Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33879613

RESUMEN

In eukaryotes, secretory proteins traffic from the endoplasmic reticulum (ER) to the Golgi apparatus via coat protein complex II (COPII) vesicles. Intriguingly, during nutrient starvation, the COPII machinery acts constructively as a membrane source for autophagosomes during autophagy to maintain cellular homeostasis by recycling intermediate metabolites. In higher plants, essential roles of autophagy have been implicated in plant development and stress responses. Nonetheless, the membrane sources of autophagosomes, especially the participation of the COPII machinery in the autophagic pathway and autophagosome biogenesis, remains elusive in plants. Here, we provided evidence in support of a novel role of a specific Sar1 homolog AtSar1d in plant autophagy in concert with a unique Rab1/Ypt1 homolog AtRabD2a. First, proteomic analysis of the plant ATG (autophagy-related gene) interactome uncovered the mechanistic connections between ATG machinery and specific COPII components including AtSar1d and Sec23s, while a dominant negative mutant of AtSar1d exhibited distinct inhibition on YFP-ATG8 vacuolar degradation upon autophagic induction. Second, a transfer DNA insertion mutant of AtSar1d displayed starvation-related phenotypes. Third, AtSar1d regulated autophagosome progression through specific recognition of ATG8e by a noncanonical motif. Fourth, we demonstrated that a plant-unique Rab1/Ypt1 homolog AtRabD2a coordinates with AtSar1d to function as the molecular switch in mediating the COPII functions in the autophagy pathway. AtRabD2a appears to be essential for bridging the specific AtSar1d-positive COPII vesicles to the autophagy initiation complex and therefore contributes to autophagosome formation in plants. Taken together, we identified a plant-specific nexus of AtSar1d-AtRabD2a in regulating autophagosome biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Autofagosomas/metabolismo , Autofagia/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fagosomas/metabolismo , Transporte de Proteínas/fisiología , Proteómica/métodos , Proteínas R-SNARE/fisiología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/fisiología
2.
Traffic ; 21(10): 636-646, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32851733

RESUMEN

Exocytosis is a vesicle fusion process driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin-stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR-Cas9 genome editing to delete the two tomosyn-encoding genes in adipocytes. We observed that both basal and insulin-stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α-SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin-stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn-arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes.


Asunto(s)
Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina , Proteínas del Tejido Nervioso/fisiología , Proteínas R-SNARE/fisiología , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/genética , Humanos , Insulina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Proteínas R-SNARE/genética
3.
Blood ; 136(6): 715-725, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384141

RESUMEN

Studies of inherited platelet disorders have provided many insights into platelet development and function. Loss of function of neurobeachin-like 2 (NBEAL2) causes gray platelet syndrome (GPS), where the absence of platelet α-granules indicates NBEAL2 is required for their production by precursor megakaryocytes. The endoplasmic reticulum is a dynamic network that interacts with numerous intracellular vesicles and organelles and plays key roles in their development. The megakaryocyte endoplasmic reticulum is extensive, and in this study we investigated its role in the biogenesis of α-granules by focusing on the membrane-resident trafficking protein SEC22B. Coimmunoprecipitation (co-IP) experiments using tagged proteins expressed in human HEK293 and megakaryocytic immortalized megakaryocyte progenitor (imMKCL) cells established binding of NBEAL2 with SEC22B, and demonstrated that NBEAL2 can simultaneously bind SEC22B and P-selectin. NBEAL2-SEC22B binding was also observed for endogenous proteins in human megakaryocytes using co-IP, and immunofluorescence microscopy detected substantial overlap. SEC22B binding was localized to a region of NBEAL2 spanning amino acids 1798 to 1903, where 2 GPS-associated missense variants have been reported: E1833K and R1839C. NBEAL2 containing either variant did not bind SEC22B coexpressed in HEK293 cells. CRISPR/Cas9-mediated knockout of SEC22B in imMKCL cells resulted in decreased NBEAL2, but not vice versa. Loss of either SEC22B or NBEAL2 expression resulted in failure of α-granule production and reduced granule proteins in imMKCL cells. We conclude that SEC22B is required for α-granule biogenesis in megakaryocytes, and that interactions with SEC22B and P-selectin facilitate the essential role of NBEAL2 in granule development and cargo stability.


Asunto(s)
Proteínas Sanguíneas/fisiología , Gránulos Citoplasmáticos/fisiología , Retículo Endoplásmico/fisiología , Megacariocitos/ultraestructura , Biogénesis de Organelos , Proteínas R-SNARE/fisiología , Sitios de Unión , Proteínas Sanguíneas/deficiencia , Proteínas Sanguíneas/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Síndrome de Plaquetas Grises/genética , Células HEK293 , Humanos , Inmunoprecipitación , Células Progenitoras de Megacariocitos , Megacariocitos/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Mutación Missense , Selectina-P/fisiología , Mapeo de Interacción de Proteínas , Proteínas Recombinantes/metabolismo
4.
Curr Genet ; 66(2): 421-435, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31667538

RESUMEN

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotic cells, and play a vital role in growth, development and pathogenicity of phytopathogens. Fusarium head blight (FHB) caused by F. graminearum is one of the most devastating diseases of wheat and barley worldwide. Sec22 is a member of the SNARE family of proteins and its homologues have been shown to have diverse biological roles in different organisms. However, the functions of this protein in the development and pathogenesis of F. graminearum are currently unknown. In this study, we employed integrated biochemical, microbiological and molecular genetic approaches to investigate the roles of FgSec22 in F. graminearum. Our data reveal that this SNARE protein is localized to endoplasmic reticulum (ER) and is indispensable for normal conidiation, conidial morphology and pathogenesis of this phytopathogenic fungus. Our biochemical assay of deoxynivalenol (DON) reveals the active involvement of this protein in the production of this mycotoxin in F. graminearum. This has further been confirmed by qRT-PCR analyses of trichothecene (TRI) genes' expression where the ΔFgsec22 deletion mutant demonstrated a significant down-regulation of these genes in comparison to the wild-type PH-1. Unlike the wild-type and the complemented strain, the mutant strain presents a remarkable defect in colony formation which reflects the critical role it plays in vegetative growth. Collectively, our data support that the SNARE protein FgSec22 is required for vegetative growth, pathogenesis and DON biosynthesis in F. graminearum.


Asunto(s)
Fusarium/metabolismo , Fusión de Membrana , Transporte de Proteínas , Proteínas R-SNARE/metabolismo , Tricotecenos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Fusarium/patogenicidad , Fusarium/fisiología , Enfermedades de las Plantas , Proteínas R-SNARE/fisiología , Triticum/microbiología , Virulencia/genética
5.
PLoS Pathog ; 15(7): e1007982, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356625

RESUMEN

To colonize phagocytes, Leishmania subverts microbicidal processes through components of its surface coat that include lipophosphoglycan and the GP63 metalloprotease. How these virulence glycoconjugates are shed, exit the parasitophorous vacuole (PV), and traffic within host cells is poorly understood. Here, we show that lipophosphoglycan and GP63 are released from the parasite surface following phagocytosis and redistribute to the endoplasmic reticulum (ER) of macrophages. Pharmacological disruption of the trafficking between the ER and the Golgi hindered the exit of these molecules from the PV and dampened the cleavage of host proteins by GP63. Silencing by RNA interference of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptors Sec22b and syntaxin-5, which regulate ER-Golgi trafficking, identified these host proteins as components of the machinery that mediates the spreading of Leishmania effectors within host cells. Our findings unveil a mechanism whereby a vacuolar pathogen takes advantage of the host cell's secretory pathway to promote egress of virulence factors beyond the PV.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Leishmania/fisiología , Leishmania/patogenicidad , Proteínas Protozoarias/fisiología , Factores de Virulencia/fisiología , Animales , Retículo Endoplásmico/parasitología , Femenino , Glicoesfingolípidos/fisiología , Humanos , Leishmania/crecimiento & desarrollo , Leishmaniasis/parasitología , Metaloendopeptidasas/fisiología , Ratones , Ratones Endogámicos C57BL , Fagocitos/parasitología , Fagocitosis , Fagosomas/parasitología , Proteínas Qa-SNARE/fisiología , Proteínas R-SNARE/fisiología , Vías Secretoras , Vacuolas/parasitología , Virulencia
6.
Science ; 363(6430): 948-955, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30819957

RESUMEN

We investigated the roles of components of neuronal synapses for development of the Drosophila air sac primordium (ASP). The ASP, an epithelial tube, extends specialized signaling filopodia called cytonemes that take up signals such as Dpp (Decapentaplegic, a homolog of the vertebrate bone morphogenetic protein) from the wing imaginal disc. Dpp signaling in the ASP was compromised if disc cells lacked Synaptobrevin and Synaptotagmin-1 (which function in vesicle transport at neuronal synapses), the glutamate transporter, and a voltage-gated calcium channel, or if ASP cells lacked Synaptotagmin-4 or the glutamate receptor GluRII. Transient elevations of intracellular calcium in ASP cytonemes correlate with signaling activity. Calcium transients in ASP cells depend on GluRII, are activated by l-glutamate and by stimulation of an optogenetic ion channel expressed in the wing disc, and are inhibited by EGTA and by the GluR inhibitor NASPM (1-naphthylacetyl spermine trihydrochloride). Activation of GluRII is essential but not sufficient for signaling. Cytoneme-mediated signaling is glutamatergic.


Asunto(s)
Señalización del Calcio , Proteínas de Drosophila/fisiología , Glutamatos/fisiología , Discos Imaginales/fisiología , Receptores Ionotrópicos de Glutamato/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Canales de Calcio/fisiología , Drosophila melanogaster/fisiología , Imagen Óptica , Seudópodos/fisiología , Proteínas R-SNARE/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Sinaptotagmina I/fisiología , Técnicas de Cultivo de Tejidos
7.
J Cell Biol ; 217(8): 2633-2645, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29789439

RESUMEN

Macroautophagy is an evolutionarily conserved catabolic mechanism that delivers intracellular constituents to lysosomes using autophagosomes. To achieve degradation, lysosomes must fuse with closed autophagosomes. We previously reported that the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin (STX) 17 translocates to autophagosomes to mediate fusion with lysosomes. In this study, we report an additional mechanism. We found that autophagosome-lysosome fusion is retained to some extent even in STX17 knockout (KO) HeLa cells. By screening other human SNAREs, we identified YKT6 as a novel autophagosomal SNARE protein. Depletion of YKT6 inhibited autophagosome-lysosome fusion partially in wild-type and completely in STX17 KO cells, suggesting that YKT6 and STX17 are independently required for fusion. YKT6 formed a SNARE complex with SNAP29 and lysosomal STX7, both of which are required for autophagosomal fusion. Recruitment of YKT6 to autophagosomes depends on its N-terminal longin domain but not on the C-terminal palmitoylation and farnesylation that are essential for its Golgi localization. These findings suggest that two independent SNARE complexes mediate autophagosome-lysosome fusion.


Asunto(s)
Autofagosomas/fisiología , Lisosomas/fisiología , Proteínas Qa-SNARE/fisiología , Proteínas R-SNARE/fisiología , Animales , Autofagosomas/metabolismo , Línea Celular , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Ratones , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
8.
PLoS Genet ; 14(4): e1007359, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29694367

RESUMEN

The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process.


Asunto(s)
Autofagosomas/fisiología , Proteínas de Drosophila/fisiología , Lisosomas/fisiología , Fusión de Membrana/fisiología , Proteínas R-SNARE/fisiología , Animales , Animales Modificados Genéticamente , Sitios de Unión , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Fusión de Membrana/genética , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/fisiología , Proteínas R-SNARE/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/fisiología
9.
PLoS One ; 12(10): e0186938, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29065163

RESUMEN

Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila/genética , Proteínas R-SNARE/fisiología , Proteína Wnt1/metabolismo , Animales , Transporte Biológico , Proteínas de Drosophila/genética , Proteínas R-SNARE/genética , Transducción de Señal
10.
J Exp Med ; 214(8): 2231-2241, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28663435

RESUMEN

CD8+ T cells mediate antigen-specific immune responses that can induce rejection of solid tumors. In this process, dendritic cells (DCs) are thought to take up tumor antigens, which are processed into peptides and loaded onto MHC-I molecules, a process called "cross-presentation." Neither the actual contribution of cross-presentation to antitumor immune responses nor the intracellular pathways involved in vivo are clearly established because of the lack of experimental tools to manipulate this process. To develop such tools, we generated mice bearing a conditional DC-specific mutation in the sec22b gene, a critical regulator of endoplasmic reticulum-phagosome traffic required for cross-presentation. DCs from these mice show impaired cross-presentation ex vivo and defective cross-priming of CD8+ T cell responses in vivo. These mice are also defective for antitumor immune responses and are resistant to treatment with anti-PD-1. We conclude that Sec22b-dependent cross-presentation in DCs is required to initiate CD8+ T cell responses to dead cells and to induce effective antitumor immune responses during anti-PD-1 treatment in mice.


Asunto(s)
Reactividad Cruzada/inmunología , Neoplasias/inmunología , Proteínas R-SNARE/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/fisiología , Muerte Celular/inmunología , Células Dendríticas/inmunología , Femenino , Inmunidad Celular/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas R-SNARE/genética , Células RAW 264.7
11.
Mol Biol Cell ; 28(7): 890-897, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179460

RESUMEN

Recognition of surface-tethered antigens (Ags) by B-cells leads to the formation of an immune synapse that promotes Ag uptake for presentation onto MHC-II molecules. Extraction of immobilized Ags at the immune synapse of B-cells relies on the local secretion of lysosomes, which are recruited to the Ag contact site by polarization of their microtubule network. Although conserved polarity proteins have been implicated in coordinating cytoskeleton remodeling with lysosome trafficking, the cellular machinery associated with lysosomal vesicles that regulates their docking and secretion at the synaptic interface has not been defined. Here we show that the v-SNARE protein Vamp-7 is associated with Lamp-1+ lysosomal vesicles, which are recruited and docked at the center of the immune synapse of B-cells. A decrease in Vamp-7 expression does not alter lysosome transport to the synaptic interface but impairs their local secretion, a defect that compromises the ability of B-cells to extract, process, and present immobilized Ag. Thus our results reveal that B-cells rely on the SNARE protein Vamp-7 to promote the local exocytosis of lysosomes at the immune synapse, which is required for efficient Ag extraction and presentation.


Asunto(s)
Linfocitos B/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/fisiología , Animales , Presentación de Antígeno/inmunología , Antígenos/metabolismo , Linfocitos B/fisiología , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Exocitosis , Lisosomas/metabolismo , Ratones , Transporte de Proteínas , Proteínas SNARE/metabolismo , Sinapsis/metabolismo
12.
J Exp Bot ; 67(21): 6161-6171, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27811083

RESUMEN

Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum-plasma membrane (ER-PM) contact sites in leaf and root cells. The ER-PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for maintaining cell integrity and virus movement. This study provides detailed insight into the subcellular localization of SYT1 and VAP27-1, another ER-PM-tethering protein. SYT1 and VAP27-1 were shown to be localized on distinct ER-PM contact sites. The VAP27-1-enriched ER-PM contact sites (V-EPCSs) were always in contact with the SYT1-enriched ER-PM contact sites (S-EPCSs). The V-EPCSs still existed in the leaf epidermal cells of the SYT1 null mutant; however, they were less stable than those in the wild type. The polygonal networks of cortical ER disassembled and the mobility of VAP27-1 protein on the ER-PM contact sites increased in leaf cells of the SYT1 null mutant. These results suggest that SYT1 is responsible for stabilizing the ER network and V-EPCSs.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Membrana Celular/fisiología , Retículo Endoplásmico/fisiología , Sinaptotagmina I/fisiología , Arabidopsis/metabolismo , Western Blotting , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas R-SNARE/fisiología
13.
Curr Psychiatry Rep ; 18(8): 77, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27371030

RESUMEN

Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.


Asunto(s)
Encéfalo/fisiopatología , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Vesículas Sinápticas/fisiología , Animales , Encéfalo/patología , Humanos , Proteínas Munc18/fisiología , Neurotransmisores/metabolismo , Proteínas Qa-SNARE/fisiología , Proteínas R-SNARE/fisiología , ARN Mensajero/genética , Receptores Presinapticos/fisiología , Proteínas SNARE/fisiología , Esquizofrenia/patología , Transducción de Señal/fisiología , Sinapsinas/fisiología , Vesículas Sinápticas/genética , Sinaptofisina/fisiología , Proteína 25 Asociada a Sinaptosomas/fisiología
14.
Diabetes ; 65(6): 1648-59, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26953164

RESUMEN

VAMP7 is a SNARE protein that mediates specific membrane fusions in intracellular trafficking and was recently reported to regulate autophagosome formation. However, its function in pancreatic ß-cells is largely unknown. To elucidate the physiological role of VAMP7 in ß-cells, we generated pancreatic ß-cell-specific VAMP7 knockout (Vamp7(flox/Y);Cre) mice. VAMP7 deletion impaired glucose-stimulated ATP production and insulin secretion, though VAMP7 was not localized to insulin granules. VAMP7-deficient ß-cells showed defective autophagosome formation and reduced mitochondrial function. p62/SQSTM1, a marker protein for defective autophagy, was selectively accumulated on mitochondria in VAMP7-deficient ß-cells. These findings suggest that accumulation of dysfunctional mitochondria that are degraded by autophagy caused impairment of glucose-stimulated ATP production and insulin secretion in Vamp7(flox/Y);Cre ß-cells. Feeding a high-fat diet to Vamp7(flox/Y);Cre mice exacerbated mitochondrial dysfunction, further decreased ATP production and insulin secretion, and consequently induced glucose intolerance. Moreover, we found upregulated VAMP7 expression in wild-type mice fed a high-fat diet and in db/db mice, a model for diabetes. Thus our data indicate that VAMP7 regulates autophagy to maintain mitochondrial quality and insulin secretion in response to pathological stress in ß-cells.


Asunto(s)
Autofagia/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/fisiología , Proteínas R-SNARE/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Homeostasis , Secreción de Insulina , Masculino , Ratones , Ratones Noqueados , Proteínas R-SNARE/deficiencia
15.
J Cell Biol ; 210(1): 135-51, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26124288

RESUMEN

Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated.


Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , Proteínas R-SNARE/fisiología , Linfocitos T Citotóxicos/inmunología , Degranulación de la Célula , Células Cultivadas , Citotoxicidad Inmunológica , Humanos , Sinapsis Inmunológicas/metabolismo , Fusión de Membrana , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo , Transducción de Señal
16.
Cell Rep ; 12(3): 396-404, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26166572

RESUMEN

Neurotransmitter release probability (P(r)) largely determines the dynamic properties of synapses. While much is known about the role of presynaptic proteins in transmitter release, their specific contribution to synaptic plasticity is unclear. One such protein, tomosyn, is believed to reduce P(r) by interfering with the SNARE complex formation. Tomosyn is enriched at hippocampal mossy fiber-to-CA3 pyramidal cell synapses (MF-CA3), which characteristically exhibit low P(r), strong synaptic facilitation, and pre-synaptic protein kinase A (PKA)-dependent long-term potentiation (LTP). To evaluate tomosyn's role in MF-CA3 function, we used a combined knockdown (KD)-optogenetic strategy whereby presynaptic neurons with reduced tomosyn levels were selectively activated by light. Using this approach in mouse hippocampal slices, we found that facilitation, LTP, and PKA-induced potentiation were significantly impaired at tomosyn-deficient synapses. These findings not only indicate that tomosyn is a key regulator of MF-CA3 plasticity but also highlight the power of a combined KD-optogenetic approach to determine the role of presynaptic proteins.


Asunto(s)
Fibras Musgosas del Hipocampo/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Proteínas R-SNARE/fisiología , ARN Interferente Pequeño/metabolismo , Animales , Técnicas de Silenciamiento del Gen/métodos , Humanos , Ratones , Fibras Musgosas del Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Optogenética/métodos , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
17.
Plant Cell ; 27(6): 1697-717, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26002867

RESUMEN

SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) proteins drive vesicle traffic, delivering membrane and cargo to target sites within the cell and at its surface. They contribute to cell homeostasis, morphogenesis, and pathogen defense. A subset of SNAREs, including the Arabidopsis thaliana SNARE SYP121, are known also to coordinate solute uptake via physical interactions with K(+) channels and to moderate their gating at the plasma membrane. Here, we identify a second subset of SNAREs that interact to control these K(+) channels, but with opposing actions on gating. We show that VAMPs (vesicle-associated membrane proteins), which target vesicles to the plasma membrane, also interact with and suppress the activities of the inward-rectifying K(+) channels KAT1 and KC1. Interactions were evident in yeast split-ubiquitin assays, they were recovered in vivo by ratiometric bimolecular fluorescence complementation, and they were sensitive to mutation of a single residue, Tyr-57, within the longin domain of VAMP721. Interaction was also recovered on exchange of the residue at this site in the homolog VAMP723, which normally localizes to the endoplasmic reticulum and otherwise did not interact. Functional analysis showed reduced channel activity and alterations in voltage sensitivity that are best explained by a physical interaction with the channel gates. These actions complement those of SYP121, a cognate SNARE partner of VAMP721, and lead us to propose that the channel interactions reflect a "hand-off" in channel control between the two SNARE proteins that is woven together with vesicle fusion.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Membrana Celular/fisiología , Potenciales de la Membrana/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio/fisiología , Proteínas R-SNARE/fisiología , Simportadores/fisiología , Arabidopsis/metabolismo , Cotransportadores de K Cl
18.
Int J Biochem Cell Biol ; 62: 62-71, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25725259

RESUMEN

Insulin triggers glucose uptake into skeletal muscle and adipose tissues by gaining the available number of glucose transporter 4 (GLUT4) on the cell surface. GLUT4-loaded vesicles are targeted to plasma membrane from the intracellular reservoir through multiple trafficking and fusion processes that are mainly regulated by Akt. However, it is still largely unknown how GLUT4 expression in the cell surface is promoted by insulin. In the present study, we identified tomosyn at Ser-783 as a possible Akt-substrate motif and examined whether the phosphorylation at Ser-783 is involved in the regulation of GLUT4 expression. Both Akt1 and Akt2 phosphorylated the wild-type tomosyn, but not the mutant tomosyn in which Ser-783 was replaced with Ala. Phosphorylation of tomosyn at Ser-783 was also observed in the intact cells by insulin stimulation, which was blocked by PI3K inhibitor, LY294002. In vitro pull-down assay showed that phosphorylation of tomosyn at Ser-783 by Akt inhibited the interaction with syntaxin 4. Insulin stimulation increased GLUT4 in the cell surface of CHO-K1 cells to promote glucose uptake, however exogenous expression of the mutant tomosyn attenuated the increase by insulin. These results suggest that Ser-783 of tomosyn is a target of Akt and is implicated in the interaction with syntaxin 4.


Asunto(s)
Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Proteínas del Tejido Nervioso/fisiología , Proteína Oncogénica v-akt/metabolismo , Proteínas R-SNARE/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Células COS , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Cricetulus , Exocitosis/efectos de los fármacos , Exocitosis/genética , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Proteínas R-SNARE/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(33): 12037-42, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25092301

RESUMEN

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex drives the majority of intracellular and exocytic membrane fusion events. Whether and how SNAREs cooperate to mediate fusion has been a subject of intense study, with estimates ranging from a single SNARE complex to 15. Here we show that there is no universally conserved number of SNARE complexes involved as revealed by our observation that this varies greatly depending on membrane curvature. When docking rates of small (∼40 nm) and large (∼100 nm) liposomes reconstituted with different synaptobrevin (the SNARE present in synaptic vesicles) densities are taken into account, the lipid mixing efficiency was maximal with small liposomes with only one synaptobrevin, whereas 23-30 synaptobrevins were necessary for efficient lipid mixing in large liposomes. Our results can be rationalized in terms of strong and weak cooperative coupling of SNARE complex assembly where each mode implicates different intermediate states of fusion that have been recently identified by electron microscopy. We predict that even higher variability in cooperativity is present in different physiological scenarios of fusion, and we further hypothesize that plasticity of SNAREs to engage in different coupling modes is an important feature of the biologically ubiquitous SNARE-mediated fusion reactions.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas SNARE/fisiología , Liposomas , Proteínas R-SNARE/fisiología
20.
Plant Signal Behav ; 9(4): e28466, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24614164

RESUMEN

The RAB5 GTPase ARA6 (AtARA6) of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses.


Asunto(s)
Proteínas Algáceas/fisiología , Chara/fisiología , Proteínas R-SNARE/fisiología , Vesículas Transportadoras/fisiología , Secuencia de Aminoácidos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...