Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.017
Filtrar
1.
Vet Res ; 55(1): 99, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107851

RESUMEN

Scrapie is a transmissible spongiform encephalopathy affecting sheep and goats. The prion protein-encoding gene (PRNP) plays a crucial role in determining susceptibility and resistance to scrapie. At the European level, surveillance of scrapie is essential to prevent the spread of the disease to livestock. According to the Regulation EU 2020/772 polymorphisms K222, D/S146 could function as resistance alleles in the genetic management of disease prevention. In Italy, a breeding plan for scrapie eradication has not been implemented for goats. However, surveillance plans based on the PRNP genotype have been developed as a preventive measure for scrapie. This research aimed to describe the polymorphisms at 7 positions within the PRNP gene in 956 goats of the Alpine, Saanen and mixed populations farmed in the Lombardy Region in Italy. PRNP polymorphisms were detected using single nucleotide polymorphism markers included in the Neogen GGP Goat 70 k chip. The K222 allele occurred in all populations, with frequencies ranging from 2.1 to 12.7%. No animals carried the S/D146 resistance allele. However, it has been demonstrated that polymorphisms in the other positions analysed could influence resistance or susceptibility to scrapie outbreaks in different ways. Ten potentially distinct haplotypes were found, and the most prevalent of the three populations was H2, which differed from the wild type (H1) in terms of mutation (S vs P) at codon 240. This study provided additional information on the genetic variability of the PRNP gene in these populations in the Lombardy region of Italy, contributing to the development of genetic control measures for disease prevention.


Asunto(s)
Enfermedades de las Cabras , Cabras , Proteínas Priónicas , Scrapie , Animales , Italia/epidemiología , Cabras/genética , Enfermedades de las Cabras/genética , Enfermedades de las Cabras/epidemiología , Proteínas Priónicas/genética , Scrapie/genética , Scrapie/epidemiología , Codón/genética , Variación Genética , Polimorfismo de Nucleótido Simple
2.
J Clin Invest ; 134(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087478

RESUMEN

Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.


Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones Transgénicos , Enfermedades por Prión , Proteínas Priónicas , Animales , Ratones , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Mutación Missense , Humanos , Arvicolinae/genética , Arvicolinae/metabolismo , Sustitución de Aminoácidos , Priones/genética , Priones/metabolismo , Pliegue de Proteína
3.
Vet Res ; 55(1): 98, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095901

RESUMEN

The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica , Animales , Ciervos/genética , Dinamarca , Variación Genética , Genotipo , Alemania/epidemiología , Polimorfismo Genético , Proteínas Priónicas/genética , Priones/genética , Enfermedad Debilitante Crónica/genética , Enfermedad Debilitante Crónica/epidemiología
5.
Arch Biochem Biophys ; 758: 110087, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977154

RESUMEN

Protein aggregation in the form of amyloid fibrils has long been associated with the onset and development of various amyloidoses, including Alzheimer's, Parkinson's or prion diseases. Recent studies of their fibril formation process have revealed that amyloidogenic protein cross-interactions may impact aggregation pathways and kinetic parameters, as well as the structure of the resulting aggregates. Despite a growing number of reports exploring this type of interaction, they only cover just a small number of possible amyloidogenic protein pairings. One such pair is between two neurodegeneration-associated proteins: the pro-inflammatory S100A9 and prion protein, which are known to co-localize in vivo. In this study, we examined their cross-interaction in vitro and discovered that the fibrillar form of S100A9 modulated the aggregation pathway of mouse prion protein 89-230 fragment, while non-aggregated S100A9 also significantly inhibited its primary nucleation process. These results complement previous observations of the pro-inflammatory protein's role in amyloid aggregation and highlight its potential role against neurodegenerative disorders.


Asunto(s)
Amiloide , Calgranulina B , Proteínas Priónicas , Agregado de Proteínas , Calgranulina B/metabolismo , Calgranulina B/química , Animales , Ratones , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Amiloide/metabolismo , Amiloide/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/química , Cinética
6.
Dalton Trans ; 53(28): 11995-12006, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38963284

RESUMEN

The spontaneous aggregation of infectious or misfolded forms of prion protein is known to be responsible for neurotoxicity in brain cells, which ultimately leads to the progression of prion disorders. Bovine spongiform encephalopathy (BSE) in animals and Creutzfeldt-Jakob disease (CJD) in humans are glaring examples in this regard. Square-planar complexes with labile ligands and indole-based compounds are found to be efficiently inhibitory against protein aggregation. Herein, we report the synthesis of an indole-based cyclometallated palladium complex. The ligand and complex were characterized by various spectroscopic techniques such as UV-visible, NMR, IR, and HRMS. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with PrP106-126 was studied using UV-visible spectroscopy, CD spectroscopy, MALDI-TOF MS, and molecular docking. The inhibition effects of the complex on the PrP106-126 aggregation, fibrillization and amyloid formation phenomena were analysed through the ThT assay, CD, TEM and AFM. The effect of the complex on the aggregation process of PrP106-126 was determined kinetically through the ThT assay. The complex presented high binding affinity with the peptide and influenced the peptide's conformation and aggregation in different modes of binding. Furthermore, the MTT assay on neuronal HT-22 cells showed considerable protective properties of the complex against PrP106-126-mediated cytotoxicity. These findings suggest that the compound influences peptide aggregation in different ways, and the anti-aggregation action is primarily associated with the metal's physicochemical properties and the reactivity rather than the ligand. As a result, we propose that this compound be investigated as a potential therapeutic molecule in metallopharmaceutical research to treat prion disease (PD).


Asunto(s)
Complejos de Coordinación , Indoles , Paladio , Agregado de Proteínas , Paladio/química , Paladio/farmacología , Humanos , Indoles/química , Indoles/farmacología , Agregado de Proteínas/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Proteínas Priónicas/antagonistas & inhibidores , Priones
7.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 1011-1019, 2024 Jul 06.
Artículo en Chino | MEDLINE | ID: mdl-39034785

RESUMEN

Objective: To investigate the effects and possible mechanisms of caffeic acid phenethyl ester (CAPE) on the replication, amplification, and fibre formation of prions (PrPSc). Methods: The CCK8 assay was used to detect the cell viability of the prion-infected cell model SMB-S15 after CAPE treatment for 3 days and 7 days and the maximum safe concentration of CAPE for SMB-S15 was obtained. The cells were treated with a concentration within a safe range, and the content of PrPSc in the cells before and after CAPE treatment was analyzed by western blot. Protein misfolding cycle amplification (PMCA) and western blot were used to assess changes in PrPSc level in amplification products following CAPE treatment. Real-time-quaking induced conversion assay (RT-QuIC) technology was employed to explore the changes in fibril formation before and after CAPE treatment. The binding affinity between CAPE and murine recombinant full-length prion protein was determined using a molecular interaction assay. Results: CCK8 cell viability assay results demonstrated that treatment with 1 µmol/L CAPE for 3 and 7 days did not exhibit statistically significant differences in cell viability compared to the control group (all P<0.05). However, when the concentration of CAPE exceeded 1 µmol/L, a significant reduction in cell viability was observed in cells treated with CAPE for 3 and 7 days, compared to the control group (all P<0.05). Thus, 1 µmol/L was determined as the maximum safe concentration of CAPE treatment for SMB-S15 cells. The western blot results revealed that treatment with CAPE for both 3 and 7 days led to a detectable reduction in the levels of PrPSc in SMB-S15 cells (all P<0.05). The products of PMCA experiments were assessed using western blot. The findings revealed a significant decrease in the levels of PrPSc (relative grey value) in the PMCA amplification products of adapted-strains SMB-S15, 139A, and ME7 following treatment with CAPE, as compared to the control group (all P<0.05). The RT-QuIC experimental results demonstrated a reduction in fibril formation (as indicated by ThT peak values) in CAPE-treated mouse-adapted strains 139A, ME7, and SMB-S15, as well as in SMB-S15 cells infected with prions. Furthermore, CAPE exhibited varying degrees of inhibition towards different seed fibrils formation, with statistically significant differences observed (all P<0.05). Notably, CAPE exhibited a more pronounced inhibitory effect on ME7 seed fibrils. Molecular interaction analyses demonstrated significant binding between CAPE and murine recombinant prion protein, and the association constant was (2.92±0.41)×10-6 mol/L. Conclusions: CAPE inhibits PrPSc replication, amplification, and fibril formation in vitro possibly due to specific interactions with the prion protein at the molecular level.


Asunto(s)
Ácidos Cafeicos , Alcohol Feniletílico , Animales , Ácidos Cafeicos/farmacología , Ratones , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Supervivencia Celular/efectos de los fármacos , Proteínas PrPSc/metabolismo , Priones , Línea Celular , Proteínas Priónicas/metabolismo
8.
Acta Neuropathol ; 148(1): 2, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980441

RESUMEN

Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.


Asunto(s)
Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Enfermedades Neurodegenerativas , Humanos , Proteína ADAM10/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Proteínas Priónicas/metabolismo , Proteínas de la Membrana/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Anticuerpos
9.
PLoS Pathog ; 20(7): e1012350, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950080

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting deer, elk and moose in North America and reindeer, moose and red deer in Northern Europe. Pathogenesis is driven by the accumulation of PrPSc, a pathological form of the host's cellular prion protein (PrPC), in the brain. CWD is contagious among North American cervids and Norwegian reindeer, with prions commonly found in lymphatic tissue. In Nordic moose and red deer CWD appears exclusively in older animals, and prions are confined to the CNS and undetectable in lymphatic tissues, indicating a sporadic origin. We aimed to determine transmissibility, neuroinvasion and lymphotropism of Nordic CWD isolates using gene-targeted mice expressing either wild-type (138SS/226QQ) or S138N (138NN/226QQ) deer PrP. When challenged with North American CWD strains, mice expressing S138N PrP did not develop clinical disease but harbored prion seeding activity in brain and spleen. Here, we infected these models intracerebrally or intraperitoneally with Norwegian moose, red deer and reindeer CWD isolates. The moose isolate was the first CWD type to cause full-blown disease in the 138NN/226QQ model in the first passage, with 100% attack rate and shortened survival times upon second passage. Furthermore, we detected prion seeding activity or PrPSc in brains and spinal cords, but not spleens, of 138NN/226QQ mice inoculated intraperitoneally with the moose isolate, providing evidence of prion neuroinvasion. We also demonstrate, for the first time, that transmissibility of the red deer CWD isolate was restricted to transgenic mice overexpressing elk PrPC (138SS/226EE), identical to the PrP primary structure of the inoculum. Our findings highlight that susceptibility to clinical disease is determined by the conformational compatibility between prion inoculum and host PrP primary structure. Our study indicates that neuroinvasion of Norwegian moose prions can occur without, or only very limited, replication in the spleen, an unprecedented finding for CWD.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/transmisión , Enfermedad Debilitante Crónica/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Priónicas/metabolismo , Proteínas Priónicas/genética , Ratones Transgénicos , Noruega , Marcación de Gen , Priones/metabolismo , Priones/genética , Priones/patogenicidad
10.
Acta Neuropathol ; 148(1): 10, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048735

RESUMEN

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Mutación de Línea Germinal , Proteínas Priónicas , Humanos , Proteínas Priónicas/genética , Masculino , Femenino , Anciano , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Persona de Mediana Edad , Mutación de Línea Germinal/genética , Encéfalo/patología , Anciano de 80 o más Años , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Mutación
11.
PeerJ ; 12: e17552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948234

RESUMEN

Transmissible spongiform encephalopathies (TSEs) are a fatal neurogenerative disease that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and several others as well as the recently described camel prion disease (CPD). CPD originally was documented in 3.1% of camels examined during an antemortem slaughterhouse inspection in the Ouargla region of Algeria. Of three individuals confirmed for CPD, two were sequenced for the exon 3 of the prion protein gene (PRNP) and were identical to sequences previously reported for Camelus dromedarius. Given that other TSEs, such as BSE, are known to be capable of cross-species transmission and that there is household consumption of meat and milk from Camelus, regulations to ensure camel and human health should be a One Health priority in exporting countries. Although the interspecies transmissibility of CPD currently is unknown, genotypic characterization of Camelus PRNP may be used for predictability of predisposition and potential susceptibility to CPD. Herein, eight breeds of dromedary camels from a previous genetic (mitochondrial DNA and microsatellites) and morphological study were genotyped for PRNP and compared to genotypes from CPD-positive Algerian camels. Sequence data from PRNP indicated that Ethiopian camels possessed 100% sequence identity to CPD-positive camels from Algeria. In addition, the camel PRNP genotype is unique compared to other members of the Orders Cetartiodactyla and Perissodactyla and provides an in-depth phylogenetic analysis of families within Cetartiodactyla and Perissodactyla that was used to infer the evolutionary history of the PRNP gene.


Asunto(s)
Camelus , Enfermedades por Prión , Animales , Camelus/genética , Enfermedades por Prión/genética , Enfermedades por Prión/veterinaria , Argelia/epidemiología , Proteínas Priónicas/genética , Genotipo , Filogenia , Priones/genética
12.
Neurology ; 103(2): e209506, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38896810

RESUMEN

OBJECTIVES: To longitudinally characterize disease-relevant CSF and plasma biomarkers in individuals at risk for genetic prion disease up to disease conversion. METHODS: This single-center longitudinal cohort study has followed known carriers of PRNP pathogenic variants at risk for prion disease, individuals with a close relative who died of genetic prion disease but who have not undergone predictive genetic testing, and controls. All participants were asymptomatic at first visit and returned roughly annually. We determined PRNP genotypes, measured NfL and GFAP in plasma, and RT-QuIC, total PrP, NfL, T-tau, and beta-synuclein in CSF. RESULTS: Among 41 carriers and 21 controls enrolled, 28 (68%) and 15 (71%) were female, and mean ages were 47.5 and 46.1. At baseline, all individuals were asymptomatic. We observed RT-QuIC seeding activity in the CSF of 3 asymptomatic E200K carriers who subsequently converted to symptomatic and died of prion disease. 1 P102L carrier remained RT-QuIC negative through symptom conversion. No other individuals developed symptoms. The prodromal window from detection of RT-QuIC positivity to disease onset was 1 year long in an E200K individual homozygous (V/V) at PRNP codon 129 and 2.5 and 3.1 years in 2 codon 129 heterozygotes (M/V). Changes in neurodegenerative and neuroinflammatory markers were variably observed prior to onset, with increases observed for plasma NfL in 4/4 converters, and plasma GFAP, CSF NfL, CSF T-tau, and CSF beta-synuclein each in 2/4 converters, although values relative to age and fold changes relative to individual baseline were not remarkable for any of these markers. CSF PrP was longitudinally stable with mean coefficient of variation 9.0% across all individuals over up to 6 years, including data from converting individuals at RT-QuIC-positive timepoints. DISCUSSION: CSF prion seeding activity may represent the earliest detectable prodromal sign in E200K carriers. Neuronal damage and neuroinflammation markers show limited sensitivity in the prodromal phase. CSF PrP levels remain stable even in the presence of RT-QuIC seeding activity. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT05124392 posted 2017-12-01, updated 2023-01-27.


Asunto(s)
Biomarcadores , Enfermedades por Prión , Proteínas Priónicas , Humanos , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Proteínas Priónicas/genética , Proteínas Priónicas/líquido cefalorraquídeo , Proteínas Priónicas/sangre , Enfermedades por Prión/genética , Enfermedades por Prión/líquido cefalorraquídeo , Enfermedades por Prión/sangre , Enfermedades por Prión/diagnóstico , Estudios Longitudinales , Adulto , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre , Heterocigoto , Proteína Ácida Fibrilar de la Glía/sangre , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Proteína Ácida Fibrilar de la Glía/genética , Progresión de la Enfermedad , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/genética , alfa-Sinucleína/sangre
13.
Science ; 384(6703): ado7082, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935715

RESUMEN

Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.


Asunto(s)
Encéfalo , Metilación de ADN , Dependovirus , Silenciador del Gen , Histonas , Proteínas Priónicas , Animales , Humanos , Ratones , Encéfalo/metabolismo , Dependovirus/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Histonas/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Transgenes
14.
Arch Microbiol ; 206(7): 308, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896139

RESUMEN

Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.


Asunto(s)
Proteínas Fúngicas , Hongos , Plantas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Plantas/microbiología , Hongos/genética , Hongos/metabolismo , Hongos/patogenicidad , Simulación por Computador , Enfermedades de las Plantas/microbiología , Proteínas Priónicas/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/química , Priones/metabolismo , Priones/genética , Priones/química , Virulencia , Interacciones Huésped-Patógeno
15.
Prion ; 18(1): 40-53, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38627365

RESUMEN

Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedad de Gerstmann-Straussler-Scheinker , Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Humanos , Proteínas Priónicas , Proteínas PrPSc/metabolismo , Adhesión en Parafina , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Priones/metabolismo , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Endopeptidasa K , Anticuerpos , Formaldehído
16.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589873

RESUMEN

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Ratones , Animales , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , beta Catenina/metabolismo , Glucocorticoides , Neoplasias del Colon/genética , Neoplasias Colorrectales/genética , Fenotipo , Pronóstico , Vía de Señalización Wnt , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
18.
PLoS Pathog ; 20(4): e1012087, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557815

RESUMEN

Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrPSc propagation in vitro. None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrPSc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions, as well as anti-prion strategies that are not strain-dependent.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Animales , Ratones , Priones/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Síndrome de Creutzfeldt-Jakob/tratamiento farmacológico , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Encéfalo/patología , Arvicolinae/metabolismo
19.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570188

RESUMEN

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Asunto(s)
Proteínas Priónicas , Priones , Proteínas Priónicas/metabolismo , Proteína que Contiene Valosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteostasis , Ubiquitina/metabolismo , Priones/metabolismo
20.
J Biol Chem ; 300(6): 107310, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657863

RESUMEN

Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.


Asunto(s)
Cobre , Histidina , Proteínas Priónicas , Dominios Proteicos , Animales , Ratones , Secuencias de Aminoácidos , Cobre/metabolismo , Cobre/química , Histidina/metabolismo , Histidina/química , Separación de Fases , Proteínas Priónicas/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA