Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791467

RESUMEN

Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the E. coli cytoplasm of the adenylate cyclase of Bordetella pertussis, should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems. A comprehensive mutational analysis of PipX and bacterial two-hybrid assays were performed to compare the outcomes between yeast and bacterial systems. We detected interactions that were previously recorded in the yeast two-hybrid system as negative, as well as a "false positive", the self-interaction of PipX, which is rather an indirect interaction that is dependent on PII homologues from the E. coli host, a result confirmed by Western blot analysis with relevant PipX variants. This is, to our knowledge, the first report of the molecular basis of a false positive in the bacterial two-hybrid system.


Asunto(s)
Proteínas Bacterianas , Técnicas del Sistema de Dos Híbridos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Cianobacterias/metabolismo , Cianobacterias/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Unión Proteica
2.
Curr Opin Microbiol ; 79: 102453, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678827

RESUMEN

Members of the PII superfamily are versatile, multitasking signaling proteins ubiquitously found in all domains of life. They adeptly monitor and synchronize the cell's carbon, nitrogen, energy, redox, and diurnal states, primarily by binding interdependently to adenyl-nucleotides, including charged nucleotides (ATP, ADP, and AMP) and second messengers such as cyclic adenosine monophosphate (cAMP), cyclic di-adenosine monophosphate (c-di-AMP), and S-adenosylmethionine-AMP (SAM-AMP). These proteins also undergo a variety of posttranslational modifications, such as phosphorylation, adenylation, uridylation, carboxylation, and disulfide bond formation, which further provide cues on the metabolic state of the cell. Serving as precise metabolic sensors, PII superfamily proteins transmit this information to diverse cellular targets, establishing dynamic regulatory assemblies that fine-tune cellular homeostasis. Recently discovered, PII-like proteins are emerging families of signaling proteins that, while related to canonical PII proteins, have evolved to fulfill a diverse range of cellular functions, many of which remain elusive. In this review, we focus on the evolution of PII-like proteins and summarize the molecular mechanisms governing the assembly dynamics of PII complexes, with a special emphasis on the PII-like protein SbtB.


Asunto(s)
Homeostasis , Transducción de Señal , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Procesamiento Proteico-Postraduccional , Bacterias/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
3.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457518

RESUMEN

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Asunto(s)
Cianobacterias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Alostérica , Microscopía por Crioelectrón , Cianobacterias/metabolismo , Adenosina Trifosfato/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo
4.
J Bacteriol ; 205(10): e0018123, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37791753

RESUMEN

A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer-binding protein (bEBP) NtrC and its cognate sensor histidine kinase, NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of Caulobacter crescentus ntrC slows cell growth in complex medium and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC-binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid-associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter. IMPORTANCE Bacteria balance cellular processes with the availability of nutrients in their environment. The NtrB-NtrC two-component signaling system is responsible for controlling nitrogen assimilation in many bacteria. We have characterized the effect of ntrB and ntrC deletion on Caulobacter growth and development and uncovered a role for spontaneous IS element transposition in the rescue of transcriptional and nutritional deficiencies caused by ntrC mutation. We further defined the regulon of Caulobacter NtrC, a bacterial enhancer-binding protein, and demonstrate that it shares specific binding sites with essential proteins involved in cell cycle regulation and chromosome organization. Our work provides a comprehensive view of transcriptional regulation mediated by a distinctive NtrC protein, establishing its connection to nitrogen assimilation and developmental processes in Caulobacter.


Asunto(s)
Caulobacter , Secuencia de Bases , Caulobacter/genética , Nitrógeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Polisacáridos , Regulación Bacteriana de la Expresión Génica , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo
5.
Trends Microbiol ; 30(8): 722-735, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35067429

RESUMEN

PII proteins are multitasking information-processing proteins occurring in bacteria, archaea, and plastids, decoding the metabolic state of the cells and providing this information to various regulatory targets. Research in recent years identified a wide range of novel PII targets mainly through ligand fishing assays, indicating that PII proteins evolved into major regulatory hubs of cellular metabolism. PII proteins orchestrate not only key steps of nitrogen and carbon metabolism but rather control a wide range of transporters and can also regulate the production of signaling molecules (c-di-GMP) and cofactors (NAD+). A recently identified class of PII-interacting proteins, which by themselves have no enzymatic activity, modulate cellular processes through protein interactions, further extending the regulatory range of PII proteins.


Asunto(s)
Nitrógeno , Transducción de Señal , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo
6.
Plant Physiol ; 185(4): 1395-1410, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793912

RESUMEN

Dodder (Cuscuta spp., Convolvulaceae) is a genus of parasitic plants with worldwide distribution. Dodders are able to simultaneously parasitize two or more adjacent hosts, forming dodder-connected plant clusters. Nitrogen (N) deficiency is a common challenge to plants. To date, it has been unclear whether dodder transfers N-systemic signals between hosts grown in N-heterogeneous soil. Transcriptome and methylome analyses were carried out to investigate whether dodder (Cuscuta campestris) transfers N-systemic signals between N-replete and N-depleted cucumber (Cucumis sativus) hosts, and it was found that N-systemic signals from the N-deficient cucumber plants were rapidly translocated through C. campestris to the N-replete cucumber plants. Unexpectedly, certain systemic signals were also transferred from the N-replete to N-depleted cucumber hosts. We demonstrate that these systemic signals are able to regulate large transcriptome and DNA methylome changes in the recipient hosts. Importantly, N stress also induced many long-distance mobile mRNA transfers between C. campestris and hosts, and the bilateral N-systemic signaling between N-replete and N-depleted hosts had a strong impact on the inter-plant mobile mRNAs. Our 15N labeling experiment indicated that under N-heterogeneous conditions, N-systemic signals from the N-deficient cucumber hosts did not obviously change the N-uptake activity of the N-replete cucumber hosts; however, in plant clusters comprising C. campestris-connected cucumber and soybean (Glycine max) plants, if the soybean plants were N-starved, the cucumber plants exhibited increased N-uptake activity. This study reveals that C. campestris facilitates plant-plant communications under N-stress conditions by enabling extensive bilateral N-systemic signaling between different hosts.


Asunto(s)
Cuscuta/genética , Cuscuta/fisiología , Cuscuta/parasitología , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/fisiología , Proteínas PII Reguladoras del Nitrógeno/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas PII Reguladoras del Nitrógeno/genética
7.
mBio ; 12(2)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758091

RESUMEN

Among prokaryotes, cyanobacteria have an exclusive position as they perform oxygenic photosynthesis. Cyanobacteria substantially differ from other bacteria in further aspects, e.g., they evolved a plethora of unique regulatory mechanisms to control primary metabolism. This is exemplified by the regulation of glutamine synthetase (GS) via small proteins termed inactivating factors (IFs). Here, we reveal another small protein, encoded by the ssr0692 gene in the model strain Synechocystis sp. PCC 6803, that regulates flux into the ornithine-ammonia cycle (OAC), the key hub of cyanobacterial nitrogen stockpiling and remobilization. This regulation is achieved by the interaction with the central carbon/nitrogen control protein PII, which commonly controls entry into the OAC by activating the key enzyme of arginine synthesis, N-acetyl-l-glutamate kinase (NAGK). In particular, the Ssr0692 protein competes with NAGK for PII binding and thereby prevents NAGK activation, which in turn lowers arginine synthesis. Accordingly, we termed it PII-interacting regulator of arginine synthesis (PirA). Similar to the GS IFs, PirA accumulates in response to ammonium upshift due to relief from repression by the global nitrogen control transcription factor NtcA. Consistent with this, the deletion of pirA affects the balance of metabolite pools of the OAC in response to ammonium shocks. Moreover, the PirA-PII interaction requires ADP and is prevented by PII mutations affecting the T-loop conformation, the major protein interaction surface of this signal processing protein. Thus, we propose that PirA is an integrator determining flux into N storage compounds not only depending on the N availability but also the energy state of the cell.IMPORTANCE Cyanobacteria contribute a significant portion to the annual oxygen yield and play important roles in biogeochemical cycles, e.g., as major primary producers. Due to their photosynthetic lifestyle, cyanobacteria also arouse interest as hosts for the sustainable production of fuel components and high-value chemicals. However, their broad application as microbial cell factories is hampered by limited knowledge about the regulation of metabolic fluxes in these organisms. Our research identified a novel regulatory protein that controls nitrogen flux, in particular arginine synthesis. Besides its role as a proteinogenic amino acid, arginine is a precursor for the cyanobacterial storage compound cyanophycin, which is of potential interest to biotechnology. Therefore, the obtained results will not only enhance our understanding of flux control in these organisms but also help to provide a scientific basis for targeted metabolic engineering and, hence, the design of photosynthesis-driven biotechnological applications.


Asunto(s)
Amoníaco/metabolismo , Ornitina/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Arginina/biosíntesis , Arginina/metabolismo , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Transducción de Señal
8.
Plant Cell Physiol ; 62(4): 721-731, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33650637

RESUMEN

In cyanobacteria, the PII protein (the glnB gene product) regulates a number of proteins involved in nitrogen assimilation including PipX, the coactivator of the global nitrogen regulator protein NtcA. In Synechococcus elongatus PCC 7942, construction of a PII-less mutant retaining the wild-type pipX gene is difficult because of the toxicity of uncontrolled action of PipX and the other defect(s) resulting from the loss of PIIper se, but the nature of the PipX toxicity and the PipX-independent defect(s) remains unclear. Characterization of a PipX-less glnB mutant (PD4) in this study showed that the loss of PII increases the sensitivity of PSII to ammonium. Ammonium was shown to stimulate the formation of reactive oxygen species in the mutant cells. The ammonium-sensitive growth phenotype of PD4 was rescued by the addition of an antioxidant α-tocopherol, confirming that photo-oxidative damage was the major cause of the growth defect. A targeted PII mutant retaining wild-type pipX was successfully constructed from the wild-type S. elongatus strain (SPc) in the presence of α-tocopherol. The resulting mutant (PD1X) showed an unusual chlorophyll fluorescence profile, indicating extremely slow reduction and re-oxidation of QA, which was not observed in mutants defective in both glnB and pipX. These results showed that the aberrant action of uncontrolled PipX resulted in an impairment of the electron transport reactions in both the reducing and oxidizing sides of QA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Synechococcus/crecimiento & desarrollo , Synechococcus/metabolismo , Compuestos de Amonio/metabolismo , Compuestos de Amonio/farmacología , Proteínas Bacterianas/genética , Clorofila/química , Clorofila/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Fluorescencia , Mutación , Proteínas PII Reguladoras del Nitrógeno/genética , Paraquat/farmacología , Especies Reactivas de Oxígeno , Synechococcus/efectos de los fármacos , Synechococcus/genética , alfa-Tocoferol/farmacología
9.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526690

RESUMEN

Nitrogen limitation imposes a major transition in the lifestyle of nondiazotrophic cyanobacteria that is controlled by a complex interplay of regulatory factors involving the pervasive signal processor PII Immediately upon nitrogen limitation, newly fixed carbon is redirected toward glycogen synthesis. How the metabolic switch for diverting fixed carbon toward the synthesis of glycogen or of cellular building blocks is operated was so far poorly understood. Here, using the nondiazotrophic cyanobacterium Synechocystis sp. PCC 6803 as model system, we identified a novel PII interactor, the product of the sll0944 gene, which we named PirC. We show that PirC binds to and inhibits the activity of 2,3-phosphoglycerate-independent phosphoglycerate mutase (PGAM), the enzyme that deviates newly fixed CO2 toward lower glycolysis. The binding of PirC to either PII or PGAM is tuned by the metabolite 2-oxoglutarate (2-OG), which accumulates upon nitrogen starvation. In these conditions, the high levels of 2-OG dissociate the PirC-PII complex to promote PirC binding to and inhibition of PGAM. Accordingly, a PirC-deficient mutant showed strongly reduced glycogen levels upon nitrogen deprivation, whereas polyhydroxybutyrate granules were overaccumulated compared to wild-type. Metabolome analysis revealed an imbalance in 3-phosphoglycerate to pyruvate levels in the pirC mutant, confirming that PirC controls the carbon flux in cyanobacteria via mutually exclusive interaction with either PII or PGAM.


Asunto(s)
Proteínas Bacterianas/genética , Cianobacterias/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Fosfoglicerato Mutasa/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Cianobacterias/metabolismo , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfoglicerato Mutasa/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
10.
Mol Microbiol ; 115(4): 526-538, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33012071

RESUMEN

Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen metabolism, GlnB. GlnB interacted with AspA and stimulated its L-aspartate deaminase activity (NH3 -forming), but not the reverse amination reaction. GlnB stimulation required 2-oxoglutarate and ATP, or uridylylated GlnB-UMP, consistent with the activation of nitrogen assimilation under nitrogen limitation. Binding to AspA was lost in the GlnB(Y51F) mutant of the uridylylation site. AspA, therefore, represents a new type of GlnB target that binds GlnB (with ATP and 2-oxoglutarate), or GlnB-UMP (with or without effectors), and both situations stimulate AspA deamination activity. Thus, AspA represents the central enzyme for nitrogen assimilation from L-aspartate, and AspA is integrated into the nitrogen assimilation network by the regulator GlnB.


Asunto(s)
Aspartato Amoníaco-Liasa/metabolismo , Ácido Aspártico/metabolismo , Proteínas Bacterianas/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/fisiología , Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Amoníaco/metabolismo , Ácido Aspártico/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Redes y Vías Metabólicas , Mutación , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Dominios y Motivos de Interacción de Proteínas
11.
FEMS Microbiol Lett ; 367(23)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33242092

RESUMEN

Nitrogen is a most important nutrient resource for Escherichia coli and other bacteria that harbor the glnKamtB operon, a high-affinity ammonium uptake system highly interconnected with cellular metabolism. Although this system confers an advantage to bacteria when growing under nitrogen-limiting conditions, little is known about the impact of these genes on microbial fitness under nutrient-rich conditions. Here, the genetically tractable E. coli BW25113 strain and its glnKamtB-null mutant (JW0441) were used to analyze the impact of GlnK-AmtB on growth rates and oxidative stress tolerance. Strain JW0441 showed a shorter initial lag phase, higher growth rate, higher citrate synthase activity, higher oxidative stress tolerance and lower expression of serA than strain BW25113 under nutrient-rich conditions, suggesting a fitness cost to increase metabolic plasticity associated with serine metabolism. The overexpression of serA in strain JW0441 resulted in a decreased growth rate and stress tolerance in nutrient-rich conditions similar to that of strain BW25113, suggesting that the negative influence on bacterial fitness imposed by GlnK-AmtB can be traced to the control of serine biosynthesis. Finally, we discuss the potential applications of glnKamtB mutants in bioproduction processes.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotidiltransferasas/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Serina/biosíntesis , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/metabolismo , Microbiología Industrial , Mutación , Nucleotidiltransferasas/metabolismo , Operón/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Serina/genética
12.
J Bacteriol ; 202(19)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32690554

RESUMEN

Listeria monocytogenes is a fastidious bacterial pathogen that can utilize only a limited number of nitrogen sources for growth. Both glutamine and ammonium are common nitrogen sources used in listerial defined growth media, but little is known about the regulation of their uptake or utilization. The functional role of L. monocytogenes GlnR, the transcriptional regulator of nitrogen metabolism genes in low-G+C Gram-positive bacteria, was determined using transcriptome sequencing and real-time reverse transcription-PCR experiments. The GlnR regulon included transcriptional units involved in ammonium transport (amtB glnK) and biosynthesis of glutamine (glnRA) and glutamate (gdhA) from ammonium. As in other bacteria, GlnR proved to be an autoregulatory repressor of the glnRA operon. Unexpectedly, GlnR was most active during growth with ammonium as the nitrogen source and less active in the glutamine medium, apparently because listerial cells perceive growth with glutamine as a nitrogen-limiting condition. Therefore, paradoxically, expression of the glnA gene, encoding glutamine synthetase, was highest in the glutamine medium. For the amtB glnK operon, GlnR served as both a negative regulator in the presence of ammonium and a positive regulator in the glutamine medium. The gdhA gene was subject to a third mode of regulation that apparently required an elevated level of GlnR for repression. Finally, activity of glutamate dehydrogenase encoded by the gdhA gene appeared to correlate inversely with expression of gltAB, the operon that encodes the other major glutamate-synthesizing enzyme, glutamate synthase. Both gdhA and amtB were also regulated, in a negative manner, by the global transcriptional regulator CodY.IMPORTANCEL. monocytogenes is a widespread foodborne pathogen. Nitrogen-containing compounds, such as the glutamate-containing tripeptide, glutathione, and glutamine, have been shown to be important for expression of L. monocytogenes virulence genes. In this work, we showed that a transcriptional regulator, GlnR, controls expression of critical listerial genes of nitrogen metabolism that are involved in ammonium uptake and biosynthesis of glutamine and glutamate. A different mode of GlnR-mediated regulation was found for each of these three pathways.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Nitrógeno/metabolismo , Compuestos de Amonio/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico/biosíntesis , Ácido Glutámico/genética , Glutamina/biosíntesis , Glutamina/genética , Listeria monocytogenes/crecimiento & desarrollo , Mutación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Operón , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Regiones Promotoras Genéticas , RNA-Seq , Regulón , Transactivadores/genética , Transactivadores/metabolismo , Transcriptoma , Virulencia/genética
13.
Genomics ; 112(5): 3497-3503, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562829

RESUMEN

Nitrogen (N) element is essential nutrient, and affect metabolism of secondary metabolites in higher plants. Ascorbate peroxidase (APX) plays an important role in ascorbic acid (AsA) metabolism of tea plant. However, the roles of cytosolic ascorbate peroxidase 1 (CsAPX1) in AsA metabolism under N deficiency stress in tea plant remains unclear in detail. In this work, nitrogen regulatory protein P-II (CsGLB1) and CsAPX1 were identified by isobaric tags for relative and absolute quantitation (iTRAQ) from tea plant. The cell growth rates in transgenic Escherichia coli overexpressing CsAPX1 and CsGLB1 were higher than empty vector under N sufficiency condition. Phenotype of shoots and roots, AsA accumulation, and expression levels of AtAPX1 and AtGLB1 genes were changed in transgenic Arabidopsis hosting CsAPX1 under N deficiency stress. These findings suggested that cytosolic CsAPX1 acted a regulator in AsA accumulation through cooperating with GLB1 under N deficiency stress in tea plant.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/metabolismo , Camellia sinensis/metabolismo , Nitrógeno/fisiología , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidasas/genética , Camellia sinensis/enzimología , Camellia sinensis/genética , Escherichia coli/crecimiento & desarrollo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Estrés Fisiológico/genética
14.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060028

RESUMEN

PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Alineación de Secuencia
15.
New Phytol ; 227(3): 722-731, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32077495

RESUMEN

The PII superfamily consists of signal transduction proteins found in all domains of life. Canonical PII proteins sense the cellular energy state through the competitive binding of ATP and ADP, and carbon/nitrogen balance through 2-oxoglutarate binding. The ancestor of Archaeplastida inherited its PII signal transduction protein from an ancestral cyanobacterial endosymbiont. Over the course of evolution, plant PII proteins acquired a glutamine-sensing C-terminal extension, subsequently present in all Chloroplastida PII proteins. The PII proteins of various algal strains (red, green and nonphotosynthetic algae) have been systematically investigated with respect to their sensory and regulatory properties. Comparisons of the PII proteins from different phyla of oxygenic phototrophs (cyanobacteria, red algae, Chlorophyta and higher plants) have yielded insights into their evolutionary conservation vs adaptive properties. The highly conserved role of the controlling enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK), as a main PII-interactor has been demonstrated across oxygenic phototrophs of cyanobacteria and Archaeplastida. In addition, the PII signalling system of red algae has been identified as an evolutionary intermediate between that of Cyanobacteria and Chloroplastida. In this review, we consider recent advances in understanding metabolic signalling by PII proteins of the plant kingdom.


Asunto(s)
Cianobacterias , Rhodophyta , Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Ácidos Cetoglutáricos , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Transducción de Señal
16.
Science ; 367(6478)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32029600

RESUMEN

Because environmentally degrading inorganic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced nitrogen use efficiency. We found that genome-wide promotion of histone H3 lysine 27 trimethylation (H3K27me3) enables nitrogen-induced stimulation of rice tillering: APETALA2-domain transcription factor NGR5 (NITROGEN-MEDIATED TILLER GROWTH RESPONSE 5) facilitates nitrogen-dependent recruitment of polycomb repressive complex 2 to repress branching-inhibitory genes via H3K27me3 modification. NGR5 is a target of gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1)-promoted proteasomal destruction. DELLA proteins (characterized by the presence of a conserved aspartate-glutamate-leucine-leucine-alanine motif) competitively inhibit the GID1-NGR5 interaction and explain increased tillering of green revolution varieties. Increased NGR5 activity consequently uncouples tillering from nitrogen regulation, boosting rice yield at low nitrogen fertilization levels. NGR5 thus enables enhanced nitrogen use efficiency for improved future agricultural sustainability and food security.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Agricultura , Grano Comestible/genética , Fertilizantes , Giberelinas/metabolismo , Metilación , Oryza/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
17.
FEBS J ; 287(3): 465-482, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31287617

RESUMEN

During evolution, several algae and plants became heterotrophic and lost photosynthesis; however, in most cases, a nonphotosynthetic plastid was maintained. Among these organisms, the colourless alga Polytomella parva is a special case, as its plastid is devoid of any DNA, but is maintained for specific metabolic tasks carried out by nuclear encoded enzymes. This makes P. parva attractive to study molecular events underlying the transition from autotrophic to heterotrophic lifestyle. Here we characterize metabolic adaptation strategies of P. parva in comparison to the closely related photosynthetic alga Chlamydomonas reinhardtii with a focus on the role of plastid-localized PII signalling protein. Polytomella parva accumulates significantly higher amounts of most TCA cycle intermediates as well as glutamate, aspartate and arginine, the latter being specific for the colourless plastid. Correlating with the altered metabolite status, the carbon/nitrogen sensory PII signalling protein and its regulatory target N-acetyl-l-glutamate-kinase (NAGK; the controlling enzyme of arginine biosynthesis) show unique features: They have co-evolved into a stable hetero-oligomeric complex, irrespective of effector molecules. The PII signalling protein, so far known as a transiently interacting signalling protein, appears as a permanent subunit of the enzyme NAGK. NAGK requires PII to properly sense the feedback inhibitor arginine, and moreover, PII tunes arginine-inhibition in response to glutamine. No other PII effector molecules interfere, indicating that the PII-NAGK system in P. parva has lost the ability to estimate the cellular energy and carbon status but has specialized to provide an entirely glutamine-dependent arginine feedback control, highlighting the evolutionary plasticity of PII signalling system.


Asunto(s)
Chlorophyceae/metabolismo , Evolución Molecular , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Proteínas de Plantas/metabolismo , Arginina/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlorophyceae/genética , Retroalimentación Fisiológica , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Multimerización de Proteína
18.
J Proteome Res ; 19(1): 92-105, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31599156

RESUMEN

Azospirillum brasilense is a diazotrophic microorganism capable of associating with roots of important grasses and cereals, promoting plant growth and increasing crop yields. Nitrogen levels and the Ntr regulatory system control the nitrogen metabolism in A. brasilense. This system comprises the nitrogen regulatory proteins GlnD, which is capable of adding uridylyl groups to the PII proteins, GlnB (PII-1) and GlnZ (PII-2), under limiting nitrogen levels. Under such conditions, the histidine kinase NtrB (nitrogen regulatory protein B) cannot interact with GlnB and phosphorylate NtrC (nitrogen regulatory protein C). The phosphorylated form of NtrC acts as a transcriptional activator of genes involved in the metabolism of alternative nitrogen sources. Considering the key role of NtrC in nitrogen metabolism in A. brasilense, in this work we evaluated the proteomic and metabolomic profiles of the wild-type FP2 strain and its mutant ntrC grown under high and low nitrogen. Analysis of the integrated data identifies novel NtrC targets, including proteins involved in the response against oxidative stress (i.e., glutathione S-transferase and hydroperoxide resistance protein), underlining the importance of NtrC to bacterial survival under oxidative stress conditions.


Asunto(s)
Azospirillum brasilense , Proteómica , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Fijación del Nitrógeno , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo
19.
Biochim Biophys Acta Proteins Proteom ; 1868(3): 140348, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31866507

RESUMEN

Herbaspirillum seropedicae is a plant growth promoting bacterium that is able to fix nitrogen and to colonize the surface and internal tissues of important crops. Nitrogen fixation in H. seropedicae is regulated at the transcriptional level by the prokaryotic enhancer binding protein NifA. The activity of NifA is negatively affected by oxygen and positively stimulated by interaction with GlnK, a PII signaling protein that monitors intracellular levels of the key metabolite 2-oxoglutarate (2-OG) and functions as an indirect sensor of the intracellular nitrogen status. GlnK is also subjected to a cycle of reversible uridylylation in response to intracellular levels of glutamine. Previous studies have established the role of the N-terminal GAF domain of NifA in intramolecular repression of NifA activity and the role of GlnK in relieving this inhibition under nitrogen-limiting conditions. However, the mechanism of this control of NifA activity is not fully understood. Here, we constructed a series of GlnK variants to elucidate the role of uridylylation and effector binding during the process of NifA activation. Our data support a model whereby GlnK uridylylation is not necessary to activate NifA. On the other hand, binding of 2-OG and MgATP to GlnK are very important for NifA activation and constitute the most important signal of cellular nitrogen status to NifA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Herbaspirillum , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Sitio Alostérico , Escherichia coli/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutagénesis , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Unión Proteica
20.
Sci Rep ; 9(1): 18985, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831819

RESUMEN

PII proteins comprise an ancient superfamily of signal transduction proteins, widely distributed among all domains of life. In general, PII proteins measure and integrate the current carbon/nitrogen/energy status of the cell through interdependent binding of ATP, ADP and 2-oxogluterate. In response to effector molecule binding, PII proteins interact with various PII-receptors to tune central carbon- and nitrogen metabolism. In cyanobacteria, PII regulates, among others, the key enzyme for nitrogen-storage, N-acetyl-glutamate kinase (NAGK), and the co-activator of the global nitrogen-trascription factor NtcA, the PII-interacting protein-X (PipX). One of the remarkable PII variants from Synechococcus elongatus PCC 7942 that yielded mechanistic insights in PII-NAGK interaction, is the NAGK-superactivating variant I86N. Here we studied its interaction with PipX. Another critical residue is Lys58, forming a salt-bridge with 2-oxoglutarate in a PII-ATP-2-oxoglutarate complex. Here, we show that Lys58 of PII protein is a key residue for mediating PII interactions. The K58N mutation not only causes the loss of 2-oxogluterate binding but also strongly impairs binding of ADP, NAGK and PipX. Remarkably, the exchange of the nearby Leu56 to Lys in the K58N variant partially compensates for the loss of K58. This study demonstrates the potential of creating custom tailored PII variants to modulate metabolism.


Asunto(s)
Proteínas Bacterianas , Mutación Missense , Proteínas PII Reguladoras del Nitrógeno , Transducción de Señal , Synechococcus , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...