Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 78(5): 2263-2278, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32936312

RESUMEN

Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order-disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


Asunto(s)
Proteínas Portadoras/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Dominios Proteicos , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Mutación , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Estabilidad Proteica , Termodinámica
2.
Biomolecules ; 10(7)2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664359

RESUMEN

N-terminal myristoylation is a common co-and post-translational modification of numerous eukaryotic and viral proteins, which affects their interaction with lipids and partner proteins, thereby modulating various cellular processes. Among those are neuronal calcium sensor (NCS) proteins, mediating transduction of calcium signals in a wide range of regulatory cascades, including reception, neurotransmission, neuronal growth and survival. The details of NCSs functioning are of special interest due to their involvement in the progression of ophthalmological and neurodegenerative diseases and their role in cancer. The well-established procedures for preparation of native-like myristoylated forms of recombinant NCSs via their bacterial co-expression with N-myristoyl transferase from Saccharomyces cerevisiae often yield a mixture of the myristoylated and non-myristoylated forms. Here, we report a novel approach to preparation of several NCSs, including recoverin, GCAP1, GCAP2, neurocalcin δ and NCS-1, ensuring their nearly complete N-myristoylation. The optimized bacterial expression and myristoylation of the NCSs is followed by a set of procedures for separation of their myristoylated and non-myristoylated forms using a combination of hydrophobic interaction chromatography steps. We demonstrate that the refolded and further purified myristoylated NCS-1 maintains its Са2+-binding ability and stability of tertiary structure. The developed approach is generally suited for preparation of other myristoylated proteins.


Asunto(s)
Aciltransferasas/metabolismo , Bacterias/crecimiento & desarrollo , Ácido Mirístico/química , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Animales , Bacterias/genética , Cromatografía , Proteínas Fúngicas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Sensoras del Calcio Neuronal/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología
3.
Mol Neurobiol ; 56(9): 6080-6094, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30719643

RESUMEN

Neuronal calcium sensor 1 (NCS-1) is a high-affinity calcium-binding protein and its ubiquitous expression in the nervous system implies a wide range of functions. To date, it has been implicated in regulation of calcium channels in both axonal growth cones and presynaptic terminals, pre- and postsynaptic plasticity mechanisms, learning and memory behaviors, dopaminergic signaling, and axonal regeneration. This review summarizes these functions and relates them to several diseases in which NCS-1 plays a role, such as schizophrenia and bipolar disorder, X-linked mental retardation and fragile X syndrome, and spinal cord injury. Many questions remain unanswered about the role of NCS-1 in these diseases, particularly as the genetic factors that control NCS-1 expression in both normal and diseased states are still poorly understood. The review further identifies the therapeutic potential of manipulating the interaction of NCS-1 with its many targets and suggests directions for future research on the role of NCS-1 in these disorders.


Asunto(s)
Enfermedades del Sistema Nervioso/metabolismo , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Animales , Dopamina/metabolismo , Conos de Crecimiento/metabolismo , Humanos , Terapia Molecular Dirigida , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Terminales Presinápticos/metabolismo
4.
J Med Chem ; 61(14): 5910-5921, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29966094

RESUMEN

Protein-protein interactions (PPIs) are known to play an essential role between the neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor Ric8a to regulate synapse function, emerging as a druggable interface for synaptopathies such as the fragile X syndrome (FXS). Recently, the phenothiazine FD44 has been identified as an inhibitor of this PPI, decreasing the abnormally high synapse number and enhancing associative learning in a FXS animal model. Here, we have integrated advanced experimental and computational studies to obtain important structural insights into Drosophila NCS-1/FD44 recognition to understand the basis of its affinity and specificity and generate improved PPI regulators. This has allowed the identification of a new small drug-like molecule, IGS-1.76, which efficiently inhibits the human NCS-1/Ric8a complex with improved binding potency. The crystal structure of the Drosophila NCS-1/IGS-1.76 complex demonstrates that the new inhibitor, although chemically different from FD44, shares the same mechanism of action and constitutes a new hit candidate for FXS.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Proteínas Sensoras del Calcio Neuronal/antagonistas & inhibidores , Neuropéptidos/antagonistas & inhibidores , Fenotiazinas/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Simulación de Dinámica Molecular , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Conformación Proteica en Hélice alfa
5.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt B): 1660-1667, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29746899

RESUMEN

Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).


Asunto(s)
Señalización del Calcio , Susceptibilidad a Enfermedades , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/química , Neuropéptidos/genética
6.
Cell Rep ; 19(6): 1117-1129, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494862

RESUMEN

Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Proteínas Sensoras del Calcio Neuronal/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Calcio/metabolismo , Neuronas Colinérgicas/fisiología , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Unión Proteica
7.
Proc Natl Acad Sci U S A ; 114(6): E999-E1008, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28119500

RESUMEN

The protein complex formed by the Ca2+ sensor neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor protein Ric8a coregulates synapse number and probability of neurotransmitter release, emerging as a potential therapeutic target for diseases affecting synapses, such as fragile X syndrome (FXS), the most common heritable autism disorder. Using crystallographic data and the virtual screening of a chemical library, we identified a set of heterocyclic small molecules as potential inhibitors of the NCS-1/Ric8a interaction. The aminophenothiazine FD44 interferes with NCS-1/Ric8a binding, and it restores normal synapse number and associative learning in a Drosophila FXS model. The synaptic effects elicited by FD44 feeding are consistent with the genetic manipulation of NCS-1. The crystal structure of NCS-1 bound to FD44 and the structure-function studies performed with structurally close analogs explain the FD44 specificity and the mechanism of inhibition, in which the small molecule stabilizes a mobile C-terminal helix inside a hydrophobic crevice of NCS-1 to impede Ric8a interaction. Our study shows the drugability of the NCS-1/Ric8a interface and uncovers a suitable region in NCS-1 for development of additional drugs of potential use on FXS and related synaptic disorders.


Asunto(s)
Proteínas de Drosophila/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Fenotiazinas/farmacología , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Antipsicóticos/química , Antipsicóticos/farmacología , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Síndrome del Cromosoma X Frágil/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Modelos Moleculares , Estructura Molecular , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/química , Neuropéptidos/genética , Fenotiazinas/química , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Homología de Secuencia de Aminoácido , Sinapsis/genética
8.
J Phys Chem B ; 121(3): 508-517, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28030949

RESUMEN

pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102Hp and S83Hp). Our cumulative 5 µs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102Hp mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83Hp mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.


Asunto(s)
Histidina/química , Histidina/metabolismo , Simulación de Dinámica Molecular , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Sustitución de Aminoácidos , Histidina/genética , Humanos , Concentración de Iones de Hidrógeno , Mutación , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/genética
9.
Genetica ; 144(6): 665-674, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27796528

RESUMEN

Neuronal calcium sensor-1 (NCS-1) is a member of neuronal calcium sensor family of proteins consisting of an amino terminal myristoylation domain and four conserved calcium (Ca2+) binding EF-hand domains. We performed site-directed mutational analysis of three key amino acid residues that are glycine in the conserved site for the N-terminal myristoylation, a conserved glutamic acid residue responsible for Ca2+ binding in the third EF-hand (EF3), and an unusual non-conserved amino acid arginine at position 175 in the Neurospora crassa NCS-1. The N. crassa strains possessing the ncs-1 mutant allele of these three amino acid residues showed impairment in functions ranging from growth, Ca2+ stress tolerance, and ultraviolet survival. In addition, heterologous expression of the NCS-1 from Rattus norvegicus in N. crassa confirmed its interspecies functional conservation. Moreover, functions of glutamic acid at position 120, the first Ca2+ binding residue among all the EF-hands of the R. norvegicus NCS-1 was found conserved. Thus, we identified three critical amino acid residues of N. crassa NCS-1, and demonstrated its functional conservation across species using the orthologue from R. norvegicus.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Neurospora crassa/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Calcio/farmacología , Proteínas Fúngicas/genética , Mutación , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/genética , Neurospora crassa/efectos de los fármacos , Neurospora crassa/efectos de la radiación , Ratas , Rayos Ultravioleta
10.
PLoS One ; 11(8): e0161414, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27575489

