Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Ageing Res Rev ; 89: 101967, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37270146

RESUMEN

Autophagy plays a key role in cellular, tissue and organismal homeostasis and in the production of the energy load needed at critical times during development and in response to nutrient shortage. Autophagy is generally considered as a pro-survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy efficiency declines with age, thus contributing to many different pathophysiological conditions, such as cancer, cardiomyopathy, diabetes, liver disease, autoimmune diseases, infections, and neurodegeneration. Accordingly, it has been proposed that the maintenance of a proper autophagic activity contributes to the extension of the lifespan in different organisms. A better understanding of the interplay between autophagy and risk of age-related pathologies is important to propose nutritional and life-style habits favouring disease prevention as well as possible clinical applications aimed at promoting long-term health.


Asunto(s)
Envejecimiento , Proteínas Relacionadas con la Autofagia , Autofagia , Proteínas Relacionadas con la Autofagia/fisiología , Humanos , Biomarcadores , Longevidad , Enfermedad , Enfermedades Neurodegenerativas , Neoplasias , Enfermedades Cardiovasculares , Síndrome Metabólico
2.
J Diabetes Res ; 2021: 5398645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791389

RESUMEN

OBJECTIVE: Accumulating evidence suggests the critical role of autophagy in the pathogenesis of diabetic retinopathy (DR). In the current study, we aim to identify autophagy genes involved in DR via microarray analyses. METHODS: Gene microarrays were performed to identify differentially expressed lncRNAs/mRNAs between normal and DR retinas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of lncRNA-coexpressed mRNAs were used to determine the related pathological pathways and biological modules. Real-time polymerase chain reactions (PCR) were conducted to validate the microarray analyses. RESULTS: A total of 2474 significantly dysregulated lncRNAs and 959 differentially expressed mRNAs were identified in the retina of DR. Based upon Signalnet analysis, Bcl2, Gabarapl2, Atg4c, and Atg16L1 participated the process of cell death in DR. Moreover, real-time PCR revealed significant upregulation of Atg16L1. CONCLUSION: This study indicated the importance and potential role of Atg16L1, one of the autophagy genes, as a biomarker in DR development and progression.


Asunto(s)
Proteínas Relacionadas con la Autofagia/fisiología , Autofagia/genética , Retinopatía Diabética/genética , Animales , Autofagia/fisiología , Biomarcadores , Retinopatía Diabética/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/análisis , ARN Mensajero/análisis
3.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850023

RESUMEN

The autophagy protein ATG2, proposed to transfer bulk lipid from the endoplasmic reticulum (ER) during autophagosome biogenesis, interacts with ER residents TMEM41B and VMP1 and with ATG9, in Golgi-derived vesicles that initiate autophagosome formation. In vitro assays reveal TMEM41B, VMP1, and ATG9 as scramblases. We propose a model wherein membrane expansion results from the partnership of a lipid transfer protein, moving lipids between the cytosolic leaflets of apposed organelles, and scramblases that reequilibrate the leaflets of donor and acceptor organelle membranes as lipids are depleted or augmented. TMEM41B and VMP1 are implicated broadly in lipid homeostasis and membrane dynamics processes in which their scrambling activities likely are key.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/fisiología , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Modelos Biológicos , Modelos Teóricos , Biogénesis de Organelos , Proteínas de Transferencia de Fosfolípidos/fisiología
4.
Mol Biol Cell ; 32(12): 1158-1170, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826365

RESUMEN

The endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, nonneuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced the formation of unbranched, long tubules or dense globular structures composed of heavily branched narrow tubules. In both cases, tubules were nonmotile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region also led to a reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes.


