Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 434(17): 167749, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841931

RESUMEN

Allostery commonly refers to the mechanism that regulates protein activity through the binding of a molecule at a different, usually distal, site from the orthosteric site. The omnipresence of allosteric regulation in nature and its potential for drug design and screening render the study of allostery invaluable. Nevertheless, challenges remain as few computational methods are available to effectively predict allosteric sites, identify signalling pathways involved in allostery, or to aid with the design of suitable molecules targeting such sites. Recently, bond-to-bond propensity analysis has been shown successful at identifying allosteric sites for a large and diverse group of proteins from knowledge of the orthosteric sites and its ligands alone by using network analysis applied to energy-weighted atomistic protein graphs. To address the identification of signalling pathways, we propose here a method to compute and score paths of optimised propensity that link the orthosteric site with the identified allosteric sites, and identifies crucial residues that contribute to those paths. We showcase the approach with three well-studied allosteric proteins: h-Ras, caspase-1, and 3-phosphoinositide-dependent kinase-1 (PDK1). Key residues in both orthosteric and allosteric sites were identified and showed agreement with experimental results, and pivotal signalling residues along the pathway were also revealed, thus providing alternative targets for drug design. By using the computed path scores, we were also able to differentiate the activity of different allosteric modulators.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Caspasa 1 , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Regulación Alostérica , Sitio Alostérico , Caspasa 1/química , Ligandos , Proteínas Proto-Oncogénicas p21(ras)/química
2.
Cell Rep ; 34(3): 108636, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33472061

RESUMEN

The chromatin-associated protein WDR5 is a promising pharmacological target in cancer, with most drug discovery efforts directed against an arginine-binding cavity in WDR5 called the WIN site. Despite a clear expectation that WIN site inhibitors will alter the repertoire of WDR5 interaction partners, their impact on the WDR5 interactome remains unknown. Here, we use quantitative proteomics to delineate how the WDR5 interactome is changed by WIN site inhibition. We show that the WIN site inhibitor alters the interaction of WDR5 with dozens of proteins, including those linked to phosphatidylinositol 3-kinase (PI3K) signaling. As proof of concept, we demonstrate that the master kinase PDPK1 is a bona fide high-affinity WIN site binding protein that engages WDR5 to modulate transcription of genes expressed in the G2 phase of the cell cycle. This dataset expands our understanding of WDR5 and serves as a resource for deciphering the action of WIN site inhibitors.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Descubrimiento de Drogas , Fase G2/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Terapia Molecular Dirigida , Unión Proteica
3.
J Mol Model ; 25(7): 187, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197600

RESUMEN

3-phosphoinositide-dependent protein kinase-1 (PDK1) plays a crucial role in the signal transduction of massive growth-related protein kinases. In this work, a computational study has been performed to investigate the binding pose of the hydrolyzed product of SBF1 (SBF1-) with PDK1. The binding pose was predicted by Vina and was further refined in a molecular dynamics simulation. For comparison, four published low molecular weight compounds (PS48, PS171, PS182, and PS210) binding with PDK1 were also studied. SBF1- was anchored in the PIF-pocket of PDK1 with salt bridge interaction using its carboxylate moiety, which is a common feature among the known ligands. Hydrogen bonds to THR148 and vdW interactions with GLN150 also have contributions to the association affinity. The allosteric regulation on PDK1 via the binding of SBF1- was further addressed. The binding affinity of SBF1- in complex with PDK1 is comparable to those of PS171 and PS182, with an estimated IC50 in a range from 2.0 to 10.0 µ molar. Comparison between the free energy profiles with the presence or absence of SBF1- in the binding pocket indicates that the binding of SBF1- enhances the hinge motion and suppresses the fluctuation of the end-to-end distance in α B of PDK1. These results demonstrate that SBF1- is a promising allosteric regulator of PDK1 targeting the PIF-binding pocket and can serve as a new scaffold template for the design of new drugs targeting PDK1.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Sitio Alostérico , Sitios de Unión , Péptidos y Proteínas de Señalización Intracelular/química , Relación Estructura-Actividad Cuantitativa , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/antagonistas & inhibidores , Algoritmos , Regulación Alostérica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica
4.
Oncotarget ; 8(22): 35639-35655, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28410193

RESUMEN

Glioblastomas are characterized by amplification of EGFR. Approximately half of tumors with EGFR over-expression also express a constitutively active ligand independent EGFR variant III (EGFRvIII). While current treatments emphasize surgery followed by radiation and chemotherapy with Temozolomide (TMZ), acquired chemoresistance is a universal feature of recurrent GBMs. To mimic the GBM resistant state, we generated an in vitro TMZ resistant model and demonstrated that dichloroacetate (DCA), a metabolic inhibitor of pyruvate dehydrogenase kinase 1 (PDK1), reverses the Warburg effect. Microarray analysis conducted on the TMZ resistant cells with their subsequent treatment with DCA revealed PDK1 as its sole target. DCA treatment also induced mitochondrial membrane potential change and apoptosis as evidenced by JC-1 staining and electron microscopic studies. Computational homology modeling and docking studies confirmed DCA binding to EGFR, EGFRvIII and PDK1 with high affinity. In addition, expression of EGFRvIII was comparable to PDK1 when compared to EGFR in GBM surgical specimens supporting our in silico prediction data. Collectively our current study provides the first in vitro proof of concept that DCA reverses the Warburg effect in the setting of EGFRvIII positivity and TMZ resistance leading to GBM cytotoxicity, implicating cellular tyrosine kinase signaling in cancer cell metabolism.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Antineoplásicos Alquilantes/farmacología , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Animales , Antineoplásicos Alquilantes/química , Sitios de Unión , Línea Celular Tumoral , Dacarbazina/química , Dacarbazina/farmacología , Modelos Animales de Enfermedad , Receptores ErbB/química , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Glucólisis/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Moleculares , Conformación Molecular , Permeabilidad , Fosforilación , Unión Proteica , Temozolomida , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Biochim Biophys Acta ; 1858(11): 2709-2716, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27480805

RESUMEN

Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas de Arabidopsis/química , Membrana Celular/química , Liposomas/química , Ácidos Fosfatidicos/química , Proteínas Recombinantes de Fusión/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bioensayo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Humanos , Liposomas/metabolismo , Lisofosfatidilcolinas/farmacología , Proteínas de Unión a Fosfato , Ácidos Fosfatidicos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Eur J Med Chem ; 118: 47-63, 2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-27123901

RESUMEN

The phosphoinositide-dependent kinase-1 (PDK1) is one of the main components of the PI3K/Akt pathway. Also named the "master kinase" of the AGC family, PDK1 plays a critical role in tumorigenesis, by enhancing cell proliferation and inhibiting apoptosis, as well as in cell invasion and metastasis formation. Although there have been done huge efforts in discovering specific compounds targeting PDK1, nowadays no PDK1 inhibitor has yet entered the clinic. With the aim to pick out novel and potent PDK1 inhibitors, herein we report the design and synthesis of a new class of molecules obtained by merging the 2-oxo-indole nucleus with the 2-oxo-pyridonyl fragment, two moieties with high affinity for the PDK1 hinge region and its DFG-out binding site, respectively. To this purpose, a small series of compounds were synthesised and a tandem application of docking and Molecular Dynamic (MD) was employed to get insight into their mode of binding. The OXID-pyridonyl hybrid 8, possessing the lower IC50 (IC50 = 112 nM), was also tested against recombinant kinases involved in the PI3K/PDK1/Akt pathway and was subjected to vitro studies to evaluate the cytotoxicity and the inhibition of tumour cell migration. All together the results let us to consider 8, as a lead compound of a new generation of PDK1 inhibitors and encourage us to further studies in this direction.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/antagonistas & inhibidores , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Glioblastoma/patología , Indoles/química , Indoles/farmacología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Secuencias de Aminoácidos , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Indoles/síntesis química , Indoles/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Dominios Proteicos , Transducción de Señal/efectos de los fármacos
7.
Proc Natl Acad Sci U S A ; 112(14): 4298-303, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831499

RESUMEN

Although members of the L1 (LINE-1) clade of non-LTR retrotransposons can be deleterious, the L1 clade has remained active in most mammals for ∼100 million years and generated almost 40% of the human genome. The details of L1-host interaction are largely unknown, however. Here we report that L1 activity requires phosphorylation of the protein encoded by the L1 ORF1 (ORF1p). Critical phospho-acceptor residues (two serines and two threonines) reside in four conserved proline-directed protein kinase (PDPK) target sites. The PDPK family includes mitogen-activated protein kinases and cyclin-dependent kinases. Mutation of any PDPK phospho-acceptor inhibits L1 retrotransposition. The phosphomimetic aspartic acid can restore activity at the two serine sites, but not at either threonine site, where it is strongly inhibitory. ORF1p also contains conserved PDPK docking sites, which promote specific interaction of PDPKs with their targets. As expected, mutations in these sites also inhibit L1 activity. PDPK mutations in ORF1p that inactivate L1 have no significant effect on the ability of ORF1p to anneal RNA in vitro, an important biochemical property of the protein. We show that phosphorylated PDPK sites in ORF1p are required for an interaction with the peptidyl prolyl isomerase 1 (Pin1), a critical component of PDPK-mediated regulation. Pin1 acts via isomerization of proline side chains at phosphorylated PDPK motifs, thereby affecting substrate conformation and activity. Our demonstration that L1 activity is dependent on and integrated with cellular phosphorylation regulatory cascades significantly increases our understanding of interactions between L1 and its host.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Elementos de Nucleótido Esparcido Largo , Sistemas de Lectura Abierta , Isomerasa de Peptidilprolil/química , Retroelementos/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cromatografía Liquida , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Insectos , Datos de Secuencia Molecular , Mutación , Peptidilprolil Isomerasa de Interacción con NIMA , Fosforilación , Prolina/química , ARN/química , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem , Proteínas Virales/química
8.
Proc Natl Acad Sci U S A ; 111(52): 18590-5, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25518860

RESUMEN

There is great interest in developing selective protein kinase inhibitors by targeting allosteric sites, but these sites often involve protein-protein or protein-peptide interfaces that are very challenging to target with small molecules. Here we present a systematic approach to targeting a functionally conserved allosteric site on the protein kinase PDK1 called the PDK1-interacting fragment (PIF)tide-binding site, or PIF pocket. More than two dozen prosurvival and progrowth kinases dock a conserved peptide tail into this binding site, which recruits them to PDK1 to become activated. Using a site-directed chemical screen, we identified and chemically optimized ligand-efficient, selective, and cell-penetrant small molecules (molecular weight ∼ 380 Da) that compete with the peptide docking motif for binding to PDK1. We solved the first high-resolution structure of a peptide docking motif (PIFtide) bound to PDK1 and mapped binding energy hot spots using mutational analysis. We then solved structures of PDK1 bound to the allosteric small molecules, which revealed a binding mode that remarkably mimics three of five hot-spot residues in PIFtide. These allosteric small molecules are substrate-selective PDK1 inhibitors when used as single agents, but when combined with an ATP-competitive inhibitor, they completely suppress the activation of the downstream kinases. This work provides a promising new scaffold for the development of high-affinity PIF pocket ligands, which may be used to enhance the anticancer activity of existing PDK1 inhibitors. Moreover, our results provide further impetus for exploring the helix αC patches of other protein kinases as potential therapeutic targets even though they involve protein-protein interfaces.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Simulación del Acoplamiento Molecular , Péptidos , Inhibidores de Proteínas Quinasas , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/antagonistas & inhibidores , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Secuencias de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacología , Cristalografía por Rayos X , Células HEK293 , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Péptidos/química , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Estructura Secundaria de Proteína
9.
Biochem Soc Trans ; 42(5): 1435-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25233428

RESUMEN

Phosphoinositide-dependent kinase 1 (PDK1) is the master regulator of at least 23 other AGC kinases whose downstream signalling has often been implicated in various diseases and in particular in cancer. Therefore there has been great interest in determining how PDK1 is controlled and how it regulates its substrates spatially and temporally. The understanding of these mechanisms could offer new possibilities for therapeutic intervention. Over the years, a more comprehensive view of the mechanisms involved in the regulation of PDK1 has emerged and these comprise serine/threonine as well as tyrosine phosphorylation, subcellular localization, regulator binding and conformation status. In the present review, we discuss how various molecular mechanisms are together responsible for the conformational regulation behind the activation of PDK1 in cells.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Modelos Moleculares , Transducción de Señal , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Animales , Dimerización , Activación Enzimática , Humanos , Ligandos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fosforilación , Conformación Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
10.
Proteins ; 82(3): 436-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23999908

RESUMEN

The emerging picture of biomolecular recognition is that of conformational selection followed by induced-fit. Conformational selection theory states that binding partners exist in various conformations in solution, with binding involving a "selection" between complementary conformers. In this study, we devise a docking protocol that mimics conformational selection in protein-ligand binding and demonstrate that it significantly enhances crossdocking accuracy over Glide's flexible docking protocol, which is widely used in the pharmaceutical industry. Our protocol uses a pregenerated conformational ensemble to simulate ligand flexibility. The ensemble was generated by thorough conformational sampling coupled with conformer minimization. The generated conformers were then rigidly docked in the active site of the protein along with a postdocking minimization step that allows limited induced fit effects to be modeled for the ligand. We illustrate the improved performance of our protocol through crossdocking of 31 ligands to cocomplexed proteins of the kinase 3-phosphoinositide dependent protein kinase-1 extracted from the crystal structures 1H1W (ATP bound), 1OKY (staurosporine bound) and 3QD0 (bound to a potent inhibitor). Consistent with conformational selection theory, the performance of our protocol was the best for crossdocking to the cognate protein bound to the natural ligand, ATP.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Estaurosporina/química , Estaurosporina/metabolismo
11.
J Mol Graph Model ; 46: 41-51, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24121518

RESUMEN

Implicit solvation methods such as MM-GBSA, when applied to evaluating protein/ligand binding free energies, are widely believed to be accurate only for the estimation of relative binding free energies for a congeneric series of ligands. In this work, we show that the MM-GBSA flavor of Prime 3.0, VSGB-2.0, with a variable dielectric model and a novel energy function, could be approaching the accuracy required for evaluating absolute binding free energies, albeit, through a linear regression fit. The data-set used for validation includes 106 protein-ligand complexes that were carefully selected to control for variability in the affinity data as well as error in the modeled complexes. Through systematic analysis, we also quantify the degradation in the R(2) of fit between experimental and calculated values with either greater variability in the affinity data or an increase in error in the modeled protein/ligand complexes. Limitations for its application in drug discovery are discussed along with the identification of areas for future development.


Asunto(s)
Simulación del Acoplamiento Molecular , Proteínas/química , Programas Informáticos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Aldehído Reductasa/química , Secretasas de la Proteína Precursora del Amiloide/química , Animales , Ácido Aspártico Endopeptidasas/química , Bovinos , Humanos , Ligandos , Modelos Lineales , Unión Proteica , Termodinámica , Tripsina/química
12.
Biochemistry ; 52(28): 4820-9, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23745598

RESUMEN

Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric states of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. This study investigates the binding of purified wild-type (WT) and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single-molecule and ensemble measurements. Single-molecule analysis of the brightness of the fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single-molecule analysis of two-dimensional (2D) diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate as a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little penetration of the protein into the bilayer as observed for other PH domains. The 2D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that allows deeper insertion of the protein into the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveal that the dimeric WT PH domain possesses a one order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each 1 order of magnitude lower than those of the dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to the cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Dimerización , Activación Enzimática , Transferencia Resonante de Energía de Fluorescencia , Humanos , Membrana Dobles de Lípidos , Fosforilación , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...