and SOST locally as well as systemically suggest their critical involvement during human fracture healing. Importantly, as immediate compensatory feedback mechanism are apparent, we provide evidence that dual-blockade of DKK1 and SOST could be critical to allow for therapeutic efficiency of Wnt targeted therapies for fracture healing.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Humanos , Proteínas Morfogenéticas Óseas/genética , Curación de Fractura , Marcadores Genéticos , Péptidos y Proteínas de Señalización Intercelular
11.
BMC Genomics ; 25(1): 194, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373886

RESUMEN

BACKGROUND: Bone morphogenetic proteins (BMPs) are part of the transforming growth factor beta (TGF-ß) superfamily and play crucial roles in bone development, as well as in the formation and maintenance of various organs. Triplophysa dalaica, a small loach fish that primarily inhabits relatively high elevations and cooler water bodies, was the focus of this study. Understanding the function of BMP genes during the morphogenesis of T. dalaica helps to clarify the mechanisms of its evolution and serves as a reference for the study of BMP genes in other bony fishes. The data for the T. dalaica transcriptome and genome used in this investigation were derived from the outcomes of our laboratory sequencing. RESULTS: This study identified a total of 26 BMP genes, all of which, except for BMP1, possess similar TGF-ß structural domains. We conducted an analysis of these 26 BMP genes, examining their physicochemical properties, subcellular localization, phylogenetic relationships, covariance within and among species, chromosomal localization, gene structure, conserved motifs, conserved structural domains, and expression patterns. Our findings indicated that three BMP genes were associated with unstable proteins, while 11 BMP genes were located within the extracellular matrix. Furthermore, some BMP genes were duplicated, with the majority being enriched in the GO:0008083 pathway, which is related to growth factor activity. It was hypothesized that genes within the BMP1/3/11/15 subgroup (Group I) play a significant role in the growth and development of T. dalaica. By analyzing the expression patterns of proteins in nine tissues (gonad, kidney, gill, spleen, brain, liver, fin, heart, and muscle), we found that BMP genes play diverse regulatory roles during different stages of growth and development and exhibit characteristics of division of labor. CONCLUSIONS: This study contributes to a deeper understanding of BMP gene family member expression patterns in high-altitude, high-salinity environments and provides valuable insights for future research on the BMP gene family in bony fishes.


Asunto(s)
Proteínas Morfogenéticas Óseas , Cipriniformes , Animales , Filogenia , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Cipriniformes/genética , Factor de Crecimiento Transformador beta/genética , Transcriptoma
12.
Vitam Horm ; 124: 429-447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408807

RESUMEN

The bone morphogenetic protein (BMP) system in the adrenal cortex plays modulatory roles in the control of adrenocortical steroidogenesis. BMP-6 enhances aldosterone production by modulating angiotensin (Ang) II-mitogen-activated protein kinase (MAPK) signaling, whereas activin regulates the adrenocorticotropin (ACTH)-cAMP cascade in adrenocortical cells. A peripheral clock system in the adrenal cortex was discovered and it has been shown to have functional roles in the adjustment of adrenocortical steroidogenesis by interacting with the BMP system. It was found that follistatin, a binding protein of activin, increased Clock mRNA levels, indicating an endogenous function of activin in the regulation of Clock mRNA expression. Elucidation of the interrelationships among the circadian clock system, the BMP system and adrenocortical steroidogenesis regulated by the hypothalamic-pituitary-adrenal (HPA) axis would lead to an understanding of the pathophysiology of adrenal disorders and metabolic disorders and the establishment of better medical treatment from the viewpoint of pharmacokinetics.


Asunto(s)
Corteza Suprarrenal , Humanos , Corteza Suprarrenal/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Aldosterona/metabolismo , Activinas/genética , Activinas/metabolismo , ARN Mensajero/metabolismo
13.
Commun Biol ; 7(1): 227, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402336

RESUMEN

Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor ß (TGFß) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFß signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFß family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings reveal dysfunction of BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.


Asunto(s)
Endometriosis , Infertilidad , Complicaciones del Embarazo , Embarazo , Femenino , Humanos , Endometriosis/genética , Endometriosis/metabolismo , Decidua/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Infertilidad/metabolismo , Complicaciones del Embarazo/metabolismo
14.
Angiogenesis ; 27(2): 211-227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294582

RESUMEN

Heterozygous activin receptor-like kinase 1 (ALK1) mutations are associated with two vascular diseases: hereditary hemorrhagic telangiectasia (HHT) and more rarely pulmonary arterial hypertension (PAH). Here, we aimed to understand the impact of ALK1 mutations on BMP9 and BMP10 transcriptomic responses in endothelial cells. Endothelial colony-forming cells (ECFCs) and microvascular endothelial cells (HMVECs) carrying loss of function ALK1 mutations were isolated from newborn HHT and adult PAH donors, respectively. RNA-sequencing was performed on each type of cells compared to controls following an 18 h stimulation with BMP9 or BMP10. In control ECFCs, BMP9 and BMP10 stimulations induced similar transcriptomic responses with around 800 differentially expressed genes (DEGs). ALK1-mutated ECFCs unexpectedly revealed highly similar transcriptomic profiles to controls, both at the baseline and upon stimulation, and normal activation of Smad1/5 that could not be explained by a compensation in cell-surface ALK1 level. Conversely, PAH HMVECs revealed strong transcriptional dysregulations compared to controls with > 1200 DEGs at the baseline. Consequently, because our study involved two variables, ALK1 genotype and BMP stimulation, we performed two-factor differential expression analysis and identified 44 BMP9-dysregulated genes in mutated HMVECs, but none in ECFCs. Yet, the impaired regulation of at least one hit, namely lunatic fringe (LFNG), was validated by RT-qPCR in three different ALK1-mutated endothelial models. In conclusion, ALK1 heterozygosity only modified the BMP9/BMP10 regulation of few genes, including LFNG involved in NOTCH signaling. Future studies will uncover whether dysregulations in such hits are enough to promote HHT/PAH pathogenesis, making them potential therapeutic targets, or if second hits are necessary.


Asunto(s)
Hipertensión Arterial Pulmonar , Telangiectasia Hemorrágica Hereditaria , Adulto , Recién Nacido , Humanos , Células Endoteliales/metabolismo , Factor 2 de Diferenciación de Crecimiento/genética , Factor 2 de Diferenciación de Crecimiento/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/metabolismo , Proteínas Morfogenéticas Óseas/genética , Mutación/genética , Perfilación de la Expresión Génica , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo
15.
EMBO Rep ; 25(2): 646-671, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177922

RESUMEN

The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.


Asunto(s)
Proteínas Morfogenéticas Óseas , Proteínas Portadoras , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Organizadores Embrionarios/metabolismo , Xenopus laevis/metabolismo , Tipificación del Cuerpo/fisiología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Regulación del Desarrollo de la Expresión Génica
16.
Skelet Muscle ; 14(1): 1, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172960

RESUMEN

Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the mouse soleus, whose predominantly oxidative fiber composition is akin to that of human muscle. To investigate the role of the MuSK-BMP pathway in vivo, we generated mice lacking the BMP-binding MuSK Ig3 domain. These ∆Ig3-MuSK mice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice, myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Ratones , Humanos , Animales , Lactante , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Músculo Esquelético/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo
17.
Int J Biol Macromol ; 253(Pt 6): 127245, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37797863

RESUMEN

Shells and pearls are the products of biomineralization of shellfish after ingesting external mineral ions. Bone morphogenetic proteins (BMPs) play a role in a variety of biological function, and the genes that encode them, are considered important shell-forming genes in mollusks and are associated with shell and pearl formation, embryonic development, and other functions, but bone morphogenetic protein 10 (BMP10) is poorly understood in Hyriopsis cumingii. In this study, we cloned Hc-BMP10 and obtained a 2477 bp full-length sequence encoding 460 amino acids with a conserved TGF-ß structural domain. During the embryonic developmental stages, the cleavage stage had the highest expression of Hc-BMP10, followed by juvenile clams; the expression in the mantle gradually decreased with increasing mussel age. A strong signal was detected on epidermal cells on the mantle edge by in situ hybridization. In both the shell notching and inserting operations of the pearl fragment assay, we found that the expression of Hc-BMP10 increased after the above treatments. RNA interference assays showed that the silencing of Hc-BMP10 resulted in a change in the morphology of the prismatic layer and nacreous layer, with the prismatic layer less closely aligned and the disordered aragonite flakes in the nacreous layer. These findings indicate that Hc-BMP10 is involved in the growth and development of H. cumingii, as well as the formation of shells and pearls. Therefore, this study provides some reference for selecting superior species for growth and pearl breeding of H. cumingii at a molecular level and further investigation of the molecular mechanism for biomineralization of Hc-BMP10.


Asunto(s)
Bivalvos , Unionidae , Animales , Biomineralización , Secuencia de Aminoácidos , Unionidae/genética , Unionidae/metabolismo , Bivalvos/química , Proteínas Morfogenéticas Óseas/genética
18.
Int J Biol Macromol ; 253(Pt 5): 127201, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37793513

RESUMEN

Sexual size dimorphism (SSD) characterized by different body size between females and males have been reported in various animals. Gonadectomy experiments have implied important regulatory roles of the gonad in SSD. Among multiple factors from the gonad, TGF-ß superfamily (especially BMP/GDF family) attracted our interest due to its pleiotropy in growth and reproduction regulations. Thus, whether BMP/GDF family members serve as crucial regulators for SSD was studied in a typically female-biased SSD flatfish named Chinese tongue sole (Cynoglossus semilaevis). Firstly, a total of 26 BMP/GDF family members were identified. The PPI network analysis showed that they may interact with ACVR2a, ACVR2b, ACVR1, BMPR2, SMAD3, BMPR1a, and other proteins. Subsequently, DAP-seq was employed to reveal the binding sites for yin yang 1 (yy1), a transcription factor involved in gonad function and cell growth partly by regulating TGF-ß superfamily. The results revealed that two yy1 homologues yy1a and yy1b in C. semilaevis could regulate Hippo signaling pathway, mTOR signaling pathway, and AMPK signaling pathway. Moreover, BMP/GDF family genes including bmp2, bmp4, bmp5, gdf6a, and gdf6b were important components of Hippo pathway. In future, the crosstalk among yy1a, yy1b, and TGF-ß family would provide more insight into sexual size dimorphism in C. semilaevis.


Asunto(s)
Peces Planos , Caracteres Sexuales , Masculino , Animales , Femenino , Peces Planos/genética , Regulación de la Expresión Génica , Genoma , Proteínas Morfogenéticas Óseas/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
19.
Angiogenesis ; 26(Suppl 1): 27-37, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37695357

RESUMEN

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by small, dilated clustered vessels (telangiectasias) and by larger visceral arteriovenous malformations (AVMs), which directly connect the feeding arteries with the draining veins. These lesions are fragile, prone to rupture, and lead to recurrent epistaxis and/or internal hemorrhage among other complications. Germline heterozygous loss-of-function (LOF) mutations in Bone Morphogenic Protein 9 (BMP9) and BMP10 signaling pathway genes (endoglin-ENG, activin like kinase 1 ACVRL1 aka ALK1, and SMAD4) cause different subtypes of HHT (HHT1, HHT2 and HHT-juvenile polyposis (JP)) and have a worldwide combined incidence of about 1:5000. Expert clinicians and international scientists gathered in Cascais, Portugal from September 29th to October 2nd, 2022 to present the latest scientific research in the HHT field and novel treatment strategies for people living with HHT. During the largest HHT scientific conference yet, participants included 293 in person and 46 virtually. An impressive 209 abstracts were accepted to the meeting and 59 were selected for oral presentations. The remaining 150 abstracts were presented during judged poster sessions. This review article summarizes the basic and clinical abstracts selected as oral presentations with their new observations and discoveries as well as surrounding discussion and debate. Two discussion-based workshops were also held during the conference, each focusing on mechanisms and clinical perspectives in either AVM formation and progression or current and future therapies for HHT. Our hope is that this paper will represent the current progress and the remaining unanswered questions surrounding HHT, in order to serve as an update for those within the field and an invitation to those scientists and clinicians as yet outside of the field of HHT.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Humanos , Receptores de Activinas Tipo II/genética , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/patología , Proteínas Morfogenéticas Óseas/genética , Mutación , Transducción de Señal , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/terapia
20.
Orthopadie (Heidelb) ; 52(11): 924-930, 2023 Nov.
Artículo en Alemán | MEDLINE | ID: mdl-37603129

RESUMEN

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP) is a very rare, severe genetic disorder triggered by a gain-of-function mutation in the ACVR1 gene that codes for the type I bone morphogenetic protein (BMP) receptor ACVR1 (activin A receptor-type 1), also known as ALK2 (activin receptor-like kinase-2). It leads to the onset and progression of heterotopic ossification (HO) in soft and connective tissue. HO is often preceded by episodes of soft tissue swelling or flare-ups. Flare-ups, characteristic of FOP, may be induced by trauma, infection, vaccination, or other medications, as well as surgical procedures or may occur spontaneously. As patients age, they develop severe mobility limitations due to progressive HO formation, including immobility, causing a shortened life expectancy. FOP's first characteristic clinical sign is the congenital malformation of one or both big toes with valgus axis deviation, which is present in almost all patients. To confirm the diagnosis, molecular genetic analysis of the ACVR1 gene is possible. AIM OF THE RECOMMENDATIONS: This white paper aims to provide an overview of the necessary prerequisites and conditions for the care of patients with FOP and positively contribute to patients with FOP by improving the overall availability of knowledge. To achieve this, relevant aspects of the care of the very rare disease FOP are presented, from the initial diagnosis to the care in regular care based on the authors' knowledge (German FOP network) and the international FOP Treatment Guidelines. The recommendations presented here are addressed to all actors and decision-makers in the health care system and are also intended to inform patients and the public.


Asunto(s)
Miositis Osificante , Osificación Heterotópica , Humanos , Miositis Osificante/diagnóstico , Mutación , Osificación Heterotópica/genética , Proteínas Morfogenéticas Óseas/genética , Atención a la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...