Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.935
Filtrar
1.
Physiol Res ; 73(2): 253-263, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38710055

RESUMEN

Up to now, there's a limited number of studies on the relationship between PINK1/Park2 pathway and mitophagy in NAFLD. To investigate the effect of Park2-mediated mitophagy on non-alcoholic fatty liver disease (NAFLD). Oleic acid was used for the establishment of NAFLD model. Oil red-dyed lipid drops and mitochondrial alternations were observed by transmission electron microscopy. Enzymatic kit was used to test lipid content. The levels of IL-8 and TNF-alpha were determined by ELISA. Lenti-Park2 and Park2-siRNA were designed to upregulate and downregulate Park2 expression, respectively. The changing expression of PINK and Park2 was detected by RT-qPCR and Western blot. Immunofluorescence staining was applied to measure the amount of LC3. Successful NAFLD modeling was featured by enhanced lipid accumulation, as well as the elevated total cholesterol (TC), triglyceride (TG), TNF-alpha and IL-8 levels. Mitochondria in NAFLD model were morphologically and functionally damaged. Park2 expression was upregulated by lenti-Park2 and downregulated through Park2-siRNA. The PINK1 expression showed the same trend as Park2 expression. Immunofluorescence staining demonstrated that the when Park2 was overexpressed, more LC3 protein on mitochondrial autophagosome membrane was detected, whereas Park2 knockdown impeded LC3' locating on the membrane. The transmission electron microscopy image exhibited that the extent of damage to the mitochondrial in NAFLD model was revered by enhanced Park2 expression but further exacerbated by reduced Park2 expression. Park2-mediated mitophagy could relive NAFLD and may be a novel therapeutic target for NAFLD treatment. Keywords: Non-alcoholic Fatty Liver Disease (NAFLD), Mitophagy, PINK1/Park2, Park2, PINK1.


Asunto(s)
Mitofagia , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Mitofagia/fisiología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Masculino , Humanos , Ratones
2.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714914

RESUMEN

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteínas Fúngicas , Oryza , Proteómica , Oryza/microbiología , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Mutación , Multiómica , Ascomicetos
3.
Funct Plant Biol ; 512024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723163

RESUMEN

The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.


Asunto(s)
Sequías , Filogenia , Proteínas de Plantas , Solanum tuberosum , Estrés Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Calor , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
4.
Planta ; 259(6): 149, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724681

RESUMEN

MAIN CONCLUSION: The rice SnRK2 members SAPK4, SAPK5, SAPK7 and SAPK10 are positive regulators involved in the regulation of rice flowering, while other single mutants exhibited no effect on rice flowering. The rice SnRK2 family, comprising 10 members known as SAPK (SnRK2-Associated Protein Kinase), is pivotal in the abscisic acid (ABA) pathway and crucial for various biological processes, such as drought resistance and salt tolerance. Additionally, these members have been implicated in the regulation of rice heading date, a key trait influencing planting area and yield. In this study, we utilized gene editing technology to create mutants in the Songjing 2 (SJ2) background, enabling a comprehensive analyze the role of each SAPK member in rice flowering. We found that SAPK1, SAPK2, and SAPK3 may not directly participate in the regulatory network of rice heading date, while SAPK4, SAPK5, and SAPK7 play positive roles in rice flowering regulation. Notably, polygene deletion resulted in an additive effect on delaying flowering. Our findings corroborate the previous studies indicating the positive regulatory role of SAPK10 in rice flowering, as evidenced by delayed flowering observed in sapk9/10 double mutants. Moving forward, our future research will focus on analyzing the molecular mechanisms underlying SAPKs involvement in rice flowering regulation, aiming to enhance our understanding of the rice heading date relationship network and lay a theoretical foundation for breeding efforts to alter rice ripening dates.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oryza/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Edición Génica , Estrés Fisiológico/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ácido Abscísico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697845

RESUMEN

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ergocalciferoles , Proteínas de la Membrana , Ratones Noqueados , Mitofagia , Proteínas Quinasas , Receptores de Calcitriol , Estreptozocina , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Mitofagia/genética , Mitofagia/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Fibrosis , Túbulos Renales/metabolismo , Túbulos Renales/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Ratones Endogámicos C57BL , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos
6.
Medicine (Baltimore) ; 103(18): e37837, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701259

RESUMEN

In this study, we aimed to investigate the involvement of PANoptosis, a form of regulated cell death, in the development of steroid-induced osteonecrosis of the femoral head (SONFH). The underlying pathogenesis of PANoptosis in SONFH remains unclear. To address this, we employed bioinformatics approaches to analyze the key genes associated with PANoptosis. Our analysis was based on the GSE123568 dataset, allowing us to investigate both the expression profiles of PANoptosis-related genes (PRGs) and the immune profiles in SONFHallowing us to investigate the expression profiles of PRGs as well as the immune profiles in SONFH. We conducted cluster classification based on PRGs and assessed immune cell infiltration. Additionally, we used the weighted gene co-expression network analysis (WGCNA) algorithm to identify cluster-specific hub genes. Furthermore, we developed an optimal machine learning model to identify the key predictive genes responsible for SONFH progression. We also constructed a nomogram model with high predictive accuracy for assessing risk factors in SONFH patients, and validated the model using external data (area under the curve; AUC = 1.000). Furthermore, we identified potential drug targets for SONFH through the Coremine medical database. Using the optimal machine learning model, we found that 2 PRGs, CASP1 and MLKL, were significantly correlated with the key predictive genes and exhibited higher expression levels in SONFH. Our analysis revealed the existence of 2 distinct PANoptosis molecular subtypes (C1 and C2) within SONFH. Importantly, we observed significant variations in the distribution of immune cells across these subtypes, with C2 displaying higher levels of immune cell infiltration. Gene set variation analysis indicated that C2 was closely associated with multiple immune responses. In conclusion, our study sheds light on the intricate relationship between PANoptosis and SONFH. We successfully developed a risk predictive model for SONFH patients and different SONFH subtypes. These findings enhance our understanding of the pathogenesis of SONFH and offer potential insights into therapeutic strategies.


Asunto(s)
Biología Computacional , Necrosis de la Cabeza Femoral , Humanos , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/inducido químicamente , Biología Computacional/métodos , Aprendizaje Automático , Esteroides/efectos adversos , Caspasa 1/genética , Nomogramas , Perfilación de la Expresión Génica/métodos , Proteínas Quinasas/genética
7.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731398

RESUMEN

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Asunto(s)
Adenosina Trifosfato , Carbono , Ácido Cítrico , Mitocondrias , Polietileneimina , Proteínas Quinasas , Polietileneimina/química , Carbono/química , Adenosina Trifosfato/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Puntos Cuánticos/química , Animales , Péptidos beta-Amiloides/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Humanos , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
8.
Biochem Biophys Res Commun ; 712-713: 149899, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38653003

RESUMEN

Quercetin, a naturally occurring flavonoid, has been investigated for its potential anti-cancer effects in various types of cancer, including hepatocellular carcinoma (HCC). However, its suppressing effect on reactive oxygen species (ROS) production might limited its anti-cancer effects. In this study, we aimed to explore the interplay among quercetin, mitochondrial dynamics and mitophagy and whether mitophagy-inhibition synergistically enhances the anti-tumor effects of quercetin. Huh7 and Hep3B cells were utilized for in vitro and in vivo studies. Results showed that quercetin treatment significantly increased the expression of mitochondrial fusion genes (MFN1 and MFN2) and decreased the expression of fission genes (DRP1 and FIS1) in Huh7 and Hep3B cells, leading to a more fused and elongated mitochondrial network. Quercetin upregulated the expression of key mitophagy regulators, PINK1 and PARK2, and enhanced the colocalization of mitochondria with lysosomes, indicating increased mitophagy. Knockdown of PINK1, PARK2, or SIRT1 attenuated quercetin-induced mitophagy and reduction of intracellular ROS levels. Quercetin treatment upregulates SIRT1 expression, which subsequently enhances PINK1 and PARK2 expression in Huh7 and Hep3B cells. In vivo experiments using Hep3B xenograft models revealed that the combination of quercetin with the mitophagy inhibitor hydroxychloroquine or SIRT1 knockdown significantly enhanced the anticancer effects of quercetin, as evidenced by reduced tumor size and weight, increased necrosis and apoptosis, and decreased proliferation in tumor tissues. These findings suggest that quercetin-induced mitochondrial fusion and Pink1/Parkin-dependent mitophagy may negatively influence its anti-cancer effects in HCC. Targeting mitophagy may enhance the therapeutic potential of quercetin in HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mitofagia , Proteínas Quinasas , Quercetina , Ubiquitina-Proteína Ligasas , Quercetina/farmacología , Mitofagia/efectos de los fármacos , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Animales , Línea Celular Tumoral , Antineoplásicos/farmacología , Ratones , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
9.
Exp Gerontol ; 191: 112441, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685507

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterised by irreversible airflow limitation. The elderly are a vulnerable population for developing COPD. With the growth of age, physiological degenerative changes occur in the thorax, bronchus, lung and vascular wall, which can lead to age-related physiological attenuation of lung function in the elderly, so the prevalence of COPD increases with age. Its pathogenesis has not yet been truly clarified. Mitophagy plays an important role in maintaining the stability of mitochondrial function and intracellular environment by scavenging damaged mitochondria. Currently, studies have shown that trophoblast antigen 2 (TROP2) expression is up-regulated in airway basal cells of patients with COPD, suggesting that TROP2 is involved in the progression of COPD. However, whether it is involved in disease progression by regulating mitochondrial function remains unclear. In this study, compared with non-smoking non-COPD patients, the expression of TROP2 in lung tissues of smoking non-COPD patients and patients with COPD increased, and TROP2 expression in patients with COPD was higher than that in smoking non-COPD patients. To further explore the role of TROP2, we stimulated BEAS-2B with cigarette smoke to construct an in vitro model. We found that TROP2 expression increased, whereas TROP2 silencing reversed the cigarette smoke extract-induced decrease in mitochondrial membrane potential, increased reactive oxygen species content, decreased adenosine triphosphate (ATP) production, increased inflammatory factor secretion and increased apoptosis. In addition, we searched online bioinformatics and screened the gene dynamin-related protein 1 (DRP1) related to mitophagy as the research object. Co-IP assay verified the binding relationship between DRP1 and TROP2. Further study found that TROP2 promoted mitophagy and apoptosis of BEAS-2B cells by up-regulating the expression of DRP1. In addition, PTEN-induced putative kinase 1 (PINK1) is a potential binding protein of DRP1, and DRP1 accelerated mitophagy and apoptosis of BEAS-2B cells by promoting the expression of PINK1. We established a COPD SD rat model by cigarette smoke exposure and LPS instillation and treated it by intraperitoneal injection of si-TROP2. The results showed that TROP2 silencing restored lung function and reduced the secretion of inflammatory factors in bronchoalveolar lavage fluid. In conclusion, TROP2 can be used as a new reference for COPD treatment.


Asunto(s)
Antígenos de Neoplasias , Apoptosis , Moléculas de Adhesión Celular , Progresión de la Enfermedad , Dinaminas , Mitofagia , Proteínas Quinasas , Enfermedad Pulmonar Obstructiva Crónica , Regulación hacia Arriba , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/genética , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Anciano , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Femenino , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Animales , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Pulmón/metabolismo , Pulmón/patología , Persona de Mediana Edad , Ratas , Mitocondrias/metabolismo , Línea Celular , Ratas Sprague-Dawley
10.
BMC Plant Biol ; 24(1): 319, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654176

RESUMEN

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. Identification of new and elite Pst-resistance loci or genes has the potential to enhance overall resistance to this pathogen. Here, we conducted an integrated genome-wide association study (GWAS) and transcriptomic analysis to screen for loci associated with resistance to stripe rust in 335 accessions from Yunnan, including 311 landraces and 24 cultivars. Based on the environmental phenotype, we identified 113 protein kinases significantly associated with Pst resistance using mixed linear model (MLM) and generalized linear model (GLM) models. Transcriptomic analysis revealed that 52 of 113 protein kinases identified by GWAS were up and down regulated in response to Pst infection. Among these genes, a total of 15 receptor kinase genes were identified associated with Pst resistance. 11 candidate genes were newly discovered in Yunnan wheat germplasm. Our results revealed that resistance alleles to stripe rust were accumulated in Yunnan wheat germplasm, implying direct or indirect selection for improving stripe rust resistance in elite wheat breeding programs.


Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , China , Puccinia/fisiología , Perfilación de la Expresión Génica , Basidiomycota/fisiología , Genes de Plantas , Proteínas Quinasas/genética , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Exp Neurol ; 376: 114771, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580154

RESUMEN

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.


Asunto(s)
Envejecimiento , Cuerpo Estriado , Dopamina , Proteínas Quinasas , Sustancia Negra , Tirosina 3-Monooxigenasa , Animales , Tirosina 3-Monooxigenasa/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/deficiencia , Proteínas Quinasas/metabolismo , Sustancia Negra/metabolismo , Envejecimiento/genética , Masculino , Ratas , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Actividad Motora/fisiología , Actividad Motora/genética , Ratas Transgénicas
12.
Nat Commun ; 15(1): 3223, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622146

RESUMEN

Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.


Asunto(s)
Proteínas de Escherichia coli , Histidina Quinasa/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilación , Potasio/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
13.
Mol Plant Pathol ; 25(4): e13447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561315

RESUMEN

Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Reproducibilidad de los Resultados , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/farmacología , Inmunidad de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
14.
Cell Death Differ ; 31(5): 635-650, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493248

RESUMEN

Diquat (DQ) poisoning is a severe medical condition associated with life-threatening implications and multiorgan dysfunction. Despite its clinical significance, the precise underlying mechanism remains inadequately understood. This study elucidates that DQ induces instability in the mitochondrial genome of endothelial cells, resulting in the accumulation of Z-form DNA. This process activates Z-DNA binding protein 1 (ZBP1), which then interacts with receptor-interacting protein kinase 3 (RIPK3), ultimately leading to RIPK3-dependent necroptotic and ferroptotic signaling cascades. Specific deletion of either Zbp1 or Ripk3 in endothelial cells simultaneously inhibits both necroptosis and ferroptosis. This dual inhibition significantly reduces organ damage and lowers mortality rate. Notably, our investigation reveals that RIPK3 has a dual role. It not only phosphorylates MLKL to induce necroptosis but also phosphorylates FSP1 to inhibit its enzymatic activity, promoting ferroptosis. The study further shows that deletion of mixed lineage kinase domain-like (Mlkl) and the augmentation of ferroptosis suppressor protein 1 (FSP1)-dependent non-canonical vitamin K cycling can provide partial protection against DQ-induced organ damage. Combining Mlkl deletion with vitamin K treatment demonstrates a heightened efficacy in ameliorating multiorgan damage and lethality induced by DQ. Taken together, this study identifies ZBP1 as a crucial sensor for DQ-induced mitochondrial Z-form DNA, initiating RIPK3-dependent necroptosis and ferroptosis. These findings suggest that targeting the ZBP1/RIPK3-dependent necroptotic and ferroptotic pathways could be a promising approach for drug interventions aimed at mitigating the adverse consequences of DQ poisoning.


Asunto(s)
ADN Mitocondrial , Ferroptosis , Necroptosis , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Ferroptosis/efectos de los fármacos , Animales , Necroptosis/efectos de los fármacos , Ratones , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Ratones Endogámicos C57BL , Masculino
15.
Cell Death Differ ; 31(5): 672-682, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548850

RESUMEN

Necroptosis is a lytic form of cell death that is mediated by the kinase RIPK3 and the pseudokinase MLKL when caspase-8 is inhibited downstream of death receptors, toll-like receptor 3 (TLR3), TLR4, and the intracellular Z-form nucleic acid sensor ZBP1. Oligomerization and activation of RIPK3 is driven by interactions with the kinase RIPK1, the TLR adaptor TRIF, or ZBP1. In this study, we use immunohistochemistry (IHC) and in situ hybridization (ISH) assays to generate a tissue atlas characterizing RIPK1, RIPK3, Mlkl, and ZBP1 expression in mouse tissues. RIPK1, RIPK3, and Mlkl were co-expressed in most immune cell populations, endothelial cells, and many barrier epithelia. ZBP1 was expressed in many immune populations, but had more variable expression in epithelia compared to RIPK1, RIPK3, and Mlkl. Intriguingly, expression of ZBP1 was elevated in Casp8-/- Tnfr1-/- embryos prior to their succumbing to aberrant necroptosis around embryonic day 15 (E15). ZBP1 contributed to this embryonic lethality because rare Casp8-/- Tnfr1-/- Zbp1-/- mice survived until after birth. Necroptosis mediated by TRIF contributed to the demise of Casp8-/- Tnfr1-/- Zbp1-/- pups in the perinatal period. Of note, Casp8-/- Tnfr1-/- Trif-/- Zbp1-/- mice exhibited autoinflammation and morbidity, typically within 5-7 weeks of being born, which is not seen in Casp8-/- Ripk1-/- Trif-/- Zbp1-/-, Casp8-/- Ripk3-/-, or Casp8-/- Mlkl-/- mice. Therefore, after birth, loss of caspase-8 probably unleashes RIPK1-dependent necroptosis driven by death receptors other than TNFR1.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Caspasa 8 , Ratones Noqueados , Necroptosis , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Receptores Tipo I de Factores de Necrosis Tumoral , Animales , Caspasa 8/metabolismo , Caspasa 8/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Ratones Endogámicos C57BL , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
16.
Nat Commun ; 15(1): 2449, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503771

RESUMEN

Wheat powdery mildew is one of the most destructive diseases threatening global wheat production. The wild relatives of wheat constitute rich sources of diversity for powdery mildew resistance. Here, we report the map-based cloning of the powdery mildew resistance gene Pm13 from the wild wheat species Aegilops longissima. Pm13 encodes a mixed lineage kinase domain-like (MLKL) protein that contains an N-terminal-domain of MLKL (MLKL_NTD) domain in its N-terminus and a C-terminal serine/threonine kinase (STK) domain. The resistance function of Pm13 is validated by mutagenesis, gene silencing, transgenic assay, and allelic association analyses. The development of introgression lines with significantly reduced chromosome segments of Ae. longissima encompassing Pm13 enables widespread deployment of this gene into wheat cultivars. The cloning of Pm13 may provide valuable insights into the molecular mechanisms underlying Pm13-mediated powdery mildew resistance and highlight the important roles of kinase fusion proteins (KFPs) in wheat immunity.


Asunto(s)
Aegilops , Ascomicetos , Triticum/genética , Genes de Plantas , Resistencia a la Enfermedad/genética , Ascomicetos/genética , Aegilops/genética , Proteínas Quinasas/genética , Enfermedades de las Plantas/genética
17.
J Biol Chem ; 300(4): 107198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508312

RESUMEN

Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease. Despite its importance, the specific mechanisms regulating PINK1 protein stability have remained unclear. This study reveals a cytoplasmic interaction between PINK1 and F-box and WD repeat domain-containing 7ß (FBW7ß) in mammalian cells. FBW7ß, a component of the Skp1-Cullin-1-F-box protein complex-type ubiquitin ligase, is instrumental in recognizing substrates. Our findings demonstrate that FBW7ß regulates PINK1 stability through the Skp1-Cullin-1-F-box protein complex and the proteasome pathway. It facilitates the K48-linked polyubiquitination of PINK1, marking it for degradation. When FBW7 is absent, PINK1 accumulates, leading to heightened mitophagy triggered by carbonyl cyanide 3-chlorophenylhydrazone treatment. Moreover, exposure to the toxic compound staurosporine accelerates PINK1 degradation via FBW7ß, correlating with increased cell death. This study unravels the intricate mechanisms controlling PINK1 protein stability and sheds light on the novel role of FBW7ß. These findings deepen our understanding of PINK1-related pathologies and potentially pave the way for therapeutic interventions.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Proteínas Quinasas , Proteolisis , Ubiquitinación , Humanos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Células HEK293 , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Mitofagia
18.
Nat Metab ; 6(3): 514-530, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38504131

RESUMEN

Mitochondrial quality control failure is frequently observed in neurodegenerative diseases. The detection of damaged mitochondria by stabilization of PTEN-induced kinase 1 (PINK1) requires transport of Pink1 messenger RNA (mRNA) by tethering it to the mitochondrial surface. Here, we report that inhibition of AMP-activated protein kinase (AMPK) by activation of the insulin signalling cascade prevents Pink1 mRNA binding to mitochondria. Mechanistically, AMPK phosphorylates the RNA anchor complex subunit SYNJ2BP within its PDZ domain, a phosphorylation site that is necessary for its interaction with the RNA-binding protein SYNJ2. Notably, loss of mitochondrial Pink1 mRNA association upon insulin addition is required for PINK1 protein activation and its function as a ubiquitin kinase in the mitophagy pathway, thus placing PINK1 function under metabolic control. Induction of insulin resistance in vitro by the key genetic Alzheimer risk factor apolipoprotein E4 retains Pink1 mRNA at the mitochondria and prevents proper PINK1 activity, especially in neurites. Our results thus identify a metabolic switch controlling Pink1 mRNA localization and PINK1 activity via insulin and AMPK signalling in neurons and propose a mechanistic connection between insulin resistance and mitochondrial dysfunction.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Resistencia a la Insulina , Proteínas Quinasas , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Ratones , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
19.
Genes (Basel) ; 15(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38540416

RESUMEN

Non-alcoholic steatohepatitis (NASH, also known as MASH) is a severe form of non-alcoholic fatty liver disease (NAFLD, also known as MASLD). Emerging data indicate that the progression of the disease to MASH is higher in postmenopausal women and that genetic susceptibility increases the risk of MASH-related cirrhosis. This study aimed to investigate the association between genetic polymorphisms in MASH and sexual dimorphism. We applied whole-exome sequencing (WES) to identify gene variants in 8 age-adjusted matched pairs of livers from both male and female patients. Sequencing alignment, variant calling, and annotation were performed using standard methods. Polymerase chain reaction (PCR) coupled with Sanger sequencing and immunoblot analysis were used to validate specific gene variants. cBioPortal and Gene Set Enrichment Analysis (GSEA) were used for actionable target analysis. We identified 148,881 gene variants, representing 57,121 and 50,150 variants in the female and male cohorts, respectively, of which 251 were highly significant and MASH sex-specific (p < 0.0286). Polymorphisms in CAPN14, SLC37A3, BAZ1A, SRP54, MYH11, ABCC1, and RNFT1 were highly expressed in male liver samples. In female samples, Polymorphisms in RGSL1, SLC17A2, HFE, NLRC5, ACTN4, SBF1, and ALPK2 were identified. A heterozygous variant 1151G>T located on 18q21.32 for ALPK2 (rs3809983) was validated by Sanger sequencing and expressed only in female samples. Immunoblot analysis confirmed that the protein level of ß-catenin in female samples was 2-fold higher than normal, whereas ALPK2 expression was 0.5-fold lower than normal. No changes in the protein levels of either ALPK2 or ß-catenin were observed in male samples. Our study suggests that the perturbation of canonical Wnt/ß-catenin signaling observed in postmenopausal women with MASH could be the result of polymorphisms in ALPK2.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Femenino , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , beta Catenina/genética , Secuenciación del Exoma , Polimorfismo Genético , Proteínas que Contienen Bromodominio , Proteínas Cromosómicas no Histona/genética , Partícula de Reconocimiento de Señal/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas/genética
20.
Plant Sci ; 343: 112057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460553

RESUMEN

The eukaryotic AGC protein kinase subfamily (protein kinase A/ protein kinase G/ protein kinase C-family) is involved in regulating numerous biological processes across kingdoms, including growth and development, and apoptosis. PDK1(3-phosphoinositide-dependent protein kinase 1) is a conserved serine/threonine kinase in eukaryotes, which is both a member of AGC kinase and a major regulator of many other downstream AGC protein kinase family members. Although extensively investigated in model plant Arabidopsis, detailed reports for tobacco PDK1s have been limited. To better understand the functions of PDK1s in tobacco, CRISPR/CAS9 transgenic lines were generated in tetraploid N. tabacum, cv. Samsun (NN) with 5-7 of the 8 copies of 4 homologous PDK1 genes in tobacco genome (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out. Numerous developmental defects were observed in these NtPDK1a/1b/1c/1d CRISPR/CAS9 lines, including cotyledon fusion leaf shrinkage, uneven distribution of leaf veins, convex veins, root growth retardation, and reduced fertility, all of which reminiscence of impaired polar auxin transport. The severity of these defects was correlated with the number of knocked out alleles of NtPDK1a/1b/1c/1d. Consistent with the observation in Arabidopsis, it was found that the polar auxin transport, and not auxin biosynthesis, was significantly compromised in these knockout lines compared with the wild type tobacco plants. The fact that no homozygous plant with all 8 NtPDK1a/1b/1c/1d alleles being knocked out suggested that knocking out 8 alleles of NtPDK1a/1b/1c/1d could be lethal. In conclusion, our results indicated that NtPDK1s are versatile AGC kinases that participate in regulation of tobacco growth and development via modulating polar auxin transport. Our results also indicated that CRISPR/CAS9 technology is a powerful tool in resolving gene redundancy in polyploidy plants.


Asunto(s)
Arabidopsis , Nicotiana , Nicotiana/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sistemas CRISPR-Cas , Proteínas Quinasas/genética , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...