Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 97(31): e11659, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30075554

RESUMEN

This study aimed to investigate the potential therapeutic targets of Liuwei Dihuang pill (LDP) in the treatment of postmenopausal osteoporosis with kidney-Yin deficiency (PMO-KY).Gene expression data were downloaded from the GEO database, including 4 PMO-KY samples and 3 healthy postmenopausal controls from GSE56116, as well as 3 PMO-KY samples before LDP treatment and 3 PMO-KY samples after three months of LDP treatment from GSE57273. Limma package was used to identify differentially expressed genes (DEGs). Afterwards, the potential target genes of LDP (namely key DEGs) were identified according to the comparison of DEGs in PMO-KY group and the DEGs in LDP treatment groups. Subsequently, iRegulon plugin in Cytoscape software was used to predict potential transcription factors (TFs) that regulated the key DEGs, and Comparative Toxicogenomics Database was utilized to identify known PMO-related genes among the key DEGs.Totally, 202 and 2066 DEGs were identified between PMO-KY and controls, as well as after-treatment and before-treatment groups, respectively. Among them, 52 DEGs were up-regulated in PMO-KY but down-regulated after LDP treatment, and 8 TFs were predicted to these DEGs. Furthermore, 34 DEGs were down-regulated in PMO-KY but up-regulated after treatment, and 7 TFs were predicted to regulate these DEGs. Additionally, 43 of the 86 key DEGs were known PMO-related genes.NCOA3, TCF4, DUSP6, PELI2, and STX7 were predicted to be regulated by HOXA13. In the PMO-KY treatment, NCOA3, TCF4, DUSP6, PELI2, and STX7 might be the potential therapeutic targets of LDP. However, further investigation is required to confirm these genes.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/genética , Deficiencia Yin/tratamiento farmacológico , Deficiencia Yin/genética , Estudios de Casos y Controles , Fosfatasa 6 de Especificidad Dual/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Proteínas de Homeodominio/efectos de los fármacos , Humanos , Riñón/metabolismo , Persona de Mediana Edad , Proteínas Nucleares/efectos de los fármacos , Coactivador 3 de Receptor Nuclear/efectos de los fármacos , Proteínas Qa-SNARE/efectos de los fármacos , Toxicogenética , Factor de Transcripción 4/efectos de los fármacos , Ubiquitina-Proteína Ligasas/efectos de los fármacos
2.
Anesthesiology ; 115(6): 1162-71, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22024713

RESUMEN

BACKGROUND: Volatile general anesthetics inhibit neurotransmitter release by a mechanism not fully understood. Genetic evidence in Caenorhabditis elegans has shown that a major mechanism of action of volatile anesthetics acting at clinical concentrations in this animal is presynaptic inhibition of neurotransmission. To define additional components of this presynaptic volatile anesthetic mechanism, C. elegans mutants isolated as phenotypic suppressors of a mutation in syntaxin, an essential component of the neurotransmitter release machinery, were screened for anesthetic sensitivity phenotypes. METHODS: Sensitivity to isoflurane concentrations was measured in locomotion assays on adult C. elegans. Sensitivity to the acetylcholinesterase inhibitor aldicarb was used as an assay for the global level of C. elegans acetylcholine release. Comparisons of isoflurane sensitivity (measured by the EC50) were made by simultaneous curve-fitting and F test. RESULTS: Among the syntaxin suppressor mutants, js127 was the most isoflurane resistant, with an EC50 more than 3-fold that of wild type. Genetic mapping, sequencing, and transformation phenocopy showed that js127 was an allele of acy-1, which encodes an adenylate cyclase expressed throughout the C. elegans nervous system and in muscle. js127 behaved as a gain-of-function mutation in acy-1 and had increased concentrations of cyclic adenosine monophosphate. Testing of single and double mutants along with selective tissue expression of the js127 mutation revealed that acy-1 acts in neurons within a Gαs-PKA-UNC-13-dependent pathway to regulate behavior and isoflurane sensitivity. CONCLUSIONS: Activation of neuronal adenylate cyclase antagonizes isoflurane inhibition of locomotion in C. elegans.


Asunto(s)
Adenilil Ciclasas/genética , Caenorhabditis elegans/genética , Resistencia a Medicamentos/genética , Isoflurano/farmacología , Mutación/genética , Proteínas Qa-SNARE/genética , Acetilcolina/metabolismo , Adenilil Ciclasas/metabolismo , Aldicarb/metabolismo , Aldicarb/farmacología , Alelos , Anestésicos por Inhalación/metabolismo , Anestésicos por Inhalación/farmacología , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Mapeo Cromosómico/métodos , Isoflurano/metabolismo , Proteínas Qa-SNARE/efectos de los fármacos , Proteínas Qa-SNARE/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA