Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Nat Commun ; 15(1): 3554, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688934

RESUMEN

Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.


Asunto(s)
Citrobacter rodentium , Células Dendríticas , Proteínas Proto-Oncogénicas c-bcl-6 , Células Th17 , Animales , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Ratones , Citrobacter rodentium/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Linfocitos T CD8-positivos/inmunología , Eliminación de Gen , Bazo/inmunología , Bazo/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
2.
Immunity ; 57(4): 843-858.e5, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38513666

RESUMEN

Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we showed that IL-4 cytokine signaling in GC B cells directly downregulated the transcription factor BCL6 via negative autoregulation to release cells from the GC program and to promote MBC formation. This selection event required additional survival cues and could therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupted MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.


Asunto(s)
Interleucina-4 , Factores de Transcripción , Linfocitos B , Centro Germinal , Interleucina-4/metabolismo , Células B de Memoria , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo
3.
Biochem Biophys Res Commun ; 705: 149745, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38452514

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease where Th2-type immune responses are dominant. In the lesional skin of AD, keratinocytes show differentiation defects and secrete proinflammatory cytokines and chemokines, amplifying Th2-type responses in AD. We previously reported that inducible loss of B-cell lymphoma 6 (Bcl6), a transcription repressor and a master transcriptional regulator of follicular helper T cells and germinal center B cells, in the whole body results in upregulation of Th2-related cytokines in mouse skin. However, the role of Bcl6 in keratinocytes remains to be clarified. Here, we observed that BCL6 positively regulates the expression of keratinocyte differentiation markers and plasma membrane localization of adherence junctional proteins in keratinocyte cell culture. Although keratinocyte-specific loss of Bcl6 alone did not induce AD-like skin inflammation, it aggravates MC903-induced AD-like skin inflammation in mice. In addition, Bcl6 expression is decreased in the epidermis of lesional skin from MC903-induced AD-like skin inflammation in mice. These results strongly suggest that Bcl6 downregulation in keratinocytes contributes to the development and aggravation of AD-like skin inflammation in mice.


Asunto(s)
Calcitriol/análogos & derivados , Dermatitis Atópica , Ratones , Animales , Epidermis/metabolismo , Piel/metabolismo , Queratinocitos/metabolismo , Citocinas/metabolismo , Inflamación/patología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
4.
J Autoimmun ; 145: 103198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428341

RESUMEN

OBJECTIVES: Expansion of follicular helper T (Tfh) cells and abnormal glucose metabolism are present in patients with systemic lupus erythematosus (SLE). Pyruvate kinase M2 (PKM2) is one of the key glycolytic enzymes, and the underlying mechanism of PKM2-mediated Tfh cell glycolysis in SLE pathogenesis remains elusive. METHODS: We analyzed the percentage of Tfh cells and glycolysis in CD4+ T cells from SLE patients and healthy donors and performed RNA sequencing analysis of peripheral blood CD4+ T cells and differentiated Tfh cells from SLE patients. Following Tfh cell development in vitro and following treatment with PKM2 activator TEPP-46, PKM2 expression, glycolysis, and signaling pathway proteins were analyzed. Finally, diseased MRL/lpr mice were treated with TEPP-46 and assessed for treatment effects. RESULTS: We found that Tfh cell percentage and glycolysis levels were increased in SLE patients and MRL/lpr mice. TEPP-46 induced PKM2 tetramerization, thereby inhibiting Tfh cell glycolysis levels. On the one hand, TEPP-46 reduced the dimeric PKM2 entering the nucleus and reduced binding to the transcription factor BCL6. On the other hand, TEPP-46 inhibited the AKT/GSK-3ß pathway and glycolysis during Tfh cell differentiation. Finally, we confirmed that TEPP-46 effectively alleviated inflammatory damage in lupus-prone mice and reduced the expansion of Tfh cells in vivo. CONCLUSIONS: Our results demonstrate the involvement of PKM2-mediated glycolysis in Tfh cell differentiation and SLE pathogenesis, and PKM2 could be a key therapeutic target for the treatment of SLE.


Asunto(s)
Diferenciación Celular , Modelos Animales de Enfermedad , Glucólisis , Lupus Eritematoso Sistémico , Ratones Endogámicos MRL lpr , Células T Auxiliares Foliculares , Animales , Ratones , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Humanos , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Femenino , Piruvato Quinasa/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Hormonas Tiroideas/metabolismo , Transducción de Señal , Proteínas de Unión a Hormona Tiroide , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética
5.
Sci Immunol ; 9(92): eadk4348, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335269

RESUMEN

TCRαß+CD8αα+ intraepithelial lymphocytes (CD8αα+ αß IELs) are a specialized subset of T cells in the gut epithelium that develop from thymic agonist selected IEL precursors (IELps). The molecular mechanisms underlying the selection and differentiation of this T cell type in the thymus are largely unknown. Here, we found that Bcl6 deficiency in αß T cells resulted in the near absence of CD8αα+ αß IELs. BCL6 was expressed by approximately 50% of CD8αα+ αß IELs and by the majority of thymic PD1+ IELps after agonist selection. Bcl6 deficiency blocked early IELp generation in the thymus, and its expression in IELps was induced by thymic TCR signaling in an ERK-dependent manner. As a result of Bcl6 deficiency, the precursors of IELps among CD4+CD8+ double-positive thymocytes exhibited increased apoptosis during agonist selection and impaired IELp differentiation and maturation. Together, our results elucidate BCL6 as a crucial transcription factor during the thymic development of CD8αα+ αß IELs.


Asunto(s)
Linfocitos Intraepiteliales , Proteínas Proto-Oncogénicas c-bcl-6 , Receptores de Antígenos de Linfocitos T alfa-beta , Animales , Ratones , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/metabolismo , Mucosa Intestinal , Linfocitos Intraepiteliales/metabolismo , Ratones Noqueados , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
6.
Exp Lung Res ; 50(1): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419581

RESUMEN

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Hiperoxia/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , ARN Mensajero/metabolismo
7.
Int J Biol Sci ; 20(2): 486-501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169532

RESUMEN

Ovarian cancer is one of the tumors with the highest fatality rate among gynecological tumors. The current 5-year survival rate of ovarian cancer is <35%. Therefore, more novel alternative strategies and drugs are needed to treat ovarian cancer. The transcription factor B-cell lymphoma 6 (BCL6) is critically associated with poor prognosis and cisplatin resistance in ovarian cancer treatment. Therefore, BCL6 may be an attractive therapeutic target for ovarian cancer. However, the role of targeting BCL6 in ovarian cancer remains elusive. Here, we developed a novel BCL6 small molecule inhibitor, WK369, which exhibits excellent anti-ovarian cancer bioactivity, induces cell cycle arrest and causes apoptosis. WK369 effectively inhibits the growth and metastasis of ovarian cancer without obvious toxicity in vitro and in vivo. meanwhile, WK369 can prolong the survival of ovarian cancer-bearing mice. It is worth noting that WK369 also has significant anti-tumor effects on cisplatin-resistant ovarian cancer cell lines. Mechanistic studies have shown that WK369 can directly bind to the BCL6-BTB domain and block the interaction between BCL6 and SMRT, leading to the reactivation of p53, ATR and CDKN1A. BCL6-AKT, BCL6-MEK/ERK crosstalk is suppressed. As a first attempt, our study demonstrates that targeting BCL6 may be an effective approach to treat ovarian cancer and that WK369 has the potential to be used as a candidate therapeutic agent for ovarian cancer.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Factores de Transcripción , Línea Celular Tumoral
8.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289985

RESUMEN

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Asunto(s)
Hipertensión , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular , Proliferación Celular/fisiología , Conexinas/metabolismo , Peróxido de Hidrógeno/farmacología , Obesidad , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo
9.
Environ Toxicol ; 39(4): 2390-2404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164749

RESUMEN

Ulcerative colitis (UC) is an idiopathic chronic intestinal inflammation. An increasing body of evidence shows that macrophages play an important role in the pathogenesis of UC. Interferon regulatory factor 4 (IRF4) is crucial for the development of autoimmune diseases via regulating immune cells. This research was designed to explore the function of IRF4 in UC and its association with macrophage polarization. The in vitro model of UC was established by stimulating colonic epithelial cells with tumor necrosis factor α (TNF-α). A mouse model of UC was constructed by injecting C57BL/6 mice with dextran sulfate sodium salt. Flow cytometry was used to assess percentage of CD11b+ CD86+ and CD11b+ CD206+ cells in bone marrow macrophages. Occult blood tests were used to detect hematochezia. Hematoxylin and eosin staining assay was used to assess colon pathological changes. Enzyme-linked immunosorbent assay (ELISA) was used to detect concentrations of inflammatory cytokines. The interaction of IRF4 and B-cell lymphoma 6 (Bcl6) was confirmed using GST pull-down and coimmunoprecipitation assays. Our findings revealed that IRF4 promoted cell apoptosis and stimulated M1 macrophage polarization in vitro. Furthermore, IRF4 aggravated symptoms of the mouse model of UC and aggravated M1 macrophage polarization in vivo. IRF4 negatively regulated Bcl6 expression. Downregulation of Bcl6 promoted apoptosis and M1 macrophage polarization in the presence of IRF4 in vitro and in vivo. Moreover, Bcl6 positively mediated the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. In conclusion, IRF4 aggravated UC progression through promoting M1 macrophage polarization via Bcl6/JAK2/STAT3 pathway. These findings suggested that IRF4 might be a good target to competitively inhibit or to treat with UC.


Asunto(s)
Colitis Ulcerosa , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Modelos Animales de Enfermedad , Inflamación/metabolismo , Factores Reguladores del Interferón/metabolismo , Macrófagos , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factor de Transcripción STAT3/metabolismo
10.
Anim Biotechnol ; 35(1): 2299241, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38178593

RESUMEN

Hypoxia is an important characteristic of Tibetan plateau environment. It can lead to apoptosis, but the mechanism of apoptosis caused by hypoxic stress needs further clarification. Here, cattle kidney cell MDBK were used as cell model. The effect of hypoxic stress on apoptosis and its molecular mechanism were explored. MDBK cells were treated with hypoxic stress, apoptosis and mitochondrial apoptotic pathway were significantly increased, and the expression of B-cell lymphoma 6 (BCL6) was significantly decreased. Overexpressing or inhibiting BCL6 demonstrated that BCL6 inhibited the apoptosis. And the increase of apoptosis controlled by hypoxic stress was blocked by BCL6 overexpressing. MDBK cells were treated with hypoxic stress, the expression and the nuclear localization of p53 were significantly increased. Overexpressing or inhibiting p53 demonstrated that hypoxic stress suppressed the expression of BCL6 through p53. Together, these results indicated that hypoxic stress induced the apoptosis of MDBK cells, and BCL6 was an important negative factor for this regulation process. In MDBK cells, hypoxic stress suppressed the expression of BCL6 through p53/BCL6-mitochondrial apoptotic pathway. This study enhanced current understanding of the molecular mechanisms underlying the regulation of apoptosis by hypoxic stress in MDBK cells.


Asunto(s)
Apoptosis , Proteína p53 Supresora de Tumor , Animales , Bovinos , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/farmacología , Hipoxia
11.
Cell Rep ; 42(11): 113425, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37950867

RESUMEN

Innate lymphoid cells (ILCs) are tissue-resident effector cells with roles in tissue homeostasis, protective immunity, and inflammatory disease. Group 3 ILCs (ILC3s) are classically defined by the master transcription factor RORγt. However, ILC3 can be further subdivided into subsets that share type 3 effector modules that exhibit significant ontological, transcriptional, phenotypic, and functional heterogeneity. Notably lymphoid tissue inducer (LTi)-like ILC3s mediate effector functions not typically associated with other RORγt-expressing lymphocytes, suggesting that additional transcription factors contribute to dictate ILC3 subset phenotypes. Here, we identify Bcl6 as a subset-defining transcription factor of LTi-like ILC3s in mice and humans. Deletion of Bcl6 results in dysregulation of the LTi-like ILC3 transcriptional program and markedly enhances expression of interleukin-17A (IL-17A) and IL-17F in LTi-like ILC3s in a manner in part dependent upon the commensal microbiota-and associated with worsened inflammation in a model of colitis. Together, these findings redefine our understanding of ILC3 subset biology.


Asunto(s)
Linfocitos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Animales , Humanos , Ratones , Inmunidad Innata , Linfocitos/metabolismo , Tejido Linfoide/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo
12.
Sci Immunol ; 8(88): eadj6724, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37862430

RESUMEN

Sun et al. provide comprehensive evidence that the transcription factor BCL6 functions as a gatekeeper for CD8+ progenitor cell function in tumors and prevents their excessive terminal differentiation, thereby preserving this stem-like population for long-term tumor control.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica
13.
Cancer Res ; 83(21): 3624-3635, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37556508

RESUMEN

Imatinib mesylate (IM) has revolutionized the treatment of gastrointestinal stromal tumor (GIST). However, most patients inevitably acquire IM resistance. Second- and third-line treatments exhibit modest clinical benefits with a median time to disease progression of 4 to 6 months, highlighting the urgency for novel therapeutic approaches. Here, we report that the expression of BCL6, a known oncogenic driver and transcriptional repressor, was significantly induced in GIST cells following IM treatment. Elevated BCL6 levels suppressed apoptosis and contributed to IM resistance. Mechanistically, BCL6 recruited SIRT1 to the TP53 promoter to modulate histone acetylation and transcriptionally repress TP53 expression. The reduction in p53 subsequently attenuated cell apoptosis and promoted tolerance of GIST cells to IM. Concordantly, treatment of GIST cells showing high BCL6 expression with a BCL6 inhibitor, BI-3802, conferred IM sensitivity. Furthermore, BI-3802 showed striking synergy with IM in IM-responsive and IM-resistant GIST cells in vitro and in vivo. Thus, these findings reveal a role for BCL6 in IM resistance and suggest that a combination of BCL6 inhibitors and IM could be a potentially effective treatment for GIST. SIGNIFICANCE: BCL6 drives resistance to imatinib by inhibiting p53-mediated apoptosis and can be targeted in combination with imatinib to synergistically suppress tumor growth, providing a therapeutic strategy for treating gastrointestinal stromal tumor.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Humanos , Mesilato de Imatinib/farmacología , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/metabolismo , Proteína p53 Supresora de Tumor/genética , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Apoptosis , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
14.
Nature ; 620(7973): 417-425, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495688

RESUMEN

Genes that drive the proliferation, survival, invasion and metastasis of malignant cells have been identified for many human cancers1-4. Independent studies have identified cell death pathways that eliminate cells for the good of the organism5,6. The coexistence of cell death pathways with driver mutations suggests that the cancer driver could be rewired to activate cell death using chemical inducers of proximity (CIPs). Here we describe a new class of molecules called transcriptional/epigenetic CIPs (TCIPs) that recruit the endogenous cancer driver, or a downstream transcription factor, to the promoters of cell death genes, thereby activating their expression. We focused on diffuse large B cell lymphoma, in which the transcription factor B cell lymphoma 6 (BCL6) is deregulated7. BCL6 binds to the promoters of cell death genes and epigenetically suppresses their expression8. We produced TCIPs by covalently linking small molecules that bind BCL6 to those that bind to transcriptional activators that contribute to the oncogenic program, such as BRD4. The most potent molecule, TCIP1, increases binding of BRD4 by 50% over genomic BCL6-binding sites to produce transcriptional elongation at pro-apoptotic target genes within 15 min, while reducing binding of BRD4 over enhancers by only 10%, reflecting a gain-of-function mechanism. TCIP1 kills diffuse large B cell lymphoma cell lines, including chemotherapy-resistant, TP53-mutant lines, at EC50 of 1-10 nM in 72 h and exhibits cell-specific and tissue-specific effects, capturing the combinatorial specificity inherent to transcription. The TCIP concept also has therapeutic applications in regulating the expression of genes for regenerative medicine and developmental disorders.


Asunto(s)
Apoptosis , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso , Factores de Transcripción , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo , Epigénesis Genética/efectos de los fármacos , Regiones Promotoras Genéticas , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética
15.
J Immunol ; 210(11): 1752-1760, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074193

RESUMEN

T follicular helper (TFH) cells are essential for developing protective Ab responses following vaccination. Greater understanding of the genetic program leading to TFH differentiation is needed. Chromatin modifications are central in the control of gene expression. However, detailed knowledge of how chromatin regulators (CRs) regulate differentiation of TFH cells is limited. We screened a large short hairpin RNA library targeting all known CRs in mice and identified the histone methyltransferase mixed lineage leukemia 1 (Mll1) as a positive regulator of TFH differentiation. Loss of Mll1 expression reduced formation of TFH cells following acute viral infection or protein immunization. In addition, expression of the TFH lineage-defining transcription factor Bcl6 was reduced in the absence of Mll1. Transcriptomics analysis identified Lef1 and Tcf7 as genes dependent on Mll1 for their expression, which provides one mechanism for the regulation of TFH differentiation by Mll1. Taken together, CRs such as Mll1 substantially influence TFH differentiation.


Asunto(s)
Cromatina , Células T Auxiliares Foliculares , Animales , Ratones , Diferenciación Celular , Cromatina/metabolismo , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Colaboradores-Inductores
16.
Sci Rep ; 13(1): 2558, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781858

RESUMEN

Osteoarthritis (OA), the most common type of arthritis, is a complex biological response caused by cartilage wear and synovial inflammation that links biomechanics and inflammation. The progression of OA correlates with a rise in the number of senescent cells in multiple joint tissues. However, the mechanisms by which senescent cells and their involvement with immune infiltration promote OA progression are not fully understood. The gene expression profiles and clinical information of OA and healthy control synovial tissue samples were retrieved from the Gene Expression Omnibus database, and then differential analysis of senescence regulators between OA and normal samples was performed. The random forest (RF) was used to screen candidate senescence regulators to predict the occurrence of OA. The reverse transcription quantitative real-time PCR experiments at tissue's level was performed to confirm these biomarkers. Moreover, two distinct senescence patterns were identified and systematic correlation between these senescence patterns and immune cell infiltration was analyzed. The senescence score and senescence gene clusters were constructed to quantify senescence patterns together with immune infiltration of individual OA patient. 73 senescence differentially expressed genes were identified between OA patients and normal controls. The RF method was utilized to build an OA risk model based on two senescence related genes: BCL6 and VEGFA. Next, two distinct aging patterns were determined in OA synovial samples. Most patients from senescence cluster A were further classified into gene cluster B and high senescence score group correlated with a non-inflamed phenotype, whereas senescence cluster B were classified into gene cluster A and low senescence score group correlated with an inflamed phenotype. Our study revealed that senescence played an important role in in OA synovial inflammation. Evaluating the senescence patterns of individuals with OA will contribute to enhancing our cognition of immune infiltration characterization, providing novel diagnostic and prognostic biomarkers, and guiding more effective immunotherapy strategies.


Asunto(s)
Osteoartritis , Humanos , Osteoartritis/genética , Osteoartritis/metabolismo , Inflamación/genética , Inflamación/metabolismo , Cartílago/metabolismo , Biomarcadores/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
17.
J Exp Med ; 220(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651876

RESUMEN

Innate lymphoid cells (ILC) are similar to T helper (Th) cells in expression of cytokines and transcription factors. For example, RORγt is the lineage-specific transcription factor for both ILC3 and Th17 cells. However, the ILC counterpart for BCL6-expressing T follicular helper (Tfh) cells has not been defined. Here, we report that in the ILC compartment, BCL6 is selectively co-expressed with not only CXCR5 but also RORγt and CCR6 in ILC3 from multiple tissues. BCL6-deficient ILC3 produces enhanced levels of IL-17A and IL-22. More importantly, phenotypic and single-cell ATAC-seq analysis show that absence of BCL6 in mature ILC3 increases the numbers of ILC1 and transitional cells co-expressing ILC3 and ILC1 marker genes. A lineage-tracing experiment further reveals BCL6+ ILC3 to ILC1 trans-differentiation under steady state. Finally, microbiota promote BCL6 expression in colonic CCR6+ ILC3 and thus reinforce their stability. Collectively, our data have demonstrated that CCR6+ ILC3 have both Th17 and Tfh programs and that BCL6 expression in these cells functions to maintain their lineage identity.


Asunto(s)
Linfocitos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Ratones , Animales , Linfocitos/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Inmunidad Innata , Linfocitos T Colaboradores-Inductores/metabolismo , Citocinas/metabolismo , Diferenciación Celular , Factores de Transcripción/metabolismo , Linaje de la Célula , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Receptores CCR6/metabolismo
18.
Cell Mol Life Sci ; 80(1): 14, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542153

RESUMEN

Cancer development is a long-lasting process during which macrophages play a pivotal role. However, how macrophages maintain their cellular identity, persistence, expanding and pro-tumor property during malignant progression remains elusive. Inspired by the recent report of the activation of stem cell-like self-renewal mechanism in mature macrophages, we postulate that intra-tumoral macrophages might be trained to assume stem-like properties and memory-like activity favoring cancer development. Herein we demonstrated that tumor infiltrating macrophages rapidly converted into the CD11b+F4/80+Ly6C-Bcl6+ phenotype, and adopted stem cell-like properties involving expression of stemness-related genes, long-term persistence and self-renewing. Importantly, Bcl6+ macrophages stably maintained cell identity, gene signature, metabolic profile, and pro-tumor property even after long-term culture in tumor-free medium, which were hence termed stem cell-like memory macrophages (SMMs). Mechanistically, we showed that transcriptional factor Bcl6 co-opted the demethylase Tet2 and the deacetylase SIRT1 to confer the epigenetic imprinting and mitochondrial metabolic traits to SMMs, bolstering the stability and longevity of trained immunity in tumor-associated macrophages (TAMs). Furthermore, tumor-derived redHMGB1 was identified as the priming signal, which, through TLR4 and mTOR/AKT pathway, induced Bcl6-driven program underpinning SMMs generation. Collectively, our study uncovers a distinct macrophage population with a hybrid of stem cell and memory cell properties, and unveils a regulatory mechanism that integrates transcriptional, epigenetic and metabolic pathways to promote long-lasting pro-tumor immunity.


Asunto(s)
Macrófagos , Neoplasias , Humanos , Macrófagos/metabolismo , Diferenciación Celular/genética , Neoplasias/patología , Fenotipo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
19.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377663

RESUMEN

Mutational activation of KRAS is a common oncogenic event in lung cancer, yet effective therapies are still lacking. Here, we identify B cell lymphoma 6 (BCL6) as a lynchpin in KRAS-driven lung cancer. BCL6 expression was increased upon KRAS activation in lung tumor tissue in mice and was positively correlated with the expression of KRAS-GTP, the active form of KRAS, in various human cancer cell lines. Moreover, BCL6 was highly expressed in human KRAS-mutant lung adenocarcinomas and was associated with poor patient survival. Mechanistically, the MAPK/ERK/ELK1 signaling axis downstream of mutant KRAS directly regulated BCL6 expression. BCL6 maintained the global expression of prereplication complex components; therefore, BCL6 inhibition induced stalling of the replication fork, leading to DNA damage and growth arrest in KRAS-mutant lung cancer cells. Importantly, BCL6-specific knockout in lungs significantly reduced the tumor burden and mortality in the LSL-KrasG12D/+ lung cancer mouse model. Likewise, pharmacological inhibition of BCL6 significantly impeded the growth of KRAS-mutant lung cancer cells both in vitro and in vivo. In summary, our findings reveal a crucial role of BCL6 in promoting KRAS-addicted lung cancer and suggest BCL6 as a therapeutic target for the treatment of this intractable disease.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pulmonares/metabolismo , Mutación , Modelos Animales de Enfermedad , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
20.
Sci Rep ; 12(1): 18633, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329085

RESUMEN

By suppressing gene transcription through the recruitment of corepressor proteins, B-cell lymphoma 6 (BCL6) protein controls a transcriptional network required for the formation and maintenance of B-cell germinal centres. As BCL6 deregulation is implicated in the development of Diffuse Large B-Cell Lymphoma, we sought to discover novel small molecule inhibitors that disrupt the BCL6-corepressor protein-protein interaction (PPI). Here we report our hit finding and compound optimisation strategies, which provide insight into the multi-faceted orthogonal approaches that are needed to tackle this challenging PPI with small molecule inhibitors. Using a 1536-well plate fluorescence polarisation high throughput screen we identified multiple hit series, which were followed up by hit confirmation using a thermal shift assay, surface plasmon resonance and ligand-observed NMR. We determined X-ray structures of BCL6 bound to compounds from nine different series, enabling a structure-based drug design approach to improve their weak biochemical potency. We developed a time-resolved fluorescence energy transfer biochemical assay and a nano bioluminescence resonance energy transfer cellular assay to monitor cellular activity during compound optimisation. This workflow led to the discovery of novel inhibitors with respective biochemical and cellular potencies (IC50s) in the sub-micromolar and low micromolar range.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Cristalografía por Rayos X , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Linfoma de Células B Grandes Difuso/patología , Diseño de Fármacos , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...