Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
J Cell Physiol ; 239(2): e31167, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38126142

RESUMEN

The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.


Asunto(s)
Proteína de Unión a TATA-Box , Humanos , Diferenciación Celular/genética , Mutación , Proteínas Nucleares/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/química , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/genética , Animales
2.
Hum Genet ; 142(12): 1651-1676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37845370

RESUMEN

Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.


Asunto(s)
Proteínas Nucleares , Ataxias Espinocerebelosas , Humanos , Animales , Ratones , Ataxinas , Proteínas Nucleares/genética , Ataxina-1/genética , Proteínas del Tejido Nervioso/genética , Ataxias Espinocerebelosas/genética , Ataxia , Proteínas Similares a la Proteína de Unión a TATA-Box
3.
J Assist Reprod Genet ; 40(12): 2945-2950, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804378

RESUMEN

OBJECTIVE: A 32-year-old female was diagnosed with unexplained primary infertility for 10 years. She had roughly normal basal hormone levels, but her basal follicle-stimulating hormone (FSH) levels were elevated. In addition, the level of anti-Mullerian hormone was within the normal range, and she had undergone two failed oocyte collection attempts. We aimed to investigate the genetic cause of female infertility in patients with impaired ovarian folliculogenesis. METHODS: Genomic DNA was extracted from the peripheral blood of the patient and her family members. Whole-exome sequencing was performed on the patient, and TBPL2 mutations were identified and confirmed by Sanger sequencing. The Exome Aggregation Consortium (ExAC) Browser and Genome Aggregation Database (gnomAD) Browser Beta were used to search the allele frequencies of the variants in the general population. The harmfulness of the mutations was analyzed by SIFT, Mutation Taster, and CADD software. RESULT: One novel mutation, c.802C > T (p. Arg268Ter), and one known variant, c.788 + 3A > G (p. Arg233Ter), in TBPL2 were identified in the infertile family. Compound heterozygous mutations in TBPL2 may be the cause of impaired ovarian folliculogenesis, failure of superovulation, and infertility. CONCLUSIONS: We identified compound heterozygous mutations in TBPL2 that caused impaired ovarian folliculogenesis, failure of superovulation, and infertility in patients. These findings suggest an important role for compound heterozygous mutations in TBPL2 and expand the mutational spectrum of TBPL2, which might provide a new precise diagnostic marker for female infertility.


Asunto(s)
Infertilidad Femenina , Humanos , Femenino , Adulto , Infertilidad Femenina/genética , Mutación/genética , Ovario , Proteínas Nucleares/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/genética
4.
Bioessays ; 44(10): e2200007, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35900055

RESUMEN

Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.


Asunto(s)
Proteínas F-Box , Infertilidad Femenina , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas de Ciclo Celular , Conexinas/genética , Conexinas/metabolismo , Desarrollo Embrionario/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Femenino , Fertilización/genética , Humanos , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Oocitos/metabolismo , Embarazo , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Tubulina (Proteína)
5.
Gene ; 833: 146581, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35597524

RESUMEN

The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.


Asunto(s)
ARN Polimerasa II , Proteína de Unión a TATA-Box , Factores de Transcripción , Transcripción Genética , Adenosina Trifosfatasas/genética , Animales , ADN/genética , Drosophila , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Proteínas Nucleares/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , TATA Box/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/química , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Factores Asociados con la Proteína de Unión a TATA , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIIA/metabolismo , Factores de Transcripción/genética
6.
Cell Signal ; 93: 110274, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35122989

RESUMEN

We sought to pinpoint the potential role of C-MYC in pulmonary fibroblast proliferation in idiopathic pulmonary fibrosis (IPF) and its mechanism. A mouse model of IPF was established by injection of bleomycin. C-MYC and miR-9-5p expression was determined by RT-qPCR and Western blot analysis. The interaction among C-MYC, miR-9-5p, and TBPL1 was detected by ChIP assay and dual luciferase reporter gene assay. After alteration of C-MYC, miR-9-5p, and TBPL1, their roles in pulmonary fibrosis and collagen fiber deposition in mice as well as proliferation and differentiation of pulmonary fibroblasts were assessed. Upregulated C-MYC expression was seen in the lung tissues of IPF mice and its silencing retarded IPF in mice. C-MYC could activate miR-9-5p that negatively regulated TBPL1 expression. Up-regulated C-MYC promoted proliferation and differentiation of pulmonary fibroblasts by inhibiting TBPL1 via activation of miR-9-5p, thus triggering IPF. Moreover, in the lung tissues-derived cells of IPF mice, C-MYC inhibitor, 10,058-F4, was observed to inhibit miR-9-5p expression, thereby repressing pulmonary fibrosis by up-regulating TBPL1. Our data provided evidence pinpointed the aggravative role of C-MYC in IPF by activating miR-9-5p to regulate TBPL1 expression.


Asunto(s)
Fibrosis Pulmonar Idiopática , MicroARNs , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Bleomicina/metabolismo , Bleomicina/farmacología , Proliferación Celular , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo
7.
Biochem Soc Trans ; 49(5): 2051-2062, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415300

RESUMEN

In somatic cells, RNA polymerase II (Pol II) transcription initiation starts by the binding of the general transcription factor TFIID, containing the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs), to core promoters. However, in growing oocytes active Pol II transcription is TFIID/TBP-independent, as during oocyte growth TBP is replaced by its vertebrate-specific paralog TBPL2. TBPL2 does not interact with TAFs, but stably associates with TFIIA. The maternal transcriptome is the population of mRNAs produced and stored in the cytoplasm of growing oocytes. After fertilization, maternal mRNAs are inherited by the zygote from the oocyte. As transcription becomes silent after oocyte growth, these mRNAs are the sole source for active protein translation. They will participate to complete the protein pool required for oocyte terminal differentiation, fertilization and initiation of early development, until reactivation of transcription in the embryo, called zygotic genome activation (ZGA). All these events are controlled by an important reshaping of the maternal transcriptome. This procedure combines cytoplasmic readenylation of stored transcripts, allowing their translation, and different waves of mRNA degradation by deadenylation coupled to decapping, to eliminate transcripts coding for proteins that are no longer required. The reshaping ends after ZGA with an almost total clearance of the maternal transcripts. In the past, the murine maternal transcriptome has received little attention but recent progresses have brought new insights into the regulation of maternal mRNA dynamics in the mouse. This review will address past and recent data on the mechanisms associated with maternal transcriptome dynamic in the mouse.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética , Animales , Femenino , Ratones , Proteínas Nucleares/metabolismo , Oocitos/metabolismo , Embarazo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Estabilidad del ARN , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
8.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206148

RESUMEN

Sea urchins are long-living marine invertebrates with a complex innate immune system, which includes expanded families of immune receptors. A central immune gene family in sea urchins encodes the Transformer (Trf) proteins. The Trf family has been studied mainly in the purple sea urchin Strongylocentrotus purpuratus. Here, we explore this protein family in the Mediterranean Sea urchin Paracentrotus lividus. The PlTrf genes and predicted proteins are highly diverse and show a typical Trf size range and structure. Coelomocytes and cell-free coelomic fluid from P. lividus contain different PlTrf protein repertoires with a shared subset, that bind specifically to E. coli. Using FACS, we identified five different P. lividus coelomocyte sub-populations with cell surface PlTrf protein expression. The relative abundance of the PlTrf-positive cells increases sharply following immune challenge with E. coli, but not following challenge with LPS or the sea urchin pathogen, Vibrio penaeicida. Phagocytosis of E. coli by P. lividus phagocytes is mediated through the cell-free coelomic fluid and is inhibited by blocking PlTrf activity with anti-SpTrf antibodies. Together, our results suggest a collaboration between cellular and humoral PlTrf-mediated effector arms in the P. lividus specific immune response to pathogens.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Paracentrotus/inmunología , Fagocitosis , Proteínas Similares a la Proteína de Unión a TATA-Box/inmunología , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Secuencia de Aminoácidos , Animales , Escherichia coli , Evolución Molecular , Paracentrotus/genética , Paracentrotus/microbiología , Fagocitos/inmunología , Fagocitos/metabolismo , Fagocitos/microbiología , Filogenia , Conformación Proteica , Elementos Estructurales de las Proteínas , Alineación de Secuencia , Proteínas Similares a la Proteína de Unión a TATA-Box/química , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Vibrio
9.
Clin Genet ; 100(3): 324-328, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33966269

RESUMEN

The genetic causes in most of patients with oocyte maturation arrest remain largely unknown. In this study, we identified a homozygous missense mutation (c.895T>C; p.C299R) in TBPL2 (TATA box binding protein like 2) in two infertile sisters with oocyte maturation arrest and degeneration from a consanguineous family by whole-exome sequencing. The TBPL2 mutation is rare and pathogenic, and impaired the transcription initiation function of the protein. Our results showed that TBPL2 mutation might be associated with female infertility due to oocyte maturation arrest and degeneration.


Asunto(s)
Infertilidad Femenina/genética , Mutación Missense , Proteínas Nucleares/genética , Oogénesis/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Adulto , Muerte Celular/genética , Consanguinidad , Femenino , Homocigoto , Humanos , Linaje , Secuenciación del Exoma
10.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803178

RESUMEN

Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.


Asunto(s)
Proteínas Portadoras/metabolismo , Síndrome Metabólico , Neoplasias , Enfermedades del Sistema Nervioso , Proteínas Supresoras de Tumor/metabolismo , Animales , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Síndrome Metabólico/terapia , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/terapia , Proteínas Nucleares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Tiorredoxinas/metabolismo
11.
Clin Transl Oncol ; 23(9): 1827-1837, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33774805

RESUMEN

BACKGROUND: Poly-(ADP-Ribose)-Polymerase inhibitors (PARPi) were reported as radiosensitizers in non-small cell lung cancer (NSCLC) with wide-type epidermal growth factor receptor (EGFR), but the effects of radiation combined with PARPi were not investigated in EGFR-mutated NSCLC. Moreover, the underlying mechanisms were not well examined. This study aimed to study the efficacy of radiation combined with niraparib in EGFR-mutated NSCLC and explore their influence on the immune system. METHODS: Clone formation and apoptosis assay were conducted to explore the effects of niraparib and radiation. Immunofluorescence was conducted to detect the double-strand DNA breaks. Real-time PCR and immunoblotting were employed to evaluate the activation of STING/TBK1/TRF3 pathway and the expression levels of interferon ß, CCL5 and CXCL10. Immunocompetent mice model bearing with subcutaneous Lewis lung cancer was established to confirm the results in vivo. RESULTS: Niraparib and radiation were synergistic to inhibit tumor both in vitro and in vivo. Radiation plus niraparib could activate anti-tumor immunity, which appeared as increased CD8+ T lymphocytes and activated STING/TBK1/IRF3 pathway. CONCLUSION: PARPi not only as a radiosensitizer inhibited EGFR-mutated NSCLC tumor growth, but also cooperated with radiation to promote anti-tumor immune responses.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/terapia , Quimioradioterapia/métodos , Genes erbB-1 , Indazoles/farmacología , Neoplasias Pulmonares/terapia , Mutación , Piperidinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Linfocitos T CD8-positivos , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/terapia , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Línea Celular Tumoral , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Roturas del ADN de Doble Cadena , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/efectos de la radiación , Inmunocompetencia , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Linfocitos Infiltrantes de Tumor , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Ensayo de Tumor de Célula Madre
12.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572677

RESUMEN

Histone deacetylase inhibitors (HDACi) induce apoptosis preferentially in cancer cells by caspase pathway activation and reactive oxygen species (ROS) accumulation. Suberoylanilide hydroxamic acid (SAHA), a HDACi, increases apoptosis via altering intracellular oxidative stress through thioredoxin (TRX) and TRX binding protein-2 (TBP-2). Because ROS accumulation, as well as the redox status determined by TBP-2 and TRX, are suggested as possible mechanisms for endometriosis, we queried whether SAHA induces apoptosis of human endometrial cells via the TRX-TBP-2 system in endometriosis. Eutopic endometrium from participants without endometriosis, and ectopic endometrium from patients with endometriosis, was obtained surgically. Human endometrial stromal cells (HESCs) and Ishikawa cells were treated with SAHA and cell proliferation was assessed using the CCK-8 assay. Real-time PCR and Western blotting were used to quantify TRX and TBP-2 mRNA and protein expression. After inducing oxidative stress, SAHA was applied. Short-interfering TRX (SiTRX) transfection was performed to see the changes after TRX inhibition. The mRNA and protein expression of TBP-2 was increased with SAHA concentrations in HESCs significantly. The mRNA TBP-2 expression was decreased after oxidative stress, upregulated by adding 2.5 µM of SAHA. The TRX/TBP-2 ratio decreased, apoptosis increased significantly, and SiTRX transfection decreased with SAHA. In conclusion, SAHA induces apoptosis by modulating the TRX/TBP-2 system, suggesting its potential as a therapeutic agent for endometriosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Proteínas Nucleares/efectos de los fármacos , Proteínas Similares a la Proteína de Unión a TATA-Box/efectos de los fármacos , Tiorredoxinas/efectos de los fármacos , Vorinostat/farmacología , Proliferación Celular/efectos de los fármacos , Endometrio/efectos de los fármacos , Femenino , Humanos , Proteínas Nucleares/genética , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Tiorredoxinas/genética
13.
Stem Cell Res Ther ; 11(1): 196, 2020 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448362

RESUMEN

BACKGROUND: Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. METHODS: We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. RESULTS: The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3-/-) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3-/- hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. CONCLUSIONS: These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.


