Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
1.
Nat Commun ; 15(1): 3894, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719837

RESUMEN

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Asunto(s)
Cadmio , Unión Proteica , Proteínas Ligasas SKP Cullina F-box , Cadmio/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación , Dominios Proteicos , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
2.
FASEB J ; 38(9): e23640, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690715

RESUMEN

Osteoarthritis (OA) is the main cause of cartilage damage and disability. This study explored the biological function of S-phase kinase-associated protein 2 (SKP2) and Kruppel-like factor 11 (KLF11) in OA progression and its underlying mechanisms. C28/I2 chondrocytes were stimulated with IL-1ß to mimic OA in vitro. We found that SKP2, Jumonji domain-containing protein D3 (JMJD3), and Notch receptor 1 (NOTCH1) were upregulated, while KLF11 was downregulated in IL-1ß-stimulated chondrocytes. SKP2/JMJD3 silencing or KLF11 overexpression repressed apoptosis and extracellular matrix (ECM) degradation in chondrocytes. Mechanistically, SKP2 triggered the ubiquitination and degradation of KLF11 to transcriptionally activate JMJD3, which resulted in activation of NOTCH1 through inhibiting H3K27me3. What's more, the in vivo study found that KLF11 overexpression delayed OA development in rats via restraining apoptosis and maintaining the balance of ECM metabolism. Taken together, ubiquitination and degradation of KLF11 regulated by SKP2 contributed to OA progression by activation of JMJD3/NOTCH1 pathway. Our findings provide promising therapeutic targets for OA.


Asunto(s)
Condrocitos , Histona Demetilasas con Dominio de Jumonji , Osteoartritis , Receptor Notch1 , Proteínas Quinasas Asociadas a Fase-S , Ubiquitinación , Receptor Notch1/metabolismo , Receptor Notch1/genética , Animales , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Ratas , Condrocitos/metabolismo , Condrocitos/patología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Transducción de Señal , Ratas Sprague-Dawley , Humanos , Apoptosis , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética
3.
Prostate ; 84(9): 877-887, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605532

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the second-leading cause of cancer mortalities in the United States and is the most commonly diagnosed malignancy in men. While androgen deprivation therapy (ADT) is the first-line treatment option to initial responses, most PCa patients invariably develop castration-resistant PCa (CRPC). Therefore, novel and effective treatment strategies are needed. The goal of this study was to evaluate the anticancer effects of the combination of two small molecule inhibitors, SZL-P1-41 (SKP2 inhibitor) and PBIT (KDM5B inhibitor), on PCa suppression and to delineate the underlying molecular mechanisms. METHODS: Human CRPC cell lines, C4-2B and PC3 cells, were treated with small molecular inhibitors alone or in combination, to assess effects on cell proliferation, migration, senescence, and apoptosis. RESULTS: SKP2 and KDM5B showed an inverse regulation at the translational level in PCa cells. Cells deficient in SKP2 showed an increase in KDM5B protein level, compared to that in cells expressing SKP2. By contrast, cells deficient in KDM5B showed an increase in SKP2 protein level, compared to that in cells with KDM5B intact. The stability of SKP2 protein was prolonged in KDM5B depleted cells as measured by cycloheximide chase assay. Cells deficient in KDM5B were more vulnerable to SKP2 inhibition, showing a twofold greater reduction in proliferation compared to cells with KDM5B intact (p < 0.05). More importantly, combined inhibition of KDM5B and SKP2 significantly decreased proliferation and migration of PCa cells as compared to untreated controls (p < 0.005). Mechanistically, combined inhibition of KDM5B and SKP2 in PCa cells abrogated AKT activation, resulting in an induction of both cellular senescence and apoptosis, which was measured via Western blot analysis and senescence-associated ß-galactosidase (SA-ß-Gal) staining. CONCLUSIONS: Combined inhibition of KDM5B and SKP2 was more effective at inhibiting proliferation and migration of CRPC cells, and this regimen would be an ideal therapeutic approach of controlling CRPC malignancy.


Asunto(s)
Apoptosis , Senescencia Celular , Histona Demetilasas con Dominio de Jumonji , Neoplasias de la Próstata Resistentes a la Castración , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas Asociadas a Fase-S , Transducción de Señal , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Fase-S/genética , Masculino , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Células PC-3 , Proteínas Nucleares , Proteínas Represoras
4.
Behav Pharmacol ; 35(4): 227-238, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651981

RESUMEN

We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.


Asunto(s)
Antidepresivos , Benzotiepinas , Depresión , Relación Dosis-Respuesta a Droga , Fluoxetina , Proteínas Quinasas Asociadas a Fase-S , Estrés Psicológico , Animales , Masculino , Antidepresivos/farmacología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ratones , Femenino , Depresión/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Fluoxetina/farmacología , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos
5.
Cell Death Dis ; 15(4): 241, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561375

RESUMEN

Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.


Asunto(s)
Sarcoma , Animales , Humanos , Ratones , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Sarcoma/genética , Sarcoma/patología , Ubiquitinación , Regulación hacia Arriba
6.
Oncogene ; 43(13): 962-975, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355807

RESUMEN

Osteosarcoma(OS) is a highly aggressive bone cancer for which treatment has remained essentially unchanged for decades. Although OS is characterized by extensive genomic heterogeneity and instability, RB1 and TP53 have been shown to be the most commonly inactivated tumor suppressors in OS. We previously generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which largely recapitulates human OS with nearly complete penetrance. SKP2 is a repression target of pRb and serves as a substrate recruiting subunit of the SCFSKP2 complex. In addition, SKP2 plays a central role in regulating the cell cycle by ubiquitinating and promoting the degradation of p27. We previously reported the DKOAA transgenic model, which harbored a knock-in mutation in p27 that impaired its binding to SKP2. Here, we generated a novel p53-Rb1-SKP2 triple-knockout model (TKO) to examine SKP2 function and its potential as a therapeutic target in OS. First, we observed that OS tumorigenesis was significantly delayed in TKO mice and their overall survival was markedly improved. In addition, the loss of SKP2 also promoted an apoptotic microenvironment and reduced the stemness of DKO tumors. Furthermore, we found that small-molecule inhibitors of SKP2 exhibited anti-tumor activities in vivo and in OS organoids as well as synergistic effects when combined with a standard chemotherapeutic agent. Taken together, our results suggest that SKP2 inhibitors may reduce the stemness plasticity of OS and should be leveraged as next-generation adjuvants in this cancer.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Ratones , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Carcinogénesis , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Ratones Noqueados , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Microambiente Tumoral
7.
Cancer Lett ; 587: 216733, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360141

RESUMEN

Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Neoplasias Pancreáticas/genética , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma Ductal Pancreático/genética , Proteínas de Unión al ARN/metabolismo
8.
ACS Chem Biol ; 19(2): 442-450, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38305738

RESUMEN

Targeted protein degradation with proteolysis targeting chimeras (PROTACs) is a powerful therapeutic modality for eliminating disease-causing proteins through targeted ubiquitination and proteasome-mediated degradation. Most PROTACs have exploited substrate receptors of Cullin-RING E3 ubiquitin ligases such as cereblon and VHL. Whether core, shared, and essential components of the Cullin-RING E3 ubiquitin ligase complex can be used for PROTAC applications remains less explored. Here, we discovered a cysteine-reactive covalent recruiter EN884 against the SKP1 adapter protein of the SKP1-CUL1-F-box containing the SCF complex. We further showed that this recruiter can be used in PROTAC applications to degrade neo-substrate proteins such as BRD4 and the androgen receptor in a SKP1- and proteasome-dependent manner. Our studies demonstrate that core and essential adapter proteins within the Cullin-RING E3 ubiquitin ligase complex can be exploited for targeted protein degradation applications and that covalent chemoproteomic strategies can enable recruiter discovery against these targets.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/metabolismo , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
9.
Sci Adv ; 10(7): eadl4876, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354250

RESUMEN

The synaptonemal complex (SC) is a zipper-like protein assembly that links homologous chromosomes to regulate recombination and segregation during meiosis. The SC has been notoriously refractory to in vitro reconstitution, thus leaving its molecular organization largely unknown. Here, we report a moonlighting function of two paralogous S-phase kinase-associated protein 1 (Skp1)-related proteins (SKR-1 and SKR-2), well-known adaptors of the Skp1-Cul1-F-box (SCF) ubiquitin ligase, as the key missing components of the SC in Caenorhabditis elegans. SKR proteins repurpose their SCF-forming interfaces to dimerize and interact with meiosis-specific SC proteins, thereby driving synapsis independent of SCF activity. SKR-1 enables the formation of the long-sought-after soluble complex with previously identified SC proteins in vitro, which we propose it to represent a complete SC building block. Our findings demonstrate how a conserved cell cycle regulator has been co-opted to interact with rapidly evolving meiotic proteins to construct the SC and provide a foundation for understanding its structure and assembly mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Complejo Sinaptonémico/metabolismo
10.
Oncogene ; 43(15): 1149-1159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396292

RESUMEN

O-linked-ß-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) and ubiquitination are critical posttranslational modifications that regulate tumor development and progression. The continuous progression of the cell cycle is the fundamental cause of tumor proliferation. S-phase kinase-associated protein 2 (SKP2), an important E3 ubiquitin ligase, assumes a pivotal function in the regulation of the cell cycle. However, it is still unclear whether SKP2 is an effector of O-GlcNAcylation that affects tumor progression. In this study, we found that SKP2 interacted with O-GlcNAc transferase (OGT) and was highly O-GlcNAcylated in hepatocellular carcinoma (HCC). Mechanistically, the O-GlcNAcylation at Ser34 stabilized SKP2 by reducing its ubiquitination and degradation mediated by APC-CDH1. Moreover, the O-GlcNAcylation of SKP2 enhanced its binding ability with SKP1, thereby enhancing its ubiquitin ligase function. Consequently, SKP2 facilitated the transition from the G1-S phase of the cell cycle by promoting the ubiquitin degradation of cell cycle-dependent kinase inhibitors p27 and p21. Additionally, targeting the O-GlcNAcylation of SKP2 significantly suppressed the proliferation of HCC. Altogether, our findings reveal that O-GlcNAcylation, a novel posttranslational modification of SKP2, plays a crucial role in promoting HCC proliferation, and targeting the O-GlcNAcylation of SKP2 may become a new therapeutic strategy to impede the progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Quinasas Asociadas a Fase-S , Humanos , Carcinoma Hepatocelular/patología , División Celular , Neoplasias Hepáticas/patología , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Mol Biol ; 436(8): 168505, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423454

RESUMEN

Skp2, the substrate recognition component of the SCFSkp2 ubiquitin ligase, has been implicated in the targeted destruction of a number of key cell cycle regulators and the promotion of S-phase. One of its critical targets is the Cyclin dependent kinase (Cdk) inhibitor p27, and indeed the overexpression of Skp2 in a number of cancers is directly correlated with the premature degradation of p27. Skp2 was first identified as a protein that interacts with Cyclin A in transformed cells, but its role in this complex has remained unclear. In this paper, we demonstrate that Skp2 interacts with Cyclin A in Drosophila and is required to maintain Cyclin A levels and permit mitotic entry. Failure of mitotic entry in Skp2 mutant cells results in polyploidy. If these cells enter mitosis again they are unable to properly segregate their chromosomes, leading to checkpoint dependent cell cycle arrest or apoptosis. Thus, Skp2 is required for mitosis and for maintaining diploidy and genome stability.


Asunto(s)
Proteínas de Ciclo Celular , Ciclina A , Diploidia , Mitosis , Animales , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo
12.
Life Sci ; 338: 122409, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184273

RESUMEN

The ubiquitin-proteasome system (UPS) is a multi-step process that serves as the primary pathway for protein degradation within cells. UPS activity also plays a crucial role in regulating various life processes, including the cell cycle, signal transduction, DNA repair, and others. The F-box protein Skp2, a crucial member of the UPS, plays a central role in the development of various diseases. Skp2 controls cancer cell growth and drug resistance by ubiquitinating modifications to a variety of proteins. This review emphasizes the multifaceted role of Skp2 in a wide range of cancers and the mechanisms involved, highlighting the potential of Skp2 as a therapeutic target in cancer. Additionally, we describe the impactful influence exerted by Skp2 in various other diseases beyond cancer.


Asunto(s)
Neoplasias , Proteínas Quinasas Asociadas a Fase-S , Humanos , Ciclo Celular , Neoplasias/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitinación
13.
Br J Dermatol ; 190(2): 244-257, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37850885

RESUMEN

BACKGROUND: Psoriasis is a common chronic skin disorder. Pathologically, it features abnormal epidermal proliferation, infiltrating inflammatory cells and increased angiogenesis in the dermis. Aberrant expression of E3 ubiquitin ligase and a dysregulated protein ubiquitination system are implicated in the pathogenesis of psoriasis. OBJECTIVES: To examine the potential role of S-phase kinase-associated protein 2 (Skp2), an E3 ligase and oncogene, in psoriasis. METHODS: Gene expression and protein levels were evaluated with quantitative reverse transcriptase polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence staining of skin samples from patients with psoriasis vulgaris and an imiquimod (IMQ)-induced mouse model, as well as from cultured endothelial cells (ECs). Protein interaction, substrate ubiquitination and degradation were examined using co-immunoprecipitation, Western blotting and a cycloheximide chase assay in human umbilical vein ECs. Angiogenesis was measured in vitro using human dermal microvascular ECs (HDMECs) for BrdU incorporation, migration and tube formation. In vivo angiogenesis assays included chick embryonic chorioallantoic membrane, the Matrigel plug assay and quantification of vasculature in the mouse lesions. Skp2 gene global knockout (KO) mice and endothelial-specific conditional KO mice were used. RESULTS: Skp2 was increased in skin samples from patients with psoriasis and IMQ-induced mouse lesions. Immunofluorescent double staining indicated a close association of Skp2 expression with excessive vascularity in the lesional dermal papillae. In HDMECs, Skp2 overexpression was enhanced, whereas Skp2 knockdown inhibited EC proliferation, migration and tube-like structure formation. Mechanistically, phosphatase and tensin homologue (PTEN), which suppresses the phosphoinositide 3-kinase/Akt pathway, was identified to be a novel substrate for Skp2-mediated ubiquitination. A selective inhibitor of Skp2 (C1) or Skp2 small interfering RNA significantly reduced vascular endothelial growth factor-triggered PTEN ubiquitination and degradation. In addition, Skp2-mediated ubiquitination depended on the phosphorylation of PTEN by glycogen synthase kinase 3ß. In the mouse model, Skp2 gene deficiency alleviated IMQ-induced psoriasis. Importantly, tamoxifen-induced endothelial-specific Skp2 KO mice developed significantly ameliorated psoriasis with diminished angiogenesis of papillae. Furthermore, topical use of the Skp2 inhibitor C1 effectively prevented the experimental psoriasis. CONCLUSIONS: The Skp2/PTEN axis may play an important role in psoriasis-associated angiogenesis. Thus, targeting Skp2-driven angiogenesis may be a potential approach to treating psoriasis.


Asunto(s)
Psoriasis , Proteínas Quinasas Asociadas a Fase-S , Humanos , Animales , Ratones , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Tensinas/metabolismo , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Angiogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Psoriasis/patología , Ubiquitina-Proteína Ligasas/metabolismo
14.
Environ Toxicol ; 39(2): 783-793, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37782699

RESUMEN

Glioma, a prevalent and serious form of brain cancer, is associated with dysregulation of DNA methylation, where DNA methyltransferase-1 (DNMT1) plays a significant role in glioma progression. However, the involvement of F-box protein 32 (FBXO32) in glioma and its regulation by DNMT1-mediated methylation remain poorly understood. In this study, we investigated FBXO32 expression in glioma cells with high DNMT1 expression using the online dataset and correlated it with patient survival. Then impact of elevated FBXO32 expression on cell proliferation, migration, and invasion was evaluated, along with the examination of EMT-related proteins. Furthermore, a xenograft model established by injecting glioma cells stably transfected with FBXO32 was used to evaluate tumor growth, volume, and weight. The ChIP assay was employed to study the interaction between DNMT1 and the FBXO32 promoter, revealing that DNMT1 negatively correlated with FBXO32 expression in glioma cells and promoted FBXO32 promoter methylation. Moreover, we investigated the interaction between FBXO32 and SKP1 using Co-IP and GST pulldown assays, discovering that FBXO32 acts as an E3 ubiquitin ligase and promotes SKP1 ubiquitination, leading to its degradation. Interestingly, our findings demonstrated that high FBXO32 expression was associated with improved overall survival in glioma patients. Knockdown of DNMT1 in glioma cells increased FBXO32 expression and suppressed malignant phenotypes, suggesting that FBXO32 functions as a tumor suppressor in glioma. In conclusion, this study reveals a novel regulatory mechanism involving DNMT1-mediated FBXO32 expression in glioma cells, where FBXO32 acts as an E3 ubiquitin ligase to degrade SKP1 via ubiquitination. This FBXO32-mediated regulation of SKP1 activity contributes to the progression of glioma cells. These findings provide important insights into the molecular mechanisms underlying glioma progression and may hold promise for the development of targeted therapies for glioma patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
Mol Cancer Ther ; 23(2): 223-234, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871911

RESUMEN

Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis. Here, we performed RNA sequencing (RNA-seq) on tumors from a transgenic osteosarcoma mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;Skp2-/-), followed by qPCR and immunohistochemistry validation. To investigate the clinical implications of our results, we analyzed a human osteosarcoma patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. We found large differences in gene expression after SKP2 knockout. Surprisingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors, especially the signature genes for macrophages and to a lesser extent, T cells, B cells, and vascular cells. We also uncovered a set of relevant transcription factors that may mediate these changes. In osteosarcoma patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET osteosarcoma and the TCGA Sarcoma cohorts. Overall, our findings indicate that SKP2 may mediate immune exclusion from the osteosarcoma tumor microenvironment, suggesting that SKP2 modulation in osteosarcoma may induce antitumor immune activation.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Ratones , Neoplasias Óseas/genética , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Transgénicos , Osteosarcoma/genética , Osteosarcoma/patología , Pronóstico , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
World J Gastroenterol ; 29(45): 5974-5987, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38130998

RESUMEN

BACKGROUND: Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2 (HER-2)-positive gastric cancer (GC). However, the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance. While S-phase kinase associated protein 2 (Skp2) overexpression has been implicated in the malignant progression of GC, its role in regulating trastuzumab resistance in this context remains uncertain. Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products, there has been a lack of successful commercialization of drugs specifically targeting Skp2. AIM: To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment. METHODS: Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells. Q-PCR, western blot, and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression. A cell counting kit-8 assay, flow cytometry, a amplex red glucose/glucose oxidase assay kit, and a lactate assay kit were utilized to measure the proliferation, apoptosis, and glycolytic activity of GC cells in vitro. A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo. RESULTS: The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab. Thioridazine demonstrated the ability to directly bind to Skp2, resulting in a reduction in Skp2 expression at both the transcriptional and translational levels. Moreover, thioridazine effectively inhibited cell proliferation, exhibited antiapoptotic properties, and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways. The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo, surpassing the efficacy of either monotherapy. CONCLUSION: Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance, particularly when used in conjunction with lapatinib. This compound has potential benefits for patients with Skp2-proficient tumors.


Asunto(s)
Neoplasias Gástricas , Tioridazina , Humanos , Animales , Ratones , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Lapatinib/farmacología , Lapatinib/uso terapéutico , Tioridazina/farmacología , Tioridazina/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ratones Desnudos , Receptor ErbB-2/metabolismo , Proliferación Celular , Glucólisis , Lactatos , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Mamíferos
17.
Clin Transl Med ; 13(10): e1443, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37837399

RESUMEN

BACKGROUND: Enhanced de novo lipogenesis is essential for hepatocellular carcinoma (HCC). Abnormally high cullin-associated and neddylation-dissociated 1 (CAND1) expression is associated with poor clinical prognosis in HCC. The SKP1-Cullin-1-F-box (SCF) complex consists of the SKP1, Cullin-1 and F-box proteins (FBPs) and performs multiple functions including adipogenesis. SCF complex was modulated by CAND1, but Whether and how the CAND1 promotes HCC by regulating SCF complex and lipogenesis are unknown. METHODS: HCC samples were used to analyze the correlations between CAND1 expression and clinicopathological characteristics such as survival and prognosis. The in vitro functions of CAND1, FBXO11 and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) were measured by cell proliferation, colony formation and migration assays. The in vivo functions were tested in multiple mouse liver cancer models including patient-derived xenograft (PDX), cell line-derived xenograft and AKT/NRASV12-induced primary liver cancer models. Injections of adeno-associated virus targeting CAND1 (AAV-shCAND1) were performed to evaluate the therapeutic efficacy of targeting CAND1. RNA-Seq and lipidomic assays followed by serial biochemical experiments including mass spectrometry, immunoprecipitation and GST pull-down were performed to dissect the underlying mechanisms. RESULTS: CAND1 promoted the expression of lipid synthesis genes by disrupting SCF complex assembly and lipid accumulation. Furthermore, we identified hnRNPA2B1 as a novel F-box protein 11 (FBXO11)-binding partner. FBXO11 directly bound to hnRNPA2B1 and promoted hnRNPA2B1 ubiquitination and subsequent degradation. Our evaluations of the therapeutic efficacy of AAV-shCAND1 injections confirmed that targeting the CAND1-SCFFBXO11 -hnRNPA2B1A signalling axis was therapeutically effective. CAND1 downregulation significantly reduced the tumour burden in a primary mouse liver cancer model and a PDX model. CONCLUSIONS: Our results highlight that CAND1 is associated with poor prognosis in HCC and regulates lipid metabolic reprogramming by dissociating the SCF complex. Targeting the CAND1-SCFFBXO11 -hnRNPA2B1 axis may be a novel strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Animales , Ratones , Humanos , Proteínas Cullin/química , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Carcinoma Hepatocelular/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Metabolismo de los Lípidos/genética , Neoplasias Hepáticas/genética , Ubiquitinación/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Lípidos , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas F-Box/metabolismo
18.
Commun Biol ; 6(1): 805, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532777

RESUMEN

Non-small cell lung cancer (NSCLC) is the most prevalent type of cancer and the leading cause of cancer-related death. Chemotherapeutic resistance is a major obstacle in treating NSCLC patients. Here, we discovered that the E3 ligase Skp2 is overexpressed, accompanied by the downregulation of necroptosis-related regulator MLKL in human NSCLC tissues and cell lines. Knockdown of Skp2 inhibited viability, anchorage-independent growth, and in vivo tumor development of NSCLC cells. We also found that the Skp2 protein is negatively correlated with MLKL in NSCLC tissues. Moreover, Skp2 is increased and accompanied by an upregulation of MLKL ubiquitination and degradation in cisplatin-resistant NSCLC cells. Accordingly, inhibition of Skp2 partially restores MLKL and sensitizes NSCLC cells to cisplatin in vitro and in vivo. Mechanistically, Skp2 interacts and promotes ubiquitination-mediated degradation of MLKL in cisplatin-resistant NSCLC cells. Our results provide evidence of an Skp2-dependent mechanism regulating MLKL degradation and cisplatin resistance, suggesting that targeting Skp2-ubiquitinated MLKL degradation may overcome NSCLC chemoresistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Quinasas , Proteínas Quinasas Asociadas a Fase-S , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo
19.
Sci Rep ; 13(1): 10718, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400515

RESUMEN

p27KIP1 (cyclin-dependent kinase inhibitor 1B, p27) is a member of the CIP/KIP family of CDK (cyclin dependent kinase) regulators that inhibit cell cycle CDKs. p27 phosphorylation by CDK1/2, signals its recruitment to the SCFSKP2 (S-phase kinase associated protein 1 (SKP1)-cullin-SKP2) E3 ubiquitin ligase complex for proteasomal degradation. The nature of p27 binding to SKP2 and CKS1 was revealed by the SKP1-SKP2-CKS1-p27 phosphopeptide crystal structure. Subsequently, a model for the hexameric CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex was proposed by overlaying an independently determined CDK2-cyclin A-p27 structure. Here we describe the experimentally determined structure of the isolated CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex at 3.4 Å global resolution using cryogenic electron microscopy. This structure supports previous analysis in which p27 was found to be structurally dynamic, transitioning from disordered to nascent secondary structure on target binding. We employed 3D variability analysis to further explore the conformational space of the hexameric complex and uncovered a previously unidentified hinge motion centred on CKS1. This flexibility gives rise to open and closed conformations of the hexameric complex that we propose may contribute to p27 regulation by facilitating recognition with SCFSKP2. This 3D variability analysis further informed particle subtraction and local refinement approaches to enhance the local resolution of the complex.


Asunto(s)
Quinasas CDC2-CDC28 , Proteínas Quinasas Asociadas a Fase-S , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclina A/metabolismo , Microscopía por Crioelectrón , Quinasas Ciclina-Dependientes/metabolismo
20.
J Nat Med ; 77(4): 712-720, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37306932

RESUMEN

Psoriasis is a chronic inflammatory skin disorder characterized by abnormal keratinocytes proliferation and multiple immune cells infiltration in the dermis and epidermis. Although most psoriasis-related researches have been concentrated on the interleukin-23 (IL-23)/interleukin-17 (IL-17) axis, new data suggest that keratinocytes also play a pivotal role in psoriasis. Previously, we found that punicalagin (PUN), a bioactive ellagitannin extracted from Pericarpium Granati (the pericarpium of Punica granatum L.), exerts a therapeutic effect on psoriasis. However, the underlying mechanism, especially its potential modulatory effect on keratinocytes, remains obscure. Our study aims to reveal the potential regulatory effect and its underlying cellular mechanism of PUN on the hyperproliferation of keratinocytes. We used tumor necrosis factor α (TNF-α), IL-17A and interleukin-6 (IL-6) to induce abnormal proliferation of HaCaT cells (Human Keratinocytes Cells) in vitro. Then, we evaluated the effects of PUN through MTT assay, EdU staining and cell cycle detection. Finally, we explored the underlying cellular mechanisms of PUN via RNA-sequencing, WB in vitro and in vivo. Here, we found that PUN can directly and dose-dependently decrease TNF-α, IL-17A and IL-6-induced abnormal proliferation of HaCaT cells in vitro. Mechanically, PUN suppresses the hyperproliferation of keratinocytes through repressing S-phase kinase-associated protein 2 (SKP2) expression in vitro and in vivo. Moreover, overexpression of SKP2 can partly abolish PUN-mediated inhibition of aberrantly proliferative keratinocytes. These results illustrate that PUN can reduce the severity of psoriasis through directly repressing SKP2-mediated abnormal proliferation of keratinocytes, which gives new insight into the therapeutic mechanism of PUN on psoriasis. Moreover, these findings imply that PUN might be a promising drug candidate for the treatment of psoriasis.


Asunto(s)
Taninos Hidrolizables , Psoriasis , Humanos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/uso terapéutico , Interleucina-17/metabolismo , Interleucina-17/farmacología , Interleucina-17/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Queratinocitos , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...