Asunto(s)
Proteínas Relacionadas con la Autofagia/fisiología , Autofagia , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Nogo/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Línea Celular , Retículo Endoplásmico/fisiología , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Dominios Proteicos
5.
Dev Cell ; 56(7): 949-966, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33765438

RESUMEN

ER-phagy, literally endoplasmic reticulum (ER)-eating, defines the constitutive or regulated clearance of ER portions within metazoan endolysosomes or yeast and plant vacuoles. The advent of electron microscopy led to the first observations of ER-phagy over 60 years ago, but only recently, with the discovery of a set of regulatory proteins named ER-phagy receptors, has it been dissected mechanistically. ER-phagy receptors are activated by a variety of pleiotropic and ER-centric stimuli. They promote ER fragmentation and engage luminal, membrane-bound, and cytosolic factors, eventually driving lysosomal clearance of select ER domains along with their content. After short historical notes, this review introduces the concept of ER-phagy responses (ERPRs). ERPRs ensure lysosomal clearance of ER portions expendable during nutrient shortage, nonfunctional, present in excess, or containing misfolded proteins. They cooperate with unfolded protein responses (UPRs) and with ER-associated degradation (ERAD) in determining ER size, function, and homeostasis.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada , Animales , Autofagia , Proteínas Relacionadas con la Autofagia/fisiología , Lisosomas/metabolismo , Mamíferos/metabolismo , Plantas/metabolismo , Levaduras/metabolismo
6.
Plant Sci ; 306: 110850, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33775357

RESUMEN

Autophagy is a major degradation pathway in plants for maintaining cellular homeostasis in response to various environmental stressors. ATG8 is one of a series of autophagy-related (ATG) proteins and plays a central role in both bulk and selective autophagy. Previously, we characterized MdATG8i in apple and demonstrated that it has a positive role in apple stress resistance. Although many ATG8-interacting proteins have been found in Arabidopsis, no protein has been reported to interact with MdATG8 in apple. Here, we identified MdHARBI1 as a MdATG8i-interacting protein in apple, however, the functions of HARBI1-like proteins have not been explored in plants. Expression analysis of MdHARBI1 and pro-MdHARBI1-GUS staining of transgenic Arabidopsis exposed to high temperature demonstrated that MdHARBI1 was significantly induced by heat stress. Moreover, heat-treated MdHARBI1-trangenic tomato plants maintained higher autophagic activity, accumulated fewer ROS, and displayed stronger chlorophyll fluorescence than wild-type plants. Because these phenotypes were consistent with those displayed by MdATG8i-overexpressing apple plants under high temperature, we concluded that the MdATG8i-interacting protein MdHARBI1 plays a critical role in the basal thermotolerance of plants, mainly by influencing autophagy pathways.


Asunto(s)
Proteínas Relacionadas con la Autofagia/fisiología , Autofagia/genética , Respuesta al Choque Térmico/genética , Malus/genética , Malus/fisiología , Termotolerancia/genética , Termotolerancia/fisiología , Autofagia/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Respuesta al Choque Térmico/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología
7.
Autophagy ; 17(11): 3644-3670, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33685363

RESUMEN

Autophagosome formation requires PROPPIN/WIPI proteins and monophosphorylated phosphoinositides, such as phosphatidylinositol-3-phosphate (PtdIns3P) or PtdIns5P. This process occurs in association with mammalian endosomes, where the PROPPIN WIPI1 has additional, undefined roles in vesicular traffic. To explore whether these functions are interconnected, we dissected routes and subreactions of endosomal trafficking requiring WIPI1. WIPI1 specifically acts in the formation and fission of tubulo-vesicular endosomal transport carriers. This activity supports the PtdIns(3,5)P2-dependent transport of endosomal cargo toward the plasma membrane, Golgi, and lysosomes, suggesting a general role of WIPI1 in endosomal protein exit. Three features differentiate the endosomal and macroautophagic/autophagic activities of WIPI1: phosphoinositide binding site II, the requirement for PtdIns(3,5)P2, and bilayer deformation through a conserved amphipathic α-helix. Their inactivation preserves autophagy but leads to a strong enlargement of endosomes, which accumulate micrometer-long endosomal membrane tubules carrying cargo proteins. WIPI1 thus supports autophagy and protein exit from endosomes by different modes of action. We propose that the type of phosphoinositides occupying its two lipid binding sites, the most unusual feature of PROPPIN/WIPI family proteins, switches between these effector functions.Abbreviations: EGF: epidermal growth factorEGFR: epidermal growth factor receptorKD: knockdownKO: knockoutPtdIns3P: phosphatidylinositol-3-phosphatePtdIns5P: phosphatidylinositol-5-phosphatePtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphateTF: transferrinTFRC: transferrin receptorWT: wildtype.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Línea Celular , Endocitosis , Edición Génica , Humanos , Proteínas de la Membrana/fisiología , Microscopía Confocal , Cuerpos Multivesiculares/fisiología , Mutagénesis Sitio-Dirigida
8.
Mol Biol Cell ; 32(8): 645-663, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33625870

RESUMEN

Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane-bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane-bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase that is essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of the two domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to how the C-terminal lipase domain recognizes autophagic bodies to degrade them.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/fisiología , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Transporte Biológico , Hidrolasas de Éster Carboxílico/genética , Citoplasma/metabolismo , Lipasa/metabolismo , Glicoproteínas de Membrana/genética , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Gene ; 782: 145537, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33636294

RESUMEN

Detection of TCGA data revealed that WIPI1 is highly expressed in osteosarcoma cells. So we explore the mechanisms of WIPI1 affecting the proliferation of osteosarcoma cells through Affymetrix microarray analysis. Functional analysis of differentially expressed genes shows that the classical signaling pathways affecting tumor formation and development have changed significantly. By fitting analysis, it is speculated that the WIPI1 may function in the direction of osteosarcoma by regulating the expression of multiple cell cycle-related genes such as CDKN1A, CDK4 and CCND1. Therefore, the key genes are selected for RT-PCR and Western-blot verification. Combined with flow and other means, WIPI1 may affect the cell cycle and the osteosarcoma by regulating the expression of CDKN1A, CDK4 and CCND1. To verify the results, the effect of WIPI1 on cell proliferation was quantified by MTT, cell counts and nude mouse tumorigenicity assay. The results showed that WIPI1 promotes osteosarcoma cell proliferation.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Neoplasias Óseas/genética , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Proteínas de la Membrana/genética , Osteosarcoma/genética , Animales , Proteínas Relacionadas con la Autofagia/fisiología , Neoplasias Óseas/patología , Ciclo Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Vectores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Proteínas de la Membrana/fisiología , Ratones Desnudos , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteosarcoma/patología , Programas Informáticos , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443148

RESUMEN

Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas F-Box/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/fisiología , Regulación hacia Abajo , Proteínas F-Box/fisiología , Lisosomas/metabolismo , Proteínas de la Membrana/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
J Neurochem ; 157(3): 752-763, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33354770

RESUMEN

Fused in sarcoma (FUS) is a ubiquitously expressed RNA/DNA-binding protein that plays different roles in the cell. FUS pathology has been reported in neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in FUS have also been linked to a subset of familial ALS. FUS is mainly localized in the nucleus although it shuttles between the nucleus and the cytoplasm. ALS-linked mutations cause the accumulation of the FUS protein in cytoplasm where it forms stress granule-like inclusions. The protein- and RNA-containing inclusions are reported to be positive of autophagosome markers and degraded by the autophagy pathway. However, the role of FUS in the autophagy pathway remains to be better understood. Using immunoblot and confocal imaging techniques in this study, we found that FUS knockout (KO) cells showed a decreased basal autophagy level. Rapamycin and bafilomycin A1 treatment showed that FUS KO cells were not able to initiate autophagy as efficiently as wild-type cells, suggesting that the autophagosome formation is affected in the absence of FUS. Moreover, using immunoblot and quantitative PCR techniques, we found that the mRNA and protein levels of the genes critical in the initial steps of the autophagy pathway (FIP200, ATG16L1 and ATG12) were significantly lower in FUS KO cells. Re-expressing FUS in the KO cells restored the expression of FIP200 and ATG16L1. Our findings demonstrate a novel role of FUS in the autophagy pathway, that is, regulating the transcription of genes involved in early stages of autophagy such as the initiation and elongation of autophagosomes.


Asunto(s)
Autofagosomas/genética , Autofagosomas/fisiología , Autofagia/genética , Autofagia/fisiología , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/fisiología , Animales , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/fisiología , Línea Celular , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Macrólidos/farmacología , Ratones , Complejo de la Endopetidasa Proteasomal , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transducción de Señal/genética , Sirolimus/farmacología
12.
Autophagy ; 17(11): 3275-3296, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33161807

RESUMEN

Oncogenic KRAS mutation-driven pancreatic ductal adenocarcinoma is currently the fourth-leading cause of cancer-related deaths in the United States. Macroautophagy (hereafter "autophagy") is one of the lysosome-dependent degradation systems that can remove abnormal proteins, damaged organelles, or invading pathogens by activating dynamic membrane structures (e.g., phagophores, autophagosomes, and autolysosomes). Impaired autophagy (including excessive activation and defects) is a pathological feature of human diseases, including pancreatic cancer. However, dysfunctional autophagy has many types and plays a complex role in pancreatic tumor biology, depending on various factors, such as tumor stage, microenvironment, immunometabolic state, and death signals. As a modulator connecting various cellular events, pharmacological targeting of nonselective autophagy may lead to both good and bad therapeutic effects. In contrast, targeting selective autophagy could reduce potential side effects of the drugs used. In this review, we describe the advances and challenges of autophagy in the development and therapy of pancreatic cancer.Abbreviations: AMPK: AMP-activated protein kinase; CQ: chloroquine; csc: cancer stem cells; DAMP: danger/damage-associated molecular pattern; EMT: epithelial-mesenchymal transition; lncRNA: long noncoding RNA; MIR: microRNA; PanIN: pancreatic intraepithelial neoplasia; PDAC: pancreatic ductal adenocarcinoma; PtdIns3K: phosphatidylinositol 3-kinase; SNARE: soluble NSF attachment protein receptor; UPS: ubiquitin-proteasome system.


Asunto(s)
Autofagia/fisiología , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/fisiología , Carcinoma Ductal Pancreático/fisiopatología , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Humanos , Metaboloma , Modelos Biológicos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Invasividad Neoplásica/fisiopatología , Estrés Oxidativo , Neoplasias Pancreáticas/fisiopatología , Neoplasias Pancreáticas/terapia , Escape del Tumor , Microambiente Tumoral/genética , Microambiente Tumoral/fisiología
13.
Cell Rep ; 33(10): 108477, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296658

RESUMEN

Autophagy is an intracellular degradation system, but its physiological functions in vertebrates are not yet fully understood. Here, we show that autophagy is required for inflation of air-filled organs: zebrafish swim bladder and mouse lung. In wild-type zebrafish swim bladder and mouse lung type II pulmonary epithelial cells, autophagosomes are formed and frequently fuse with lamellar bodies. The lamellar body is a lysosome-related organelle that stores a phospholipid-containing surfactant complex that lines the air-liquid interface and reduces surface tension. We find that autophagy is critical for maturation of the lamellar body. Accordingly, atg-deficient zebrafish fail to maintain their position in the water, and type-II-pneumocyte-specific Fip200-deficient mice show neonatal lethality with respiratory failure. Autophagy suppression does not affect synthesis of the surfactant phospholipid, suggesting that autophagy supplies lipids and membranes to lamellar bodies. These results demonstrate an evolutionarily conserved role of autophagy in lamellar body maturation.


Asunto(s)
Sacos Aéreos/metabolismo , Autofagia/fisiología , Pulmón/metabolismo , Sacos Aéreos/patología , Células Epiteliales Alveolares/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Células Epiteliales/metabolismo , Femenino , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Orgánulos/metabolismo , Surfactantes Pulmonares/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
14.
IUBMB Life ; 72(12): 2686-2695, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33159835

RESUMEN

Autophagy-related 16-like 1 (Atg16l1) contributes to the susceptibility to ulcerative colitis (UC). The functional consequences of Atg16l1 in UC pathogenesis are poorly understood. We aimed to confirm how Atg16l1 deficiency in dendritic cells (DCs) affects murine colitis development. Atg16l1f/f mice and mice with Atg16l1 deficiency in CD11c+ DCs (Atg16l1ΔDC ) were generated for colitis models induction. Disease activity index, weight loss, colon score/length, and histopathological analysis were assessed for colitis severity. Mononuclear cells from mesenteric lymph node (MLN) were extracted for CD44/CD69 measurement by flow cytometry. Bacterial cultures of MLN and stool homogenates were used to evaluate the bacterial translocation. Bone marrow-derived dendritic cells (BMDCs) were isolated and cultured for immunofluorescence of autophagy-related proteins. Atg16l1 knockout in CD11c+ DCs exacerbated intestinal inflammation of dextran sulfate sodium (DSS)-induced colitis in vivo. Atg16l1 deficiency in CD11c+ DCs had no effect on the expression of CD44 and CD69. Bacterial translocation showed that bacteria amount in MLN and stool of DSS-induced colitis with Atg16l1 deficiency significantly higher than that of control. Immunofluorescence revealed that Atg16l1 deficiency obviously inhibited co-expression of LC3 and Lamp1 with S. typhimurium, enhanced co-expression of rab5 and rab7 with S. typhimurium, while did not affect Beclin1. We confirmed that Atg16l1 deficiency in DCs exacerbated the intestinal inflammation of DSS-induced colitis. Atg16l1 deficiency in DCs promotes the bacterial translocation of DSS-induced colitis in vivo and regulates autophagy and phagocytosis in BMDCs. Findings provided a novel perspective to study UC pathogenesis.


Asunto(s)
Proteínas Relacionadas con la Autofagia/fisiología , Autofagia , Infecciones Bacterianas/prevención & control , Colitis/prevención & control , Células Dendríticas/inmunología , Inflamación/prevención & control , Mucosa Intestinal/inmunología , Animales , Antibacterianos , Bacterias/metabolismo , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Células Dendríticas/metabolismo , Sulfato de Dextran/toxicidad , Inflamación/metabolismo , Inflamación/microbiología , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
J Biol Chem ; 295(44): 15045-15053, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32848017

RESUMEN

Previously we reported that adipocyte SNAP23 (synaptosome-associated protein of 23 kDa) deficiency blocks the activation of macroautophagy, leading to an increased abundance of BAX, a pro-death Bcl-2 family member, and activation and adipocyte cell death both in vitro and in vivo Here, we found that knockdown of SNAP23 inhibited the association of the autophagosome regulators ATG16L1 and ATG9 compartments by nutrient depletion and reduced the formation of ATG16L1 membrane puncta. ATG16L1 knockdown inhibited autophagy flux and increased BAX protein levels by suppressing BAX degradation. The elevation in BAX protein had no effect on BAX activation or cell death in the nutrient-replete state. However, following nutrient depletion, BAX was activated with a concomitant induction of cell death. Co-immunoprecipitation analyses demonstrated that SNAP23 and ATG16L1 proteins form a stable complex independent of nutrient condition, whereas in the nutrient-depleted state, BAX binds to SNAP23 to form a ternary BAX-SNAP23-ATG16L1 protein complex. Taken together, these data support a model in which SNAP23 plays a crucial function as a scaffold for ATG16L1 necessary for the suppression of BAX activation and induction of the intrinsic cell death program.


Asunto(s)
Apoptosis/fisiología , Proteínas Relacionadas con la Autofagia/fisiología , Autofagia/fisiología , Proteína X Asociada a bcl-2/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Fracciones Subcelulares/metabolismo
16.
JCI Insight ; 5(18)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32780724

RESUMEN

Tumor-associated macrophages (TAMs) affect cancer progression and therapy. Ovarian carcinoma often metastasizes to the peritoneal cavity. Here, we found 2 peritoneal macrophage subsets in mice bearing ID8 ovarian cancer based on T cell immunoglobulin and mucin domain containing 4 (Tim-4) expression. Tim-4+ TAMs were embryonically originated and locally sustained while Tim-4- TAMs were replenished from circulating monocytes. Tim-4+ TAMs, but not Tim-4- TAMs, promoted tumor growth in vivo. Relative to Tim-4- TAMs, Tim-4+ TAMs manifested high oxidative phosphorylation and adapted mitophagy to alleviate oxidative stress. High levels of arginase-1 in Tim-4+ TAMs contributed to potent mitophagy activities via weakened mTORC1 activation due to low arginine resultant from arginase-1-mediated metabolism. Furthermore, genetic deficiency of autophagy element FAK family-interacting protein of 200 kDa resulted in Tim-4+ TAM loss via ROS-mediated apoptosis and elevated T cell immunity and ID8 tumor inhibition in vivo. Moreover, human ovarian cancer-associated macrophages positive for complement receptor of the immunoglobulin superfamily (CRIg) were transcriptionally, metabolically, and functionally similar to murine Tim-4+ TAMs. Thus, targeting CRIg+ (Tim-4+) TAMs may potentially treat patients with ovarian cancer with peritoneal metastasis.


Asunto(s)
Autofagia , Macrófagos Peritoneales/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Neoplasias Ováricas/patología , Estrés Oxidativo , Neoplasias Peritoneales/secundario , Adaptación Fisiológica , Animales , Proteínas Relacionadas con la Autofagia/fisiología , Femenino , Humanos , Antígenos Comunes de Leucocito/fisiología , Macrófagos Peritoneales/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/metabolismo , Receptores CCR2/fisiología
17.
Biochem Soc Trans ; 48(4): 1599-1607, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32662824

RESUMEN

FIP200 (RB1CC1) is a critical regulator of canonical macroautophagy and has also emerged as a crucial regulator of selective autophagy as well as inflammatory processes. The illumination of FIP200's role in autophagy at the molecular level has been accompanied by studies demonstrating the importance of its autophagy function in physiological processes in mammals and pathological contexts such as cancer. However, there is an increasing appreciation that most, if not all of the autophagy genes, also play a role in other processes such as LC3-associated phagocytosis, vesicle trafficking and protein secretion. Consequently, this has led to efforts in generating specific mutants of autophagy genes that are more amenable to dissecting their autophagy versus non-autophagy functions. In this aspect, we have generated a FIP200 knock-in mouse allele that is defective for canonical macroautophagy. This has revealed a canonical-autophagy-independent function of FIP200 that is responsible for limiting pro-inflammatory signaling. In this review, we will discuss FIP200's role in this process, the implications with regards to cancer immunotherapy and highlight key prospective avenues to specifically dissect the distinct functions of FIP200.


Asunto(s)
Proteínas Relacionadas con la Autofagia/fisiología , Autofagia/fisiología , Inflamación/fisiopatología , Alelos , Animales , Proteínas Relacionadas con la Autofagia/genética , Inmunoterapia , Inflamación/metabolismo , Ratones , Ratones Transgénicos , Neoplasias/terapia , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 117(29): 17003-17010, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32632011

RESUMEN

Rubicon is a potent negative regulator of autophagy and a potential target for autophagy-inducing therapeutics. Rubicon-mediated inhibition of autophagy requires the interaction of the C-terminal Rubicon homology (RH) domain of Rubicon with Rab7-GTP. Here we report the 2.8-Å crystal structure of the Rubicon RH domain in complex with Rab7-GTP. Our structure reveals a fold for the RH domain built around four zinc clusters. The switch regions of Rab7 insert into pockets on the surface of the RH domain in a mode that is distinct from those of other Rab-effector complexes. Rubicon residues at the dimer interface are required for Rubicon and Rab7 to colocalize in living cells. Mutation of Rubicon RH residues in the Rab7-binding site restores efficient autophagic flux in the presence of overexpressed Rubicon, validating the Rubicon RH domain as a promising therapeutic target.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia/fisiología , Proteínas de Unión al GTP rab , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Cristalografía por Rayos X , Células HeLa , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos/fisiología , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/fisiología , Proteínas de Unión a GTP rab7
19.
Prog Mol Biol Transl Sci ; 172: 1-14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32620238

RESUMEN

Nuclear recycling is essential for cell and organismal homeostasis. Nuclear architecture perturbations, such as nuclear loss or nuclear enlargement, have been observed in several pathological conditions. Apart from proteasomal components which reside in the nucleus, specific autophagic proteins also shuttle between the nucleus and the cytoplasm. Until recently, only the microautophagic degradation of nuclear components had been described. Recent studies, dissecting nuclear material recycling in organisms ranging from yeast to mammals, provide insight relevant to other forms of nucleophagy and the mediators involved. Nucleophagy has also been implicated in pathology. Lamins are degraded in cancer through direct interaction with LC3 in the nucleus. Similarly, in neurodegeneration, Golgi-associated nucleophagy is exacerbated. The physiological role of nucleophagy and its contribution to other pathologies remain to be elucidated. Here we discus recent findings that shed light into the molecular mechanisms and pathways that mediate the autophagic recycling of nuclear material.


Asunto(s)
Proteínas Relacionadas con la Autofagia/fisiología , Autofagia , Núcleo Celular , Animales , Autofagia/fisiología , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Nucléolo Celular/ultraestructura , Aparato de Golgi/fisiología , Humanos , Cuerpos de Inclusión Intranucleares/patología , Laminopatías/patología , Laminas/genética , Mamíferos/fisiología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Membrana Nuclear/metabolismo , Proteolisis , Estabilidad del ARN , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología
20.
Prog Mol Biol Transl Sci ; 172: 107-133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32620239

RESUMEN

Autophagy is a highly conserved intracellular catabolic process for the degradation of cytoplasmic components that has recently gained increasing attention for its importance in kidney diseases. It is indispensable for the maintenance of kidney homeostasis both in physiological and pathological conditions. Investigations utilizing various kidney cell-specific conditional autophagy-related gene knockouts have facilitated the advancement in understanding of the role of autophagy in the kidney. Recent findings are raising the possibility that defective autophagy exerts a critical role in different pathological conditions of the kidney. An emerging body of evidence reveals that autophagy exhibits cytoprotective functions in both glomerular and tubular compartments of the kidney, suggesting the upregulation of autophagy as an attractive therapeutic strategy. However, there is also accumulating evidence that autophagy could be deleterious, which presents a formidable challenge in developing therapeutic strategies targeting autophagy. Here, we review the recent advances in research on the role of autophagy during different pathological conditions, including acute kidney injury (AKI), focusing on sepsis, ischemia-reperfusion injury, cisplatin, and heavy metal-induced AKI. We also discuss the role of autophagy in chronic kidney disease (CKD) focusing on the pathogenesis of tubulointerstitial fibrosis, podocytopathies including focal segmental glomerulosclerosis, diabetic nephropathy, IgA nephropathy, membranous nephropathy, HIV-associated nephropathy, and polycystic kidney disease.


Asunto(s)
Autofagia , Enfermedades Renales/fisiopatología , Animales , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/fisiología , Cisplatino/toxicidad , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Homeostasis , Humanos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Glomérulos Renales/fisiología , Túbulos Renales/fisiología , Lisosomas/fisiología , Metales Pesados/toxicidad , Ratones , Ratones Noqueados , Nefrosis Lipoidea/patología , Podocitos/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...