Asunto(s)
Células Madre Embrionarias Humanas , Proteínas Similares a la Proteína de Unión a TATA-Box , Proteínas Portadoras , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Proteínas Nucleares , TATA Box/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(2): 1139-1147, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879343

RESUMEN

Pulmonary inflammatory responses lie under circadian control; however, the importance of circadian mechanisms in the underlying fibrotic phenotype is not understood. Here, we identify a striking change to these mechanisms resulting in a gain of amplitude and lack of synchrony within pulmonary fibrotic tissue. These changes result from an infiltration of mesenchymal cells, an important cell type in the pathogenesis of pulmonary fibrosis. Mutation of the core clock protein REVERBα in these cells exacerbated the development of bleomycin-induced fibrosis, whereas mutation of REVERBα in club or myeloid cells had no effect on the bleomycin phenotype. Knockdown of REVERBα revealed regulation of the little-understood transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinß1 focal-adhesion formation, resulting in increased myofibroblast activation. The translational importance of our findings was established through analysis of 2 human cohorts. In the UK Biobank, circadian strain markers (sleep length, chronotype, and shift work) are associated with pulmonary fibrosis, making them risk factors. In a separate cohort, REVERBα expression was increased in human idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological targeting of REVERBα inhibited myofibroblast activation in IPF fibroblasts and collagen secretion in organotypic cultures from IPF patients, thus suggesting that targeting of REVERBα could be a viable therapeutic approach.


Asunto(s)
Proteínas CLOCK/antagonistas & inhibidores , Relojes Circadianos/fisiología , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bleomicina/efectos adversos , Proteínas CLOCK/genética , Proteínas CLOCK/uso terapéutico , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Fibrosis Pulmonar Idiopática , Integrinas , Pulmón/patología , Masculino , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Transcriptoma
16.
Acta Biochim Biophys Sin (Shanghai) ; 51(8): 834-844, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31314053

RESUMEN

Our previous finding demonstrated that chronic corticosterone (CORT) may be involved in mediating the pathophysiology of premature aging in rats. Frequent jet lag increases the risk for many diseases, including obesity and type 2 diabetes, and is associated with the aging processes. However, the effect of jet lag on CORT-induced depression and its association with aging phenotypes remain unclear. In this study, the rats were exposed to both CORT and jet lag treatment, and the differences were analyzed and compared to rats with single CORT treatment. Our results showed that jet lag treatment aggravated CORT-induced depression-like behavior evidenced by sucrose intake test, forced swimming test, and open field test. Additionally, this treatment aggravated the shortening of telomeres, which possibly resulted in decreased telomerase activity, and downregulated the expression of telomere-binding factor 2 (TRF2) and telomerase reverse transcriptase compared to that in CORT rats, as revealed by quantitative real-time-polymerase chain reaction and western blot analysis, respectively. The shortening of telomeres may have been caused by increased oxidative stress, which was associated with the inhibition of sirtuin 3. Exposure to jet lag also aggravated the degeneration of mitochondrial functions, as shown by the decreases in the mRNA expression of COX1, ND1, and Tfam. Our findings provide physiological evidence that jet lag exposure may worsen stress-induced depression and age-related abnormalities.


Asunto(s)
Envejecimiento , Corticosterona/efectos adversos , Depresión/etiología , Síndrome Jet Lag , Animales , Conducta Animal , Corticosterona/administración & dosificación , Ciclooxigenasa 1/metabolismo , Depresión/inducido químicamente , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Proteínas de la Membrana/metabolismo , NADH Deshidrogenasa/metabolismo , Estrés Oxidativo , Fenotipo , Ratas , Ratas Wistar , Sirtuina 3/antagonistas & inhibidores , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Factores de Transcripción/metabolismo
17.
Am J Respir Crit Care Med ; 200(11): 1402-1413, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31339356

RESUMEN

Rationale: Interstitial lung abnormalities (ILAs) are associated with the highest genetic risk locus for idiopathic pulmonary fibrosis (IPF); however, the extent to which there are unique associations among individuals with ILAs or additional overlap with IPF is not known.Objectives: To perform a genome-wide association study (GWAS) of ILAs.Methods: ILAs and a subpleural-predominant subtype were assessed on chest computed tomography (CT) scans in the AGES (Age Gene/Environment Susceptibility), COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]), Framingham Heart, ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), MESA (Multi-Ethnic Study of Atherosclerosis), and SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) studies. We performed a GWAS of ILAs in each cohort and combined the results using a meta-analysis. We assessed for overlapping associations in independent GWASs of IPF.Measurements and Main Results: Genome-wide genotyping data were available for 1,699 individuals with ILAs and 10,274 control subjects. The MUC5B (mucin 5B) promoter variant rs35705950 was significantly associated with both ILAs (P = 2.6 × 10-27) and subpleural ILAs (P = 1.6 × 10-29). We discovered novel genome-wide associations near IPO11 (rs6886640, P = 3.8 × 10-8) and FCF1P3 (rs73199442, P = 4.8 × 10-8) with ILAs, and near HTRE1 (rs7744971, P = 4.2 × 10-8) with subpleural-predominant ILAs. These novel associations were not associated with IPF. Among 12 previously reported IPF GWAS loci, five (DPP9, DSP, FAM13A, IVD, and MUC5B) were significantly associated (P < 0.05/12) with ILAs.Conclusions: In a GWAS of ILAs in six studies, we confirmed the association with a MUC5B promoter variant and found strong evidence for an effect of previously described IPF loci; however, novel ILA associations were not associated with IPF. These findings highlight common genetically driven biologic pathways between ILAs and IPF, and also suggest distinct ones.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Fibrosis Pulmonar Idiopática/genética , Enfermedades Pulmonares Intersticiales/genética , Anciano , Estudios de Casos y Controles , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Mucina 5B/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Proteínas Similares a la Proteína de Unión a TATA-Box , beta Carioferinas/genética
18.
Biochem Pharmacol ; 158: 45-59, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30236477

RESUMEN

Neuroplin 1 (NRP1), a transmembrane protein interacting with Vascular Endothelial Growth Factor VEGF-A165 (called here VEGF165) and the tyrosine kinase Receptor 2 (VEGFR2) promote angiogenesis and vascular homeostasis. In a pathophysiological context, several studies suggested that VEGFR2 and NRP1 mediate tumor development and progression. Given the involvement of the VEGF165 network in promoting tumor angiogenesis, NRP1, VEGFR2 and VEGF165 have been identified as targets for anti-angiogenic therapy. No binding assay exists to monitor specifically the binding of VEGF165 to the VEGFR2/NRP1 complex in intact cells. We established a binding assay based on the homogenous time-resolved fluorescence (HTRF®) technology. This unique binding assay enables to assess the interaction of VEGF165 with VEGFR2 or NRP1 within the VEGFR2/NRP1 complex. Ligand binding saturation experiments revealed that VEGF165 binds the VEGFR2/NRP1 complex at the cell surface with a ten to twenty-fold higher affinity compared to SNAP-VEGFR2 or SNAP-NRP1 receptors alone not engaged in the heteromeric complex. The assay allows characterizing the impact of NRP1 ligands on VEGF165 to the complex. It shows high specificity, reproducibility and robustness, making it compatible with high throughput screening (HTS) applications for identifying new VEGF165 antagonists selective for NRP1 or the VEGFR2/NRP1 complex.


Asunto(s)
Neuropilina-1/metabolismo , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Factor A de Crecimiento Endotelial Vascular/farmacología
19.
Physiol Genomics ; 50(11): 956-963, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30192712

RESUMEN

BACKGROUND AND AIMS: Fetal and postnatal growth restriction cause a predisposition to cardiovascular disease (CVD) in adulthood. Telomeres are repetitive DNA-protein structures that protect chromosome ends, and the loss of these repeats (a reduction in telomere length) is associated with CVD. As exercise preserves telomere length and cardiovascular health, the aim of this study was to determine the effects of growth restriction and exercise training on cardiac telomere length and telomeric genes. METHODS AND RESULTS: Pregnant Wistar Kyoto rats underwent bilateral uterine vessel ligation to induce uteroplacental insufficiency and fetal growth restriction ("Restricted"). Sham-operated rats had either intact litters ("Control") or their litters reduced to five pups with slowed postnatal growth ("Reduced"). Control, Restricted, and Reduced male rats were assigned to Sedentary, Early exercise (5-9 wk of age), or Late exercise (20-24 wk of age) groups. Hearts were excised at 24 wk of age for telomere length and gene expression measurements by quantitative PCR. Growth restriction shortened cardiac telomere length ( P < 0.001), but this was rescued by early exercise ( P < 0.001). Early and Late exercise increased cardiac weight index ( P < 0.001), but neither this nor telomere length was associated with expression of the telomeric genes Tert, Terc, Trf2, Pnuts, or Sirt1. DISCUSSION AND CONCLUSIONS: Growth restriction shortens cardiac telomere length, reflecting the cardiac pathologies associated with low birth weight. Exercise in early life may offer long-term protective effects on cardiac telomere length, which could help prevent CVD in later life.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Corazón/fisiología , Telