Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Int J Pharm ; 654: 123971, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38452832

RESUMEN

Lymphoma and leukemia are both hematological system tumors with complex etiology, and mainly treated with chemotherapeutic drugs. However, therapeutic drugs can interrupt curative effect due to different side effects. Therefore, it is worthwhile to develop a novel therapeutic for providing insights for clinical tumor treatment. In this study, we developed a fisetin nanoparticles (Fisetin NPs) through a self-assembled method, and investigated the activity and potential mechanism of Fisetin NPs against lymphoma and leukemia. The spherical and uniformly distributed Fisetin NPs effectively inhibited both tumor cells proliferation, arrested EL4 cells G0/G1 phase and K562 cells G2/M phase, and induced apoptosis in vitro. In vivo, Fisetin NPs exhibited excellent tumor growth inhibition, effective inhibition of cell proliferation and angiogenesis, significant induction of apoptosis and ideal safety. Mechanically, fisetin upregulated genes (Fas, Pidd, Puma, Apaf1, and p21) in the p53 signaling pathway and bound to N-acetyltransferase 10 (NAT10), ribosomal protein L34 (RPL34) and GTP binding protein 4 (GTPBP4). Collectively, Fisetin NPs have promising therapeutic effects on lymphoma and leukemia, which are of great significant for clinical implications.


Asunto(s)
Leucemia , Linfoma , Humanos , Flavonoides/farmacología , Flavonoles/farmacología , Apoptosis , Proliferación Celular , Leucemia/tratamiento farmacológico , Linfoma/tratamiento farmacológico , Línea Celular Tumoral , Proteínas Nucleares/farmacología , Proteínas de Unión al GTP/farmacología , Acetiltransferasas N-Terminal
2.
Adv Biol (Weinh) ; 8(3): e2300334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38213020

RESUMEN

Repeat dipeptides such as poly(proline-arginine) (polyPR) are generated from the hexanucleotide GGGGCC repeat expansions in the C9orf72 gene. These dipeptides are often considered as the genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In the study, fluorescein isothiocyanate (FITC) labeled PR20 is used to investigate PR20-induced cell death. The findings reveal that the cell death induced by PR20 is dependent on its nuclear distribution and can be blocked by a nuclear import inhibitor called importazole. Further investigation reveals that BRD4 inhibitors, such as JQ-1 and I-BET762, restrict cytoplasmic localization of PR20, thereby reducing its cytotoxic effect. Mechanistically, the inhibition of BRD4 leads to an increase in the expression of numerous histones, resulting in the accumulation of histones in the cytoplasm. These cytoplasmic histones associate with PR20 and limit its distribution within the nucleus. Notably, the ectopic expression of histones alone is enough to confer protection to cells treated with PR20. In addition, phenylephrine (PE) induces cellular hypertrophy and cytoplasmic distribution of histone, which also helps protect cells from PR20-induced cell death. The research suggests that temporarily inducing the presence of cytoplasmic histones may alleviate the neurotoxic effects of dipeptide repeat proteins.


Asunto(s)
Histonas , Proteínas Nucleares , Histonas/genética , Histonas/metabolismo , Histonas/farmacología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/farmacología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Expansión de las Repeticiones de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología , Dipéptidos/genética , Dipéptidos/metabolismo , Dipéptidos/farmacología , Muerte Celular/genética
3.
Acta Cir Bras ; 38: e383123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878982

RESUMEN

PURPOSE: It has been explored that sevoflurane (Sevo) is cardioprotective in myocardial ischemia/reperfusion injury (MI/RI) and mediates microRNA (miRNA) expression that control various physiological systems. Enlightened by that, the work was programmed to decode the mechanism of Sevo and miR-99a with the participation of bromodomain-containing protein 4 (BRD4). METHODS: MI/RImodel was established on mice. MI/RI modeled mice were exposed to Sevo or injected with miR-99a or BRD4-related vectors to identify their functions in cardiac function, pathological injury, cardiomyocyte apoptosis, inflammation, and oxidative stress in MI/RI mice. MiR-99a and BRD4 expression in myocardial tissues were tested, and their relation was further validated. RESULTS: MiR-99a was down-regulated, and BRD4 was up-regulated in MI/RI mice. Sevo up-regulated miR-99a to inhibit BRD4 expression in myocardial tissues of MI/RI mice. Sevo improved cardiac function, relieved myocardial injury, repressed cardiomyocyte apoptosis, and alleviated inflammation and oxidative stress in mice with MI/RI. MiR-99a restoration further enhanced the positive effects of Sevo on mice with MI/RI. Overexpression of BRD4 reversed up-regulation of miR-99a-induced attenuation of MI/RI in mice. CONCLUSIONS: The work delineated that Sevo up-regulates miR-99a to attenuate MI/RI by inhibiting BRD4.


Asunto(s)
MicroARNs , Daño por Reperfusión Miocárdica , Animales , Ratones , Apoptosis , Inflamación/patología , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Sevoflurano/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología
4.
Respir Investig ; 61(6): 781-792, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741093

RESUMEN

BACKGROUND: Recent studies suggest that cellular senescence is related to the pathogenesis of idiopathic pulmonary fibrosis. However, cellular senescence has yet to be targeted therapeutically in clinical practice. ARV825, a recently developed BRD4 degrader, has been reported as a novel senolytic drug. Conversely, it has also been reported that BRD4 regulates the pro-fibrotic gene expression of fibroblasts. Therefore, this study focuses on the senolytic and anti-fibrotic effects of ARV825 and evaluated these effects on lung fibrosis. METHODS: Lung fibroblasts were induced to senescence through serial passage. The expression of senescence markers and pro-fibrotic markers were determined through quantitative PCR or immunoblot analysis. Lung fibrosis was induced in mice through intratracheal administration of bleomycin. Mice treated with ARV825 underwent histological analysis of lung fibrosis using the Ashcroft score. Total lung collagen was quantified through a hydroxyproline assay. Respiratory mechanics analysis was performed using the flexiVent system. RESULTS: For senescent cells, ARV825 induced the expression of an apoptosis marker while reducing the expression of BRD4 and senescence markers. On the other hand, for early passage pre-senescent cells, ARV825 reduced the expression of collagen type 1 and α-smooth muscle actin. In an experimental mouse model of lung fibrosis, ARV825 attenuated lung fibrosis and improved lung function. Immunohistochemical staining revealed a significant decrease in the number of senescent alveolar type 2 cells in lung tissue due to ARV825 treatment. CONCLUSIONS: These results suggest that ARV825 may impact the progressive and irreversible course of fibrotic lung diseases.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteínas Nucleares , Humanos , Ratones , Animales , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Senoterapéuticos , Factores de Transcripción , Pulmón/patología , Fibrosis Pulmonar Idiopática/patología , Bleomicina/metabolismo , Bleomicina/farmacología , Colágeno/metabolismo , Colágeno/farmacología , Ratones Endogámicos C57BL , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología
5.
Chin J Physiol ; 66(4): 189-199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635478

RESUMEN

Lung cancer is the most common malignant cancer worldwide. Combination therapies are urgently needed to increase patient survival. Calycosin is a phytoestrogen isoflavone that has been reported previously to inhibit tumor cell growth, although its effects on lung cancer remain unclear. The aim of this study was to investigate the effects of calycosin on cell proliferation and apoptosis of gemcitabine-resistant lung cancer cells. Using calycosin to treat human lung cancer cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0 GEMR) and examine the effects on the cells. Cultured human lung cancer cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0 GEMR) were treated with increasing concentrations of calycosin. Cell viability and apoptosis were studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide, flow cytometry, and TUNEL assays. Western blots were used to measure the expression levels of proliferation-related proteins and cancer stem cell proteins in CL1-0 GEMR cells. The results showed that calycosin treatment inhibited cell proliferation, decreased cell migration ability, and suppressed cancer stem cell properties in CL1-0 GEMR cells. Interestingly, in CL1-0 GEMR cells, calycosin treatment not only increased LDOC1 but also decreased GNL3L/NFκB protein levels and mRNA levels, in concentration-dependent manners. We speculate that calycosin inhibited cell proliferation of the gemcitabine-resistant cell line through regulating the LDOC1/GNL3L/NFκB pathway.


Asunto(s)
Isoflavonas , Neoplasias Pulmonares , Humanos , Gemcitabina , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , FN-kappa B , Isoflavonas/farmacología , Proliferación Celular , Apoptosis , Proteínas Nucleares/farmacología , Proteínas Supresoras de Tumor/farmacología , Proteínas de Unión al GTP/farmacología
6.
Cell Death Dis ; 14(8): 488, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37524692

RESUMEN

With technological advancements, radiotherapy (RT) has become an effective non-surgical treatment for hepatocellular carcinoma (HCC), comprehensively improving the local control rate of patients with HCC. However, some patients with HCC still experience radio-resistance, cancer recurrence, and distant metastasis following RT. Our previous study has revealed that hexokinase 2 (HK2), a potent oncogene, was overexpressed in radio-resistant HCC cell lines; however, its role in HCC radio-resistance remains elusive. Here, we confirmed the upregulation of HK2 in HCC tissue, which is related to unfavorable prognosis in patients with HCC, and demonstrated that HK2 exerts a radio-resistant role by attenuating apoptosis and promoting proliferation in HCC cell lines. HK2 downregulation combined with ionizing radiation showed an excellent synergistic lethal effect. Mechanistically, HK2 alleviated ionizing radiation-mediated apoptosis by complexing with pro-apoptotic protein aminoacyl tRNA synthetase complex interacting multifunctional protein 2 (AIMP2) while enhancing its autophagic lysosomal-dependent degradation, thereby increasing radio-resistance of HCC. Pharmacologically, ketoconazole, an FDA-approved antifungal drug, served as an inhibitor of HK2 and synergistically enhanced the efficacy of RT. Our results indicated that HK2 played a vital role in radio-resistance and could be a potential therapeutic target for improving RT efficacy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Autofagia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Hexoquinasa/genética , Hexoquinasa/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Recurrencia Local de Neoplasia , Proteínas Nucleares/farmacología
7.
PLoS One ; 18(5): e0285354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37146018

RESUMEN

Crystalline silica-induced inflammation possibly facilitates carcinogenesis. Here, we investigated its effect on lung epithelium damage. We prepared conditioned media of immortalized human bronchial epithelial cell lines (hereinafter bronchial cell lines) NL20, BEAS-2B, and 16HBE14o- pre-exposed to crystalline silica (autocrine crystalline silica conditioned medium), a phorbol myristate acetate-differentiated THP-1 macrophage line, and VA13 fibroblast line pre-exposed to crystalline silica (paracrine crystalline silica conditioned medium). As cigarette smoking imposes a combined effect on crystalline silica-induced carcinogenesis, a conditioned medium was also prepared using the tobacco carcinogen benzo[a]pyrene diol epoxide. Crystalline silica-exposed and growth-suppressed bronchial cell lines exhibited enhanced anchorage-independent growth in autocrine crystalline silica and benzo[a]pyrene diol epoxide conditioned medium compared with that in unexposed control conditioned medium. Crystalline silica-exposed nonadherent bronchial cell lines in autocrine crystalline silica and benzo[a]pyrene diol epoxide conditioned medium showed increased expression of cyclin A2, cdc2, and c-Myc, and of epigenetic regulators and enhancers, BRD4 and EZH2. Paracrine crystalline silica and benzo[a]pyrene diol epoxide conditioned medium also accelerated the growth of crystalline silica-exposed nonadherent bronchial cell lines. Culture supernatants of nonadherent NL20 and BEAS-2B in crystalline silica and benzo[a]pyrene diol epoxide conditioned medium had higher EGF concentrations, whereas those of nonadherent 16HBE14o- had higher TNF-α levels. Recombinant human EGF and TNF-α promoted anchorage-independent growth in all lines. Treatment with EGF and TNF-α neutralizing antibodies inhibited cell growth in crystalline silica conditioned medium. Recombinant human TNF-α induced BRD4 and EZH2 expression in nonadherent 16HBE14o-. The expression of γH2AX occasionally increased despite PARP1 upregulation in crystalline silica-exposed nonadherent lines with crystalline silica and benzo[a]pyrene diol epoxide conditioned medium. Collectively, crystalline silica- and benzo[a]pyrene diol epoxide-induced inflammatory microenvironments comprising upregulated EGF or TNF-α expression may promote crystalline silica-damaged nonadherent bronchial cell proliferation and oncogenic protein expression despite occasional γH2AX upregulation. Thus, carcinogenesis may be cooperatively aggravated by crystalline silica-induced inflammation and genotoxicity.


Asunto(s)
Benzo(a)pireno , Proteínas Nucleares , Humanos , Proteínas Nucleares/farmacología , Medios de Cultivo Condicionados/farmacología , Factor de Crecimiento Epidérmico/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Factores de Transcripción , Células Epiteliales/metabolismo , Pulmón/metabolismo , Compuestos Epoxi/farmacología , Carcinogénesis , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Microambiente Tumoral , Proteína Potenciadora del Homólogo Zeste 2
8.
Appl Biochem Biotechnol ; 195(11): 6867-6880, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36947367

RESUMEN

Our previous findings demonstrated that Helichrysetin possessed promising anti-cancer activity. It was able to induce apoptosis in the A549 cell line. However, its mechanism of action is unknown. The present study aimed to unravel possible underlying molecular mechanisms of helichrysetin-induced apoptosis in A549 (human lung carcinoma) cells using comparative quantitative proteomics (iTRAQ labeled), followed by an exhaustive bioinformatics analysis. Our results suggested that DNA damage response (DDR) and cell cycle arrest were responsible for lung cancer cell death with helichrysetin treatment. Among proteins that changed in abundance were Nrf2 and HMOX1. They are oxidative stress-related proteins and were increased in abundance. BRAT1 was also increased in abundance, suggesting an increase in DNA damage repair, indicating the occurrence of DNA damage due to oxidative stress. However, several essential DDR downstream proteins such as p-ATM, BRCA1, FANCD2, and Rb1 that would further increase DNA damage were found to be dramatically decreased in relative abundance. Cell cycle-related proteins, p53, p21, and cyclin D1, were increased while cyclin A, cyclin E, and cdk2 were decreased. This is predicted to facilitate S-phase arrest. Furthermore, excessive DNA damage and prolonged arrest would in turn result in the induction of mitochondrial-mediated apoptosis. Based on these observations, we postulate that the effects of helichrysetin were in part via the suppression of DNA damage response which led to DNA damage and prolonged cell cycle arrest. Subsequently, this event initiated mitochondrial-mediated apoptosis in A549 lung cancer cells.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Pulmonares , Humanos , Proteínas de Ciclo Celular/metabolismo , Células A549 , Proteoma/farmacología , Línea Celular Tumoral , Puntos de Control del Ciclo Celular , Apoptosis , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Daño del ADN , Ciclo Celular , Proteínas Nucleares/farmacología
9.
J Toxicol Sci ; 48(2): 75-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36725023

RESUMEN

Quaternary ammonium compounds, including benzalkonium chloride (BAC) and cetylpyridinium chloride (CPC), are widely used as disinfectants. Increased use of inhalable products containing BAC or CPC has raised concerns for lung toxicity. This study sought to elucidate the microstructure of plasma membrane damage caused by BAC and CPC and the subsequent mechanism by which the damage is mediated, as assessed using two human pulmonary epithelial cell lines (A549 and BEAS-2B). Scanning electron microscopic observation showed that exposure to BAC or CPC for 3 hr reduced the length and density of microvilli on the plasma membrane in A549 cells. Analysis of cell cycle distribution following plasma membrane damage revealed that BAC and CPC promote G0/G1 cell cycle arrest in both cell lines. The protein levels of Cdc6, an essential regulator of DNA replication during G1/S transition, are decreased significantly and dose dependently by BAC or CPC exposure. CPC and BAC decreased the Cdc6 levels that had been increased by a PI3K agonist in A549 cells, and levels of phosphorylated AKT were reduced in response to BAC or CPC. Conversely, exposure to equivalent concentrations of pyridinium chloride (lacking a hydrocarbon tail) induce no changes. These results suggest that plasma membrane damage triggered by BAC or CPC causes Cdc6-dependent G0/G1 cell cycle arrest in pulmonary cells. These effects are attributable to the long alkyl chains of BAC and CPC. The reduction of Cdc6 following plasma membrane damage may be caused, at least in part, by diminished signaling via the PI3K/AKT pathway.


Asunto(s)
Compuestos de Benzalconio , Cetilpiridinio , Humanos , Compuestos de Benzalconio/toxicidad , Cetilpiridinio/toxicidad , Cetilpiridinio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pulmón , Células Epiteliales , Puntos de Control del Ciclo Celular , Membrana Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Proteínas de Ciclo Celular/metabolismo
10.
Altern Ther Health Med ; 29(3): 127-133, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36689360

RESUMEN

Context: The persistent use of anticancer medicines can cause multidrug resistance in many tumors and serious cytotoxicity for healthy cells, including adriamycin (ADR), a treatment for breast cancer (BC). Cell resistance to ADR in patients with recurrent advanced BC can occur. Creating effective treatments that can grapple with multidrug resistance is still challenging. Traditional Chinese medicine (TCM) may offer a solution in D Rhamnose beta-hederin (DRß-H), an oleanane type of triterpenoid saponin. Objective: The study intended to assess the ability of DRß-H to inhibit the ADR resistance of two BC-lineage cell lines, MCF-7 and SUM-1315, and to explore the causal link between DRß-H and the reversal of chemoresistance. Design: The research team performed a cell biology study. Setting: The study took place at laboratory in China. Outcome Measures: The research team: (1) assessed cell viability and the migration and invasion the cell lines; (2) investigated the molecular mechanism and identified the downstream targets of DRß-H, and (3) comprehensively examined the expression pattern, underlying functions, and evident prognostic significance of NAP1L5 in BC by gathering the online information available. Results: DRß-H can inhibit the viability of the MCF-7/ADR and SUM-1315/ADR cancer cells in a dosage-dependent manner. NAP1L5 might be the main target of DRß-H in reversing ADR resistance. Its expression decreased in BC cells, and the more advanced the BC was, the lower the NAP1L5 expression was. Conclusion: DRß-H at nontoxic concentrations was related to ADR resistance in BC through its downstream target NAP1L5. NAP1L5 is potentially a preferable prognostic marker for BC.


Asunto(s)
Neoplasias de la Mama , Saponinas , Humanos , Femenino , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Saponinas/farmacología , Saponinas/uso terapéutico , Proteínas Nucleares/farmacología , Proteínas Nucleares/uso terapéutico
11.
Environ Pollut ; 317: 120801, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36462676

RESUMEN

Glyphosate is a pesticide, which contaminates the environment and exposes workers and general population to its residues present in foods and waters. In soil, Glyphosate is degraded in metabolites, amino-methyl-phosphonic acid (AMPA) being the main one. Glyphosate is considered a potential cancerogenic and endocrine-disruptor agent, however its adverse effects on the thyroid were evaluated only in animal models and in vitro data are still lacking. Aim of this study was to investigate whether exposure to Glyphosate could exert adverse effects on thyroid cells in vitro. Two models (adherent-2D and spheroid-3D) derived from the same cell strain Fisher-rat-thyroid-cell line-5 (FRTL-5) were employed. After exposure to Glyphosate at increasing concentrations (0.0, 0.1-0.25- 0.5-1.0-2.0-10.0 mM) we evaluated cell viability by WST-1 (adherent and spheroids), results being confirmed by propidium-iodide staining (only for spheroids). Proliferation of adherent cells was assessed by crystal violet and trypan-blue assays, the increasing volume of spheroids was taken as a measure of proliferation. We also evaluated the ability of cells to form spheroids after Glyphosate exposure. We assessed changes of reactive-oxygen-species (ROS) by the cell-permeant H2DCFDA. Glyphosate-induced changes of mRNAs encoding for thyroid-related genes (TSHR, TPO, TG, NIS, TTF-1 and PAX8) were evaluated by RT-PCR. Glyphosate reduced cell viability and proliferation in both models, even if at different concentrations. Glyphosate at the highest concentration reduced the ability of FRTL-5 to form spheroids. An increased ROS production was found in both models after exposure to Glyphosate. Finally, Glyphosate increased the mRNA levels of some thyroid related genes (TSHR, TPO, TG and TTF-1) in both models, while it increased the mRNAs of PAX8 and NIS only in the adherent model. The present study supports an adverse effect of Glyphosate on cultured thyroid cells. Glyphosate reduced cell viability and proliferation and increased ROS production in thyroid cells.


Asunto(s)
Factores de Transcripción Paired Box , Glándula Tiroides , Ratas , Animales , Humanos , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Factor de Transcripción PAX8/metabolismo , ARN Mensajero/metabolismo , Glifosato
12.
J Am Heart Assoc ; 11(12): e025857, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35699165

RESUMEN

Background Epigenetic modulators have been proposed as promising new drug targets to treat adverse remodeling in heart failure. Here, we evaluated the potential of 4 epigenetic drugs, including the recently developed histone deacetylase 6 (HDAC6) inhibitor JS28, to prevent endothelin-1 induced pathological gene expression in cardiac myocytes and analyzed the chromatin binding profile of the respective inhibitor targets. Methods and Results Cardiac myocytes were differentiated and puromycin-selected from mouse embryonic stem cells and treated with endothelin-1 to induce pathological gene expression (938 differentially expressed genes, q<0.05). Dysregulation of gene expression was at least in part prevented by epigenetic inhibitors, including the pan-BRD (bromodomain-containing protein) inhibitor bromosporine (290/938 genes), the BET (bromodomain and extraterminal) inhibitor JQ1 (288/938), the broad-spectrum HDAC inhibitor suberoylanilide hydroxamic acid (227/938), and the HDAC6 inhibitor JS28 (210/938). Although the 4 compounds were similarly effective toward pathological gene expression, JS28 demonstrated the least adverse effects on physiological gene expression. Genome-wide chromatin binding profiles revealed that HDAC6 binding sites were preferentially associated with promoters of genes involved in RNA processing. In contrast, BRD4 binding was associated with genes involved in core cardiac myocyte functions, for example, myocyte contractility, and showed enrichment at enhancers and intronic regions. These distinct chromatin binding profiles of HDAC6 and BRD4 might explain the different effects of their inhibitors on pathological versus physiological gene expression. Conclusions In summary, we demonstrated, that the HDAC6 inhibitor JS28 effectively prevented the adverse effects of endothelin-1 on gene expression with minor impact on physiological gene expression in cardiac myocytes. Selective HDAC6 inhibition by JS28 appears to be a promising strategy for future evaluation in vivo and potential translation into clinical application.


Asunto(s)
Inhibidores de Histona Desacetilasas , Miocitos Cardíacos , Animales , Cromatina , Endotelina-1/genética , Endotelina-1/farmacología , Expresión Génica , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Proteínas Nucleares/farmacología , Factores de Transcripción
13.
Neurotherapeutics ; 19(5): 1634-1648, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35501470

RESUMEN

Despite the effort on developing new treatments, therapy for neuropathic pain is still a clinical challenge and combination therapy regimes of two or more drugs are often needed to improve efficacy. Accumulating evidence shows an altered expression and activity of histone acetylation enzymes in chronic pain conditions and restoration of these aberrant epigenetic modifications promotes pain-relieving activity. Recent studies showed a synergistic activity in neuropathic pain models by combination of histone deacetylases (HDACs) and bromodomain and extra-terminal domain (BET) inhibitors. On these premises, the present study investigated the pharmacological profile of new dual HDAC/BRD4 inhibitors, named SUM52 and SUM35, in the spared nerve injury (SNI) model in mice as innovative strategy to simultaneously inhibit HDACs and BETs. Intranasal administration of SUM52 and SUM35 attenuated thermal and mechanical hypersensitivity in the absence of locomotor side effects. Both dual inhibitors showed a preferential interaction with BRD4-BD2 domain, and SUM52 resulted the most active compound. SUM52 reduced microglia-mediated spinal neuroinflammation in spinal cord sections of SNI mice as showed by reduction of IBA1 immunostaining, inducible nitric oxide synthase (iNOS) expression, p65 nuclear factor-κB (NF-κB) and p38 MAPK over-phosphorylation. A robust decrease of the spinal proinflammatory cytokines content (IL-6, IL-1ß) was also observed after SUM52 treatment. Present results, showing the pain-relieving activity of HDAC/BRD4 dual inhibitors, indicate that the simultaneous modulation of BET and HDAC activity by a single molecule acting as multi-target agent might represent a promise for neuropathic pain relief.


Asunto(s)
Microglía , Neuralgia , Ratones , Animales , Microglía/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Proteínas Nucleares/uso terapéutico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Interleucina-6/metabolismo , Histonas/metabolismo , Factores de Transcripción , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Médula Espinal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico , Citocinas/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Histona Desacetilasas/uso terapéutico
14.
Curr Neuropharmacol ; 20(12): 2354-2368, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35139800

RESUMEN

BACKGROUND: mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of "monogenic" forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects. OBJECTIVE: Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype. METHODS: Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure. RESULTS: Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine. CONCLUSION: These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.


Asunto(s)
Trastorno del Espectro Autista , Ratones , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Proteínas Nucleares/uso terapéutico , Factores de Transcripción/metabolismo , Ratones Endogámicos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/farmacología , Proteínas de Microfilamentos/uso terapéutico , Proteínas del Tejido Nervioso , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/uso terapéutico
15.
Apoptosis ; 27(1-2): 22-33, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34762220

RESUMEN

Nucleophosmin (NPM), a nucleolar-based protein chaperone, promotes Bax-mediated mitochondrial injury and regulates cell death during acute kidney injury. However, the steps that transform NPM from an essential to a toxic protein during stress are unknown. To localize NPM-mediated events causing regulated cell death during ischemia, wild type (WT) and Hsp70 mutant proteins with characterized intracellular trafficking defects that restrict movement to either the nucleolar region (M45) or cytosol (985A) were expressed in primary murine proximal tubule epithelial cells (PTEC) harvested from Hsp70 null mice. After ischemia in vitro, PTEC survival was significantly improved and apoptosis reduced in rank order by selectively overexpressing WT > M45 > 985A Hsp70 proteins. Only Hsp70 with nuclear access (WT and M45) inhibited T95 NPM phosphorylation responsible for NPM translocation and also reduced cytosolic NPM accumulation. In contrast, WT or 985A > M45 significantly improved survival in Hsp70 null PTEC that expressed a cytosol-restricted NPM mutant, more effectively bound NPM, and also reduced NPM-Bax complex formation required for mitochondrial injury and cell death. Hsp70 knockout prevented the cytoprotective effect of suppressing NPM in ischemic PTEC and also increased cytosolic NPM accumulation after acute renal ischemia in vivo, emphasizing the inhibitory effect of Hsp70 on NPM-mediated toxicity. Distinct cytoprotective mechanisms by wild type and mutant Hsp70 proteins identify dual nuclear and cytosolic events that mediate NPM toxicity during stress-induced apoptosis and are rational targets for therapeutic AKI interventions. Antagonizing these early events in regulated cell death promotes renal cell survival during experimental AKI.


Asunto(s)
Apoptosis , Nucleofosmina , Animales , Proteínas HSP70 de Choque Térmico/genética , Isquemia , Enfermedades Renales , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología
16.
Cell Rep ; 37(12): 110138, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34936865

RESUMEN

Tumor DNA-damage response (DDR) has an important role in driving type-I interferon (IFN)-mediated host antitumor immunity, but it is not clear how tumor DNA damage is interconnected with the immune response. Here, we report the role of IFN-γ-inducible protein 16 (IFI16) in DNA repair, which amplifies the stimulator of IFN genes (STING)-type-I IFN signaling, particularly in triple-negative breast cancer (TNBC). IFI16 is rapidly induced and accumulated to the histone-evicted DNA at double-stranded breakage (DSB) sites, where it inhibits recruitment of DDR factors. Subsequently, IFI16 increases the release of DNA fragments to the cytoplasm and induces STING-mediated type-I IFN production. Synergistic cytotoxic and immunomodulatory effects of doxorubicin and type-I IFNs are decreased upon IFI16 depletion in vivo. Furthermore, IFI16 expression correlates with improved clinical outcome in patients with TNBC treated with chemotherapy. Together, our findings suggest that type-I IFNs and IFI16 could offer potential therapeutic strategies for TNBC.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Daño del ADN , Reparación del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Sinergismo Farmacológico , Femenino , Humanos , Inmunidad , Interferón Tipo I/farmacología , Ratones Endogámicos BALB C , Proteínas Nucleares/genética , Proteínas Nucleares/farmacología , Fosfoproteínas/genética , Fosfoproteínas/farmacología , Transducción de Señal , Análisis de Matrices Tisulares , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología
17.
Prog Brain Res ; 266: 195-209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34689859

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a primary human brain tumor with the highest mortality rate. The prognosis for such patients is unfavorable, since the tumor is highly resistant to treatment, and the median survival of patients is 13 months. Chemotherapy might extend patients' life, but a tumor, that reappears after chemoradiotherapy, is resistant to temozolomide (TMZ). Using postgenome technologies in clinical practice might have a positive effect on the treatment of a recurrent GBM. METHODS: T98G cells of human GBM have been used. Radiation treatment was performed with Rokus-M gamma-therapeutic system, using 60Сo as a source of radionuclide emissions. High-performance liquid chromatography-mass spectrometry was used for proteome analysis. Mass spectrometry data were processed with MaxQuant (version 1.6.1.0) and Perseus (version 1.6.1) software, Max Planck Institute of Biochemistry (Germany). Biological processes, molecular functions, cells locations and protein pathways were annotated with a help of PubMed, PANTHER, Gene Ontology and KEGG and STRING v10 databases. Pharmaceutical testing was performed in vitro with a panel of traditional chemotherapeutic agents. RESULTS: GBM cells proliferation speed is inversely proportional to the irradiation dose and recedes when the dosage is increased, as expected. Synthesis of ERC1, NARG1L, PLCD3, ROCK2, SARNP, TMSB4X and YTHDF2 in GBM cells, treated with 60Gy of radiation, shows more than a fourfold increase, while the synthesis level of PSMA2, PSMA3, PSMA4, PSMB2, PSMB3, PSMB7, PSMC3, PSMD1, PSMD3 proteins increases significantly. Traditional chemotherapeutic agents are not very effective against cancer cells of the recurrent GBM. Combination of TMZ and CCNU with a proteasome inhibitor-bortezomib-significantly increases their ability to eradicate cells of a radioresistant GBM. CONCLUSIONS: Bortezomib and temozolomide effectively destroy cells of a radioresistant recurrent human glioblastoma; proteome mapping of the recurrent GBM cancer cells allows to identify new targets for therapy to improve the treatment results.


Asunto(s)
Glioblastoma , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Nucleares/farmacología , Proteínas Nucleares/uso terapéutico , Complejo de la Endopetidasa Proteasomal/farmacología , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Temozolomida/farmacología , Temozolomida/uso terapéutico
18.
Sci Rep ; 11(1): 19593, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599264

RESUMEN

IFIX, a newly discovered member of the interferon-inducible HIN-200 family, has been identified as a tumor suppressor in breast cancer; however, the involvement of IFIX in oral cancer are poorly understood. Here, we demonstrate a relationship between the level of IFIX expression and the invasive or migratory abilities of oral squamous cell carcinoma. Higher IFIX expression significantly correlated with clinicopathological parameters such as the histopathological grade of clinical samples. In vitro, IFIX overexpression suppressed the invasiveness of human tongue squamous cell carcinoma CAL-27 cells, and this inhibitory effect was mediated by stabilization of the cytoskeleton through various cytokeratins along with downregulation of paxillin, an intracellular adaptor protein that promotes tumor invasion. This inhibitory effect does not appear to affect the transformation of cancer stem-like cells in this cell culture model. Altogether, these data provide novel insights into the tumor-suppressive function of IFIX, namely, stabilization of the cancer cell cytoskeleton.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Proteínas Nucleares/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Células Cultivadas , Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Proteínas Nucleares/genética , Proteínas Nucleares/farmacología , Paxillin/metabolismo , Neoplasias de la Lengua/patología
19.
Hum Cell ; 34(3): 808-818, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33616869

RESUMEN

Sevoflurane could stimulate neurotoxicity and result in postoperative cognitive dysfunction (POCD). Long non-coding RNAs (lncRNAs) have been implicated in the regulation of nervous system disease. This study was performed to investigate role and mechanism of lncRNA Rian (RNA imprinted and accumulated in nucleus) in sevoflurane anesthesia-induced cognitive dysfunction. Mice post-sevoflurane anesthesia showed cognitive impairments and neuronal damage and apoptosis. However, intracerebroventricularly injection with Adenovirus (Ad) for the over-expression of Rian ameliorated sevoflurane-induced neuronal damage and apoptosis. Cognitive impairments induced by sevoflurane were attenuated by injection with Ad-Rian. Moreover, transfection with Ad-Rian also protected isolated primary hippocampal neurons against sevoflurane-induced decrease of cell viability and increase of lactic acid dehydrogenase (LDH) and apoptosis. Mechanistically, Rian bind to miR-143-3p, and decreased expression of LIMK1 (Lim kinase 1) through negative regulation of miR-143-3p. Knockdown of LIMK1 aggravated sevoflurane-induced decrease of cell viability and increase of LDH and apoptosis in neurons, while over-expression attenuated LIMK1 silence-induced neuronal damage post-sevoflurane anesthesia. In conclusion, Rian demonstrated neuroprotective effects against sevoflurane anesthesia-induced cognitive dysfunction through regulation of miR-143-3p/LIMK1 axis, providing promising target for sevoflurane anesthesia-induced cognitive dysfunction.


Asunto(s)
Anestésicos por Inhalación/efectos adversos , Quinasas Lim/metabolismo , MicroARNs/metabolismo , Fármacos Neuroprotectores , Proteínas Nucleares/farmacología , Proteínas Nucleares/fisiología , Complicaciones Cognitivas Postoperatorias/tratamiento farmacológico , Complicaciones Cognitivas Postoperatorias/genética , Sevoflurano/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Hipocampo/citología , L-Lactato Deshidrogenasa/metabolismo , Quinasas Lim/genética , Ratones , MicroARNs/genética , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Nucleares/administración & dosificación , Complicaciones Cognitivas Postoperatorias/inducido químicamente
20.
J Pharmacol Sci ; 145(2): 175-186, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33451752

RESUMEN

Bavachin (BV), a natural flavonoid compound derived from Psoralea corylifolia L, has been reported to be a potential hepatotoxin. Our previous studies have found that BV can induce endoplasmic reticulum (ER) stress-related cell apoptosis, but the molecular mechanism underlying BV-induced ER stress remains obscure. Sestrin2, a highly conserved stress-inducible protein, is involved in the cellular responses of various stress conditions and homeostatic regulation. However, whether Sestrin2 participated in the ER stress related hepatotoxicity against BV is still elusive. In the present study, we aim to investigate the role of BV on liver injury of mice and the impact of Sestrin2 on BV-induced ER stress in HepG2 cells. The results in mice showed that BV induced ER stress related liver injury with increased Sestrin2 expression involvement. Knockdown of Sestrin2 with siRNA aggravated BV-induced ER stress significantly in HepG2 cells. Further mechanistic study uncovered that inhibition of mTORC1 with rapamycin blocked BV-induced ER stress, and treatment with Sestrin2 siRNA blocked the inhibition effect of AMPK to mTORC1. Therefore, constant mTORC1 would lead to accumulation of misfolded or unfolded proteins and aggravated ER stress. Collectively, our study indicates that Sestrin2 confers protection against BV-induced ER stress via activating of the AMPK/mTORC1 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Flavonoides/efectos adversos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Nucleares/fisiología , Proteínas Nucleares/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Expresión Génica , Células Hep G2 , Humanos , Ratones , Proteínas Nucleares/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...