Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
1.
Mol Biol Rep ; 51(1): 670, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787485

RESUMEN

BACKGROUND: Death Associated Protein Kinase 1 (DAPK1) is a calcium/calmodulin-dependent serine/threonine kinase, which has been reported to be a tumor suppressor with unbalanced expression in various tissues. However, its function in tumor immunotherapy is still unclear. METHODS: The online GEPIA2 database was used to support TCGA results. We explored the DAPK1 pan-cancer genomic alteration analysis using the cBioPortal web tool. The Human Protein Atlas (HPA) was employed to mine DAPK1 protein information. We verified the expression of DAPK1 in lung adenocarcinoma samples using RT-qPCR. Subsequently, the relationship between the expression of DAPK1 and the clinical stage was analyzed. We used TIMER2.0 as the primary platform for studying DAPK1-related immune cell infiltration. Associations between DAPK1 and immunotherapy biomarkers were analyzed using Spearman correlation analysis. TMB and MSI expression was also examined. Finally, we used Kaplan-Meier Plots to evaluate the relationship between DAPK1 expression and the efficacy of immunotherapy. RESULTS: DAPK1 is aberrantly expressed in most cancer types and has prognostic power in various cancers. Gene mutation was the most common DAPK1 alteration across pan-cancers. The DAPK1 protein was mainly localized to tumor cell centrosomes. DAPK1 was also significantly associated with immune-activated hallmarks, immune cell infiltration, and the expression of immunomodulators. Notably, DAPK1 can also significantly predict responses to anti-PD1 and anti-CTLA-4 therapy in cancer patients. CONCLUSIONS: Our findings suggest that DAPK1 may not only be an effective prognostic factor in cancer patients but may also function as a promising predictive immunotherapy biomarker for cancer patients treated with immune checkpoint inhibitors.


Asunto(s)
Biomarcadores de Tumor , Proteínas Quinasas Asociadas a Muerte Celular , Inmunoterapia , Neoplasias , Humanos , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Inmunoterapia/métodos , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , Regulación Neoplásica de la Expresión Génica , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Mutación/genética , Femenino , Masculino , Estimación de Kaplan-Meier
2.
Front Immunol ; 15: 1378305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779664

RESUMEN

The effect of anoikis-related genes (ARGs) on clinicopathological characteristics and tumor microenvironment remains unclear. We comprehensively analyzed anoikis-associated gene signatures of 1057 colorectal cancer (CRC) samples based on 18 ARGs. Anoikis-related molecular subtypes and gene features were identified through consensus clustering analysis. The biological functions and immune cell infiltration were assessed using the GSVA and ssGSEA algorithms. Prognostic risk score was constructed using multivariate Cox regression analysis. The immunological features of high-risk and low-risk groups were compared. Finally, DAPK2-overexpressing plasmid was transfected to measure its effect on tumor proliferation and metastasis in vitro and in vivo. We identified 18 prognostic ARGs. Three different subtypes of anoikis were identified and demonstrated to be linked to distinct biological processes and prognosis. Then, a risk score model was constructed and identified as an independent prognostic factor. Compared to the high-risk group, patients in the low-risk group exhibited longer survival, higher enrichment of checkpoint function, increased expression of CTLA4 and PD-L1, higher IPS scores, and a higher proportion of MSI-H. The results of RT-PCR indicated that the expression of DAPK2 mRNA was significantly downregulated in CRC tissues compared to normal tissues. Increased DAPK2 expression significantly suppressed cell proliferation, promoted apoptosis, and inhibited migration and invasion. The nude mice xenograft tumor model confirmed that high expression of DAPK2 inhibited tumor growth. Collectively, we discovered an innovative anoikis-related gene signature associated with prognosis and TME. Besides, our study indicated that DAPK2 can serve as a promising therapeutic target for inhibiting the growth and metastasis of CRC.


Asunto(s)
Anoicis , Neoplasias Colorrectales , Inmunoterapia , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Anoicis/genética , Animales , Pronóstico , Ratones , Inmunoterapia/métodos , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Proteínas Quinasas Asociadas a Muerte Celular/genética , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Ratones Desnudos , Transcriptoma , Perfilación de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Persona de Mediana Edad , Proliferación Celular/genética , Ratones Endogámicos BALB C
3.
Artículo en Inglés | MEDLINE | ID: mdl-38563090

RESUMEN

In the brain, environmental changes, such as neuroinflammation, can induce senescence, characterized by the decreased proliferation of neurons and dendrites and synaptic and vascular damage, resulting in cognitive decline. Senescence promotes neuroinflammatory disorders by senescence-associated secretory phenotypes and reactive oxygen species. In human brain microvascular endothelial cells (HBMVECs), we demonstrate that chronological aging and irradiation increase death-associated protein kinase 3 (DAPK3) expression. To confirm the role of DAPK3 in HBMVEC senescence, we disrupted DAPK3 activity using small interfering RNA (siRNA) or a dominant-negative mutant (DAPK3-P216S), which reduced cellular senescence phenotypes, as assessed by changes in tube formation, senescence-associated beta-galactosidase activity, and cell proliferation. In endothelial cells, DAPK3 promotes cellular senescence by regulating the phosphorylation and inactivation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) via the protein kinase B pathway, resulting in the decreased expression of mitochondrial metabolism-associated genes, such as ATP5G1, BDNF, and COX5A. Our studies show that DAPK3 is involved in cellular senescence and PGC1α regulation, suggesting that DAPK3 regulation may be important for treating aging-related brain diseases or the response to radiation therapy.


Asunto(s)
Senescencia Celular , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Senescencia Celular/fisiología , Proliferación Celular/genética , Encéfalo/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo
4.
Gene ; 910: 148331, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438055

RESUMEN

Compelling evidence has identified circRNAs as crucial regulators in initiation and progression of various cancers, including gastric cancer (GC). However, the function and regulatory mechanisms of circRNAs in GC remain largely unknown. In this study, attention is paid to a novel circular RNA circ1811, which exerts significant downregulated expression in GC tissues compared with adjacent non-cancerous tissues. The expression of circ1811 in GC tumor tissues is negatively correlated with the extent of lymphatic metastasis in GC patients. Overexpression of circ1811 inhibited GC cell proliferation, migration and invasion while promoting apoptosis, whereas knockdown of circ1811 led to the opposite effects. AGO2 RIP and dual luciferase reporter assays indicated that circ1811 directly sponges miR-632 to upregulate the expression of DAPK1. Collectively, circ1811 acts as a tumor-suppressor for GC progression by regulating the miR-632/DAPK1 axis. Our findings suggest the potential of circ1811 as ideal biomarker and therapeutic target for GC.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Metástasis Linfática , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo
5.
Atherosclerosis ; 390: 117462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325120

RESUMEN

The decreasing costs of high-throughput genetic sequencing and increasing abundance of sequenced genome data have paved the way for the use of genetic data in identifying and validating potential drug targets. However, the number of identified potential drug targets is often prohibitively large to experimentally evaluate in wet lab experiments, highlighting the need for systematic approaches for target prioritisation. In this review, we discuss principles of genetically guided drug development, specifically addressing loss-of-function analysis, colocalization and Mendelian randomisation (MR), and the contexts in which each may be most suitable. We subsequently present a range of biomedical resources which can be used to annotate and prioritise disease-associated proteins identified by these studies including 1) ontologies to map genes, proteins, and disease, 2) resources for determining the druggability of a potential target, 3) tissue and cell expression of the gene encoding the potential target, and 4) key biological pathways involving the potential target. We illustrate these concepts through a worked example, identifying a prioritised set of plasma proteins associated with non-alcoholic fatty liver disease (NAFLD). We identified five proteins with strong genetic support for involvement with NAFLD: CYB5A, NT5C, NCAN, TGFBI and DAPK2. All of the identified proteins were expressed in both liver and adipose tissues, with TGFBI and DAPK2 being potentially druggable. In conclusion, the current review provides an overview of genetic evidence for drug target identification, and how biomedical databases can be used to provide actionable prioritisation, fully informing downstream experimental validation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas/genética , Estudio de Asociación del Genoma Completo
6.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L353-L366, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252666

RESUMEN

During the development of pleural fibrosis, pleural mesothelial cells (PMCs) undergo phenotypic switching from differentiated mesothelial cells to mesenchymal cells (MesoMT). Here, we investigated how external stimuli such as TGF-ß induce HPMC-derived myofibroblast differentiation to facilitate the development of pleural fibrosis. TGF-ß significantly increased di-phosphorylation but not mono-phosphorylation of myosin II regulatory light chain (RLC) in HPMCs. An increase in RLC di-phosphorylation was also found at the pleural layer of our carbon black bleomycin (CBB) pleural fibrosis mouse model, where it showed filamentous localization that coincided with alpha smooth muscle actin (αSMA) in the cells in the pleura. Among the protein kinases that can phosphorylate myosin II RLC, ZIPK (zipper-interacting kinase) protein expression was significantly augmented after TGF-ß stimulation. Furthermore, ZIPK gene silencing attenuated RLC di-phosphorylation, suggesting that ZIPK is responsible for di-phosphorylation of myosin II in HPMCs. Although TGF-ß significantly increased the expression of ZIP kinase protein, the change in ZIP kinase mRNA was marginal, suggesting a posttranscriptional mechanism for the regulation of ZIP kinase expression by TGF-ß. ZIPK gene knockdown (KD) also significantly reduced TGF-ß-induced upregulation of αSMA expression. This finding suggests that siZIPK attenuates myofibroblast differentiation of HPMCs. siZIPK diminished TGF-ß-induced contractility of HPMCs consistent with siZIPK-induced decrease in the di-phosphorylation of myosin II RLC. The present results implicate ZIPK in the regulation of the contractility of HPMC-derived myofibroblasts, phenotype switching, and myofibroblast differentiation of HPMCs.NEW & NOTEWORTHY Here, we highlight that ZIP kinase is responsible for di-phosphorylation of myosin light chain, which facilitates stress fiber formation and actomyosin-based cell contraction during mesothelial to mesenchymal transition in human pleural mesothelial cells. This transition has a significant impact on tissue remodeling and subsequent stiffness of the pleura. This study provides insight into a new therapeutic strategy for the treatment of pleural fibrosis.


Asunto(s)
Miofibroblastos , Enfermedades Pleurales , Ratones , Animales , Humanos , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Miofibroblastos/metabolismo , Fosforilación , Cadenas Ligeras de Miosina/metabolismo , Enfermedades Pleurales/metabolismo , Miosina Tipo II/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis
7.
Transl Neurodegener ; 13(1): 4, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195518

RESUMEN

Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-ß (Aß) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aß and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aß deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Proteínas Quinasas Asociadas a Muerte Celular/genética , Péptidos beta-Amiloides , Sistema Nervioso Central , Ovillos Neurofibrilares
8.
Mol Reprod Dev ; 91(1): e23724, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282318

RESUMEN

Pre-eclampsia (PE) is a dangerous pathological status that occurs during pregnancy and is a leading reason for both maternal and fetal death. Autophagy is necessary for cellular survival in the face of environmental stress as well as cellular homeostasis and energy management. Aberrant microRNA (miRNA) expression is crucial in the pathophysiology of PE. Although studies have shown that miRNA (miR)-190a-3p function is tissue-specific, the precise involvement of miR-190a-3p in PE has yet to be determined. We discovered that miR-190a-3p was significantly lower and death-associated protein kinase 1 (DAPK1) was significantly higher in PE placental tissues compared to normal tissues, which is consistent with the results in cells. The luciferase analyses demonstrated the target-regulatory relationship between miR-190a-3p and DAPK1. The inhibitory effect of miR-190a-3p on autophagy was reversed by co-transfection of si-DAPK1 and miR-190a-3p inhibitors. Thus, our data indicate that the hypoxia-dependent miR-190a-3p/DAPK1 regulatory pathway is implicated in the development and progression of PE by promoting autophagy in trophoblast cells.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular , MicroARNs , Preeclampsia , Femenino , Humanos , Embarazo , Autofagia/genética , Movimiento Celular , Proliferación Celular , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Trofoblastos/metabolismo
9.
Mol Neurobiol ; 61(3): 1794-1806, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37775722

RESUMEN

Death-associated protein kinase 1 (DAPK1) is a stress-responsive calcium/calmodulin (CaM)-regulated serine/threonine protein kinase that is actively involved in stress-induced cell death. The dysregulation of DAPK1 has been established in various neurological disorders such as epilepsy, Alzheimer's disease (AD), and Parkinson's disease (PD). Recent research indicates a synaptic localization of DAPK1 in neurons, suggesting a potential role of DAPK1 in modulating synaptic structure and function. However, the key molecules and pathways underlying the influence of DAPK1 on synapses remain elusive. We utilized quantitative proteomic and phosphoproteomic analyses to compare the differences in protein expression and phosphorylation in hippocampal tissues of wild-type (WT) and DAPK1-knockout (KO) mice. Bioinformatic analysis of differentially expressed proteins and phosphoproteins revealed a preferential enrichment of proteins involved in regulating synaptic function, cytoskeletal structure, and neurotransmission. Gene set enrichment analysis (GESA) highlighted altered presynaptic functions including synaptic vesicle priming and glutamate secretion in KO mice. Besides, we observed that proteins with potential phosphorylation motifs of ERK and DAPK1 were overrepresented among the differential phosphoproteins and were highly enriched in neuronal function-related pathways. Furthermore, Western blot analysis validated differences in the expression of several proteins closely associated with presynaptic organization, dendrites and calcium transmembrane transport between KO and WT mice, further corroborating the potential involvement of DAPK1 in the regulation of synaptic functions. Overall, our data provide molecular evidence to elucidate the physiological links between DAPK1 and neuronal functions and help clarify the role of DAPK1 in the pathogenesis of neurodevelopmental and neurodegenerative diseases.


Asunto(s)
Calcio , Proteómica , Animales , Ratones , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Hipocampo/metabolismo , Ratones Noqueados , Fosfoproteínas/metabolismo , Sinapsis/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1219-1231, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37658212

RESUMEN

Smooth muscle contraction by Pim kinases and ZIPK has been suggested, but evidence for lower urinary tract organs or using Pim-selective inhibitor concentrations is not yet available. Here, we assessed effects of the Pim inhibitors AZD1208 and TCS PIM-1 and the dual ZIPK/Pim inhibitor HS38 on contractions of human prostate and bladder tissues and of porcine interlobar arteries. Human tissues were obtained from radical prostatectomy and radical cystectomy and renal interlobar arteries from pigs. Contractions were studied in an organ bath. Noradrenaline-, phenylephrine- and methoxamine-induced contractions were reduced (up to > 50%) with 500-nM AZD1208 in prostate tissues and to lesser degree and not consistently with all agonists in interlobar arteries. A total of 100-nM AZD1208 or 500-nM TCS PIM-1 did not affect agonist-induced contractions in prostate tissues. Decreases in agonist-induced contractions with 3-µM HS38 in prostate tissues and interlobar arteries were of small extent and did not occur with each agonist. Carbachol-induced contractions in detrusor tissues were unchanged with AZD1208 (500 nM) or HS38. Electric field stimulation-induced contractions were not affected with AZD1208 or HS38 in any tissue, but slightly reduced with 500-nM TCS PIM-1 in prostate tissues. Concentration-dependent effects of Pim inhibitors suggest lacking Pim-driven smooth muscle contraction in the prostate, bladder, and interlobar arteries but point to organ-specific functions of off-targets. Procontractile functions of ZIPK in the prostate and interlobar arteries may be limited and are lacking in the detrusor.


Asunto(s)
Compuestos de Bifenilo , Músculo Liso Vascular , Próstata , Proteínas Proto-Oncogénicas c-pim-1 , Tiazolidinas , Masculino , Humanos , Animales , Porcinos , Vejiga Urinaria , Proteínas Quinasas Asociadas a Muerte Celular/farmacología , Contracción Muscular
11.
J Diabetes ; 16(1): e13471, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37735821

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is one of the serious complications of the accumulated cardiovascular system in the long course of diabetes. To date, there is no effective treatment available for DCM. Circular RNA (circRNA) is a novel r2egulatory RNA that participates in a variety of cardiac pathological processes. However, the regulatory role of circular RNA MAP3K5 (circMAP3K5) in DCM is largely unclear. METHODS AND RESULTS: Microarray analysis of DCM rats' heart circular RNAs was performed and the highly species-conserved circRNA mitogen-activated protein kinase kinase kinase 5 (circMAP3K5) was identified, which participates in DCM processes. High glucose-provoked cardiotoxicity leads to the up-regulation of circMAP3K5, which mechanistically contributes to cardiomyocyte cell death. Also, in high glucose-induced H9c2 cardiomyocytes, the level of apoptosis was significantly increased, as well as the expression of circMAP3K5. In contrast, the depletion of circMAP3K5 could reduce high glucose-induced apoptosis in cardiomyocytes. In terms of mechanism, circMAP3K5 acts as a miR-22-3p sponge and miR-22-3p directly target death-associated protein kinase 2 (DAPK2) in H9c2 cardiomyocytes, where in circMAP3K5 upregulates DAPK2 expression by targeting miR-22-3p. Moreover, we also found that miR-22-3p inhibitor and pcDNA DAPK2 could antagonize the protective effects brought by the depletion of circMAP3K5. CONCLUSION: CircMAP3K5 is a highly conserved noncoding RNA that is upregulated during DCM process. We concluded that circMAP3K5 promotes high glucose-induced cardiomyocyte apoptosis by regulating the miR-22-3p/DAPK2 axis. The results of this study highlight a novel and translationally important circMAP3K5-based therapeutic approach for DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , MicroARNs , Animales , Ratas , Apoptosis/genética , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Diabetes Mellitus/patología , Cardiomiopatías Diabéticas/genética , Glucosa/farmacología , Glucosa/metabolismo , MicroARNs/genética , Miocitos Cardíacos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Circular/farmacología , MAP Quinasa Quinasa Quinasa 5/metabolismo
12.
J Physiol Biochem ; 80(1): 53-65, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37906422

RESUMEN

Aspartame (ASP) as an important sugar substitute is widely used in pharmaceutical and food processing. Here, we compared the effects of ASP and sucrose on mice pancreatic islet cells in vivo and observed that ASP with the condition of high concentration and long-term exposure (HASP) could cause insulin secretion (500 mg/kg for 1 month). Next, we conducted iTRAQ mass spectrometry to profile the global phosphoproteome and found that phosphorylation of zipper-interacting protein kinase (ZIPK) in murine pancreatic islet tissues were induced at Thr197, Thr242, Thr282, and Ser328 by high-sucrose (HS) treatment, but only induced at Thr197 and Ser328 by HASP treatment. Simultaneously, phosphorylation of STAT3 could be induced at Tyr705 and Ser727 by HS but not by HASP. Furthermore, presence of activated STAT3 accompanied with autophagy was observed in HS treatment. In turn, the inactivation of STAT3 as well as enhanced expression of caspase 3 was observed in HASP treatment. We generated Thr242APro and Thr282Pro on ZIPK using CRISPR-Cas9 in ß-TC3 cells and found the weakened interaction with STAT3 as well as the reduced phosphorylation of STAT3 even under HS stimulation. Finally, we observed that ankyrin repeat domain containing 11 (ANKRD11) could interact with ZIPK and play an inhibitory role in the phosphorylation of Thr242APro and Thr282Pro of ZIPK. However, HASP can induce the retention of ANKRD11 in the cytoplasm by phenylpyruvic acid (the metabolite of ASP). Taken together, this study determined that ASP with high concentration and long-term exposure could lead to caspase-dependent apoptosis of pancreatic islet cells through ANKRD11/ZIPK/STAT3 inhibition. Our results give evidence of adverse effects of aspartame on islet cells in some extreme conditions, which might help people to reconsider the biosafety of non-nutritive sweeteners.


Asunto(s)
Apoptosis , Aspartame , Islotes Pancreáticos , Animales , Ratones , Apoptosis/efectos de los fármacos , Aspartame/efectos adversos , Aspartame/metabolismo , Caspasa 3/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/efectos de los fármacos , Proteínas Quinasas Asociadas a Muerte Celular/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Fosforilación , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Sacarosa/metabolismo , Sacarosa/farmacología , Factores de Transcripción/metabolismo
13.
Gene ; 898: 148109, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38142898

RESUMEN

OBJECTIVE: The objective of this study is to comprehensively investigate the potential value of BNIP3 and DAPK1 methylation in peripheral blood leukocytes as a non-invasive biomarker for the detection of gastric cancer (GC), prediction of chemotherapy efficacy, and prognosis assessment. PATIENTS AND METHODS: Initially, multiple bioinformatic analyses were employed to explore the genetic landscape and biological effects of BNIP3 and DAPK1 in GC tissues. Subsequently, case-control and prospective follow-up studies were conducted to compare the differences in BNIP3 and DAPK1 methylation levels in peripheral blood leukocytes among GC patients and healthy controls, as well as between patients exhibiting sensitivity and resistance to platinum plus fluorouracil treatment, and between patients with varying survival outcomes of GC. Additionally, several predictive nomograms were constructed based on the identified CpG sites and relevant clinical parameters to forecast the occurrence of GC, chemotherapy efficacy, and prognosis. RESULTS: The upregulation of BNIP3 and DAPK1 was found to be associated with the development and poorer survival outcomes of GC. Furthermore, the expression of BNIP3/DAPK1 exhibited an inverse relationship with their DNA methylation levels and demonstrated a positive correlation with immune cell infiltration, as well as the IC50 values of 5-Fluorouracil and Cisplatin in GC tissues. Increased infiltration of macrophages in the high-expression groups was observed to be linked to unfavorable GC survival. In the case-control and follow-up studies, lower methylation levels of BNIP3 and DAPK1 were identified in the peripheral leukocytes of GC patients compared to healthy controls. Hypomethylation was also associated with more aggressive subtypes, diminished chemotherapy efficacy, and poorer survival outcomes in GC. CONCLUSION: The DNA methylation of BNIP3 and DAPK1 in peripheral blood leukocytes holds promise as a novel non-invasive biomarker for predicting the occurrence of GC, chemotherapy efficacy, and prognosis assessment.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Estudios Prospectivos , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Metilación de ADN , Leucocitos/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
14.
Innate Immun ; 30(1): 21-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36412004

RESUMEN

Osteoarthritis (OA) is a common joint disease that is characterized by inflammation and cartilage degradation. Death-associated protein kinase 1 (DAPK1) is a multi-domain serine/threonine kinase and has been reported to be involved in the progression of OA. However, its role and mechanism in OA remain unclear. Here, we found the expression of DAPK1 in OA cartilage tissues was higher than that in normal cartilage tissues. The expression of DAPK1 in chondrocytes was up-regulated by IL-1ß. Knockdown of DAPK1 promoted cell viability and anti-apoptotic protein expression, while it inhibited the apoptosis rate and pro-apoptotic protein expressions in IL-1ß-induced chondrocytes. In addition, DAPK1 inhibition reduced the levels of inflammatory cytokines and expressions of matrix metalloproteinases (MMPs), and increased the expressions of collagen II and aggrecan. The data of mechanistic investigation indicated that the expression of pigment epithelium-derived factor (PEDF) was positively regulated by DAPK1. Overexpression of PEDF attenuated the effects of DAPK1 knockdown on IL-1ß-induced cell viability, apoptosis, inflammation, and cartilage degradation. Furthermore, PEDF overexpression restored the activity of the NF-κB pathway and NLRP3 inflammasome after DAPK1 knockdown. Collectively, down-regulation of DAPK1 inhibited IL-1ß-induced inflammation and cartilage degradation via the PEDF-mediated NF-κB and NLRP3 inflammasome pathways.


Asunto(s)
Condrocitos , Osteoartritis , Humanos , Condrocitos/metabolismo , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cartílago , Inflamación/metabolismo , Osteoartritis/genética , Interleucina-1beta/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/farmacología
15.
Arch Pharm Res ; 46(11-12): 882-896, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804415

RESUMEN

Breast cancer is one of the major malignancies in women, and most related deaths are due to recurrence, drug resistance, and metastasis. The expression of the mouse double minute 2 (MDM2) oncogene is upregulated in breast cancer; however, its regulatory mechanism has yet to be fully elucidated. Herein, we identified the tumor suppressor death-associated protein kinase 1 (DAPK1) as a novel MDM2 regulator by unbiased peptide library screening. DAPK1 is directly bound to MDM2 and phosphorylates it at Thr419. DAPK1-mediated MDM2 phosphorylation promoted its protein degradation via the ubiquitin-proteasome pathway, resulting in upregulated p53 expression. DAPK1 overexpression, but not its kinase activity-deficient form, decreased colony formation and increased doxorubicin-induced cell death; however, DAPK1 knockdown produced the opposite effects in human breast cancer cells. In a xenograft tumorigenesis assay, DAPK1 overexpression significantly reduced tumor formation, whereas inhibition of DAPK1 kinase activity reduced its antitumorigenic effect. Finally, DAPK1 expression was negatively correlated with MDM2 levels in human breast cancer tissues. Thus, these results suggest that DAPK1-mediated MDM2 phosphorylation and its protein degradation may contribute to its antitumorigenic function in breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteína p53 Supresora de Tumor , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Fosforilación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
16.
Cancer Sci ; 114(11): 4299-4313, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37700438

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic RNA and involved in the carcinogenesis of various malignancies. However, the functions and mechanisms of m6A in gallbladder cancer (GBC) remain unclear. In this study, we investigated the role and underlying mechanism of the RNA-binding protein YT521-B homology domain-containing family protein 2 (YTHDF2), an m6A reader, in GBC. Herein, we detected that YTHDF2 was remarkably upregulated in GBC tissues compared to normal gallbladder tissues. Functionally, YTHDF2 overexpression promoted the proliferation, tumor growth, migration, and invasion of GBC cells while inhibiting the apoptosis in vitro and in vivo. Conversely, YTHDF2 knockdown induced opposite results. Mechanistically, we further investigated the underlying mechanism by integrating RNA immunoprecipitation sequencing (RIP-seq), m6A-modified RIP-seq, and RNA sequencing, which revealed that death-associated protein kinase 3 (DAPK3) is a direct target of YTHDF2. YTHDF2 binds to the 3'-UTR of DAPK3 mRNA and facilitates its degradation in an m6A-dependent manner. DAPK3 inhibition restores the tumor-suppressive phenotype induced by YTHDF2 deficiency. Moreover, the YTHDF2/DAPK3 axis induces the resistance of GBC cells to gemcitabine. In conclusion, we reveal the oncogenic role of YTHDF2 in GBC, demonstrating that YTHDF2 increases the mRNA degradation of the tumor suppressor DAPK3 in an m6A-dependent way, which promotes GBC progression and desensitizes GBC cells to gemcitabine. Our findings provide novel insights into potential therapeutic strategies for GBC.


Asunto(s)
Neoplasias de la Vesícula Biliar , Gemcitabina , Humanos , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , ARN , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo
17.
Neuroscience ; 526: 175-184, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37406926

RESUMEN

Brain injury represents a leading cause of deaths following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). This study explores the role of CREB1 (cAMP responsive element binding protein 1)/DAPK1 (death associated protein kinase 1) axis in brain injury after CPR. CA was induced by asphyxia in rats, followed by CPR. After CREB1 over-expression, the survival rate and neurological function score of rats were measured. Nissl and TUNEL staining evaluated the pathological condition of hippocampus and apoptosis of hippocampal neurons respectively. H19-7 cells were subjected to OGD/R and infected with oe-CREB1. CCK-8 assay and flow cytometry measured the cell viability and apoptosis. CREB1, DAPK1, and cleaved Caspase-3 expressions were examined using Western blot. The binding between CREB1 and DAPK1 was determined using ChIP and dual-luciferase reporter assays. CREB1 was poorly expressed while DAPK1 was highly expressed in rat hippocampus after CPR. CREB1 overexpression improved rat neurological function, repressed neuron apoptosis, and reduced cleaved Caspase-3 expression. CREB1 was enriched on the DAPK1 promoter and suppressed DAPK1 expression. DAPK1 overexpression reversed the inhibition of OGD/R-insulted apoptosis by CREB1 overexpression. To conclude, CREB1 suppresses hippocampal neuron apoptosis and mitigates brain injury after CPR by inhibiting DAPK1 expression.


Asunto(s)
Lesiones Encefálicas , Reanimación Cardiopulmonar , Animales , Ratas , Apoptosis , Lesiones Encefálicas/patología , Caspasa 3/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo
18.
Cell Commun Signal ; 21(1): 175, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480108

RESUMEN

BACKGROUND: The phagocytosis and homeostasis of microglia play an important role in promoting blood clearance and improving prognosis after subarachnoid hemorrhage (SAH). LC3-assocaited phagocytosis (LAP) contributes to the microglial phagocytosis and homeostasis via autophagy-related components. With RNA-seq sequencing, we found potential signal pathways and genes which were important for the LAP of microglia. METHODS: We used an in vitro model of oxyhemoglobin exposure as SAH model in the study. RNA-seq sequencing was performed to seek critical signal pathways and genes in regulating LAP. Bioparticles were used to access the phagocytic ability of microglia. Western blot (WB), immunoprecipitation, quantitative polymerase chain reaction (qPCR) and immunofluorescence were performed to detect the expression change of LAP-related components and investigate the potential mechanisms. RESULTS: In vitro SAH model, there were increased inflammation and decreased phagocytosis in microglia. At the same time, we found that the LAP of microglia was inhibited in all stages. RNA-seq sequencing revealed the importance of P38 MAPK signal pathway and DAPK1 in regulating microglial LAP. P38 was found to regulate the expression of DAPK1, and P38-DAPK1 axis was identified to regulate the LAP and homeostasis of microglia after SAH. Finally, we found that P38-DAPK1 axis regulated expression of BECN1, which indicated the potential mechanism of P38-DAPK1 axis regulating microglial LAP. CONCLUSION: P38-DAPK1 axis regulated the LAP of microglia via BECN1, affecting the phagocytosis and homeostasis of microglia in vitro SAH model. Video Abstract.


Asunto(s)
Microglía , Hemorragia Subaracnoidea , Humanos , Fagocitosis , Autofagia , Inflamación , Proteínas Quinasas Asociadas a Muerte Celular
19.
Genes (Basel) ; 14(6)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37372454

RESUMEN

Tremendous amount of financial resources and manpower have been invested to understand the function of numerous genes that are deregulated during the carcinogenesis process, which can be targeted for anticancer therapeutic interventions. Death-associated protein kinase 1 (DAPK-1) is one of the genes that have shown potential as biomarkers for cancer treatment. It is a member of the kinase family, which also includes Death-associated protein kinase 2 (DAPK-2), Death-associated protein kinase 3 (DAPK-3), Death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK-1) and Death-associated protein kinase-related apoptosis-inducing kinase 2 (DRAK-2). DAPK-1 is a tumour-suppressor gene that is hypermethylated in most human cancers. Additionally, DAPK-1 regulates a number of cellular processes, including apoptosis, autophagy and the cell cycle. The molecular basis by which DAPK-1 induces these cell homeostasis-related processes for cancer prevention is less understood; hence, they need to be investigated. The purpose of this review is to discuss the current understanding of the mechanisms of DAPK-1 in cell homeostasis-related processes, especially apoptosis, autophagy and the cell cycle. It also explores how the expression of DAPK-1 affects carcinogenesis. Since deregulation of DAPK-1 is implicated in the pathogenesis of cancer, altering DAPK-1 expression or activity may be a promising therapeutic strategy against cancer.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina , Neoplasias , Humanos , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/uso terapéutico , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Neoplasias/patología , Carcinogénesis/genética
20.
Int Ophthalmol ; 43(9): 3413-3424, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37191928

RESUMEN

Oxidative stress plays a significant role in cataract development. It causes the apoptosis of lens epithelial cells (LECs), resulting in lens opacification and accelerating cataract progression. Long non-coding RNAs (lncRNAs) and microRNAs have been linked to cataract development. Notably, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in LEC apoptosis and cataract formation. However, the molecular mechanism by which NEAT1 causes age-related cataracts remains unknown. In this study, LECs (SRA01/04) were exposed to 200 µM H2O2 to generate an in vitro cataract model. The apoptosis and viability of cells were determined using flow cytometry and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assays, respectively. Additionally, western blotting and quantitative polymerase chain reaction were used to determine the miRNA and lncRNA expression levels. When LECs were treated with hydrogen peroxide, lncRNA NEAT1 expression levels were significantly upregulated, which contributed to LEC apoptosis. Notably, lncRNA NEAT1 suppressed the expression of miR-124-3p, a critical regulator of apoptosis, whereas NEAT1 inhibition increased miR-124-3p expression and alleviated apoptosis. However, this effect was reversed when miR1243p expression was inhibited. Additionally, the miR1243p mimic effectively inhibited the death-associated protein kinase 1 (DAPK1) expression and apoptosis of LECs, while the DAPK1 mimic reversed these effects. In conclusion, our findings indicate that the lncRNA NEAT1/miR-124-3p/DAPK1 signaling loop is involved in the regulation of LEC apoptosis induced by oxidative stress, which can be exploited to develop potential treatment strategies for age-related cataracts.


Asunto(s)
Catarata , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Abajo , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Paraspeckles , MicroARNs/genética , MicroARNs/metabolismo , Catarata/genética , Catarata/metabolismo , Células Epiteliales , Estrés Oxidativo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...