RESUMEN

Neuronal calcium sensor-1 (NCS-1 Var1) is a calcium-binding protein expressed in most tissues. We examined a poorly characterized variant of NCS-1 (Var2), identified only in humans where the N-terminal 22 amino acid residues of native NCS-1(MGKSNSKLKPEVVEELTRKTY) were replaced with 4 different residues (MATI). Because alterations in the level of expression of NCS-1 Var1 and the expression of NCS-1 variants have been correlated with several neurological diseases, the relative expression and functional role of NCS-1 Var2 was examined. We found that NCS-1 Var2 mRNA levels are not found in mouse tissues and are expressed at levels ~1000-fold lower than NCS-1 Var1 in three different human cell lines (SHSY5Y, HEK293, MB231). Protein expression of both variants was only identified in cell lines overexpressing exogenous NCS-1 Var2. The calcium binding affinity is ~100 times weaker in purified NCS-1 Var2 than NCS-1 Var1. Because truncation of NCS-1 Var1 has been linked to functional changes in neurons, we determined whether the differing properties of the NCS-1 variants could potentially contribute to the altered cell function. In contrast to previous reports showing that overexpression of NCS-1 Var1 increases calcium-dependent processes, functional differences in cells overexpressing NCS-1 Var2 were undetectable in assays for cell growth, cell death and drug (paclitaxel) potency. Our results suggest that NCS-1 Var1 is the primary functional version of NCS-1.


Asunto(s)
Calcio/metabolismo , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Empalme Alternativo , Sitios de Unión , Línea Celular , Células HEK293 , Humanos , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Unión Proteica , Pliegue de Proteína , Especificidad de la Especie , Distribución Tisular
11.
J Phys Chem B ; 120(14): 3551-9, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27007011

RESUMEN

Neuronal calcium sensor-1 (NCS-1) protein has orthologues from Saccharomyces cerevisiae to human with highly conserved amino acid sequences. NCS-1 is an important factor controlling the animal's response to temperature change. This leads us to investigate the temperature effects on the conformational dynamics of human NCS-1 at 310 and 316 K by all-atom molecular dynamics (MD) simulations and dynamic community network analysis. Four independent 500 ns MD simulations show that secondary structure content at 316 K is similar to that at 310 K, whereas the global protein structure is expanded. Loop 3 (L3) adopts an extended state occuping the hydrophobic crevice, and the number of suboptimal communication paths between residue D176 and V190 is reduced at 316 K. The dynamic community network analysis suggests that the interdomain correlation is weakened, and the intradomain coupling is strengthened at 316 K. The elevated temperature reduces the number of the salt bridges, especially in C-domain. This study suggests that the elevated temperature affects the conformational dynamics of human NCS-1 protein. Comparison of the structural dynamics of R102Q mutant and Δ176-190 truncated NCS-1 suggests that the structural and dynamical response of NCS-1 protein to elevated temperature may be one of its intrinsic functional properties.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Temperatura , Disulfuros/química , Humanos , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína
12.
Anal Biochem ; 494: 93-100, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26617128

RESUMEN

In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins.


Asunto(s)
Calcio/metabolismo , Electroforesis en Gel de Poliacrilamida Nativa , Proteínas Sensoras del Calcio Neuronal/metabolismo , Calcio/química , Escherichia coli/metabolismo , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
13.
Colloids Surf B Biointerfaces ; 139: 138-47, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26705828

RESUMEN

Neuronal Calcium Sensor-1 (NCS1) belongs to the family of Neuronal Calcium Sensor (NCS) proteins. NCS1 is composed of four EF-hand motifs and an N-terminal myristoylation. However, the presence of a calcium-myristoyl switch in NCS1 and its role in the membrane binding are controversial. The model of Langmuir lipid monolayers is thus used to mimic the cell membrane in order to characterize the membrane interactions of NCS1. Two binding parameters are calculated from monolayer measurements: the maximum insertion pressure, up to which protein binding is energetically favorable, and the synergy, reporting attractive or repulsive interactions with the lipid monolayers. Binding membrane measurements performed in the presence of myristoylated NCS1 reveal better binding interactions for phospholipids composed of phosphoethanolamine polar head groups and unsaturated fatty acyl chains. In the absence of calcium, the membrane binding measurements are drastically modified and suggest that the protein is more strongly bound to the membrane. Indeed, the binding of calcium by three EF-hand motifs of NCS1 leads to a conformation change. NCS1 arrangement at the membrane could thus be reshuffled for better interactions with its substrates. The N-terminal peptide of NCS1 is composed of two amphiphilic helices involved in the membrane interactions of NCS1. Moreover, the presence of the myristoyl group has a weak influence on the membrane binding of NCS1 suggesting the absence of a calcium-myristoyl switch mechanism in this protein. The myristoylation could thus have a structural role required in the folding/unfolding of NCS1 which is essential to its multiple biological functions.


Asunto(s)
Proteínas de Unión al Calcio/química , Membrana Celular/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Etanolaminas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Ácido Mirístico/metabolismo , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Fosfolípidos/química , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
14.
J Phys Chem B ; 119(44): 14236-44, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26447771

RESUMEN

Neuronal calcium sensor-1 (NCS-1) protein has been implicated in multiple neuronal functions by binding partners mostly through a largely exposed hydrophobic crevice (HC). In the absence of a ligand, the C-terminal tail (loop L3, residues D176 to V190) binds directly to the HC pocket as a ligand mimetic, occupying the HC and regulating its conformational stability. A recent experimental study reported that L3 deletion resulted in global structure destabilization. However, the influence of C-terminal tail on the conformations of NCS-1 protein is unclear at the atomic level. In this study, we investigated the structural properties and the conformational dynamics of wild type NCS-1 and L3 truncation variant by extensive all-atom molecular dynamics (MD) simulations. Our cumulative 2 µs MD simulations demonstrated that L3 deletion increased the structural flexibility of the C-domain and the distant N-domain. The community network analysis illustrated that C-terminal tail truncation weakened the interdomain correlation. Moreover, our data showed that the variant significantly disrupted the salt bridges network and expanded simultaneously the global structure and HC. These conformational changes caused by C-terminal tail truncation may affect the regulation of target interactions. Our study provides atomic details of the conformational dynamics effects of the C-terminal tail on human wild type NCS-1.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Humanos , Conformación Proteica
15.
Biophys J ; 109(1): 113-23, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26153708

RESUMEN

Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated, at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions were reconstructed through hidden Markov model analysis. Unlike what has been observed with the Ca(2+)-bound state, the presence of Mg(2+) allows both the N- and C-domain to fold through all-or-none transitions with similar refolding rates. In the absence of divalent ions, NCS-1 unfolds and refolds reversibly in a two-state reaction involving only the C-domain, whereas the N-domain has no detectable transitions. Overall, the results allowed us to trace the progression of NCS-1 folding along its energy landscapes and provided a solid platform for understanding the conformational dynamics of similar EF-hand proteins.


Asunto(s)
Magnesio/química , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Pliegue de Proteína , Cationes Bivalentes/química , Simulación por Computador , Escherichia coli , Humanos , Cinética , Cadenas de Markov , Pinzas Ópticas , Análisis Espectral , Termodinámica
16.
J Biol Chem ; 290(30): 18744-56, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25979333

RESUMEN

Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Quinasa 1 del Receptor Acoplado a Proteína-G/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Receptores de Dopamina D2/química , Secuencia de Aminoácidos/genética , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Cristalografía por Rayos X , Dopamina/genética , Dopamina/metabolismo , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Quinasa 1 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/química , Neuropéptidos/genética , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transducción de Señal/genética
17.
J Phys Chem B ; 118(46): 13112-22, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25343687

RESUMEN

Neuronal calcium sensor-1 (NCS-1) protein has a variety of different neuronal functions and interacts with multiple binding partners mostly through a large solvent-exposed hydrophobic crevice (HC). A single R102Q mutation in human NCS-1 protein was demonstrated to be associated with autism disease. Solution NMR study reported that this R102Q mutant had long-range chemical shift effects on the HC and the C-terminal tail (L3). To understand the influence of the R102Q mutation on the HC and L3 of NCS-1, we have investigated the conformational dynamics and the structural flexibility of wild type (WT) NCS-1 and its R102Q mutant by conducting extensive all-atom molecular dynamics (MD) simulations. On the basis of six independent 450 ns MD simulations, we have found that the R102Q mutation in NCS-1 protein (1) dramatically reduces the flexibility of loops L2 and L3, (2) facilitates L3 in a more extended state to occupy the hydrophobic crevice to a larger extent, (3) significantly affects the intersegment salt bridges, and (4) changes the subspace of the free energy landscape of NCS-1 protein. Analysis of the salt bridge network in both WT and the R102Q variant demonstrates that the R102Q-mutation-induced salt bridge alternations play a critical role on the reduced flexibility of L2 and L3. These results reveal the important role of salt bridges on the structural properties of NCS-1 protein and that R102Q mutation disables the dynamic relocation of C-terminus, which may block the binding of NCS-1 protein to its receptors. This study may provide structural insights into the autistic spectrum disorder associated with R102Q mutation.


Asunto(s)
Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/química , Neuropéptidos/genética , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Sales (Química)/química , Termodinámica
18.
Biochemistry ; 53(38): 6052-62, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25188201

RESUMEN

In neurons, entry of extracellular calcium (Ca(2+)) into synaptic terminals through Cav2.1 (P/Q-type) Ca(2+) channels is the driving force for exocytosis of neurotransmitter-containing synaptic vesicles. This class of Ca(2+) channel is, therefore, pivotal during normal neurotransmission in higher organisms. In response to channel opening and Ca(2+) influx, specific Ca(2+)-binding proteins associate with cytoplasmic regulatory domains of the P/Q channel to modulate subsequent channel opening. Channel modulation in this way influences synaptic plasticity with consequences for higher-level processes such as learning and memory acquisition. The ubiquitous Ca(2+)-sensing protein calmodulin (CaM) regulates the activity of all types of mammalian voltage-gated Ca(2+) channels, including the P/Q class, by direct binding to specific regulatory motifs. More recently, experimental evidence has highlighted a role for additional Ca(2+)-binding proteins, particularly of the CaBP and NCS families in the regulation of P/Q channels. NCS-1 is a protein found from yeast to humans and that regulates a diverse number of cellular functions. Physiological and genetic evidence indicates that NCS-1 regulates P/Q channel activity, including calcium-dependent facilitation, although a direct physical association between the proteins has yet to be demonstrated. In this study, we aimed to determine if there is a direct interaction between NCS-1 and the C-terminal cytoplasmic tail of the Cav2.1 α-subunit. Using distinct but complementary approaches, including in vitro binding of bacterially expressed recombinant proteins, fluorescence spectrophotometry, isothermal titration calorimetry, nuclear magnetic resonance, and expression of fluorescently tagged proteins in mammalian cells, we show direct binding and demonstrate that CaM can compete for it. We speculate about how NCS-1/Cav2.1 association might add to the complexity of calcium channel regulation mediated by other known calcium-sensing proteins and how this might help to fine-tune neurotransmission in the mammalian central nervous system.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo N/química , Clonación Molecular , Humanos , Proteínas Sensoras del Calcio Neuronal/química , Neuropéptidos/química , Unión Proteica
19.
Proc Natl Acad Sci U S A ; 111(36): 13069-74, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157171

RESUMEN

Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.


Asunto(s)
Calcio/metabolismo , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Pinzas Ópticas , Pliegue de Proteína , Humanos , Cinética , Termodinámica
20.
Biomol NMR Assign ; 8(1): 63-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23250791

RESUMEN

Hippocalcin, a member of the neuronal calcium sensor (NCS) subclass of the calmodulin superfamily, serves as an important calcium sensor for the slow afterhyperpolarizing (sAHP) current in the hippocampus, which underlies some forms of learning and memory. Hippocalcin is also a calcium sensor for hippocampal long-term depression (LTD) and genetically linked to neurodegenerative diseases. We report NMR chemical shift assignments of Ca(2+)-free hippocalcin (BMRB no. 18627).


Asunto(s)
Hipocalcina/química , Proteínas Sensoras del Calcio Neuronal/química , Neuronas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Isótopos de Carbono , Humanos , Hidrógeno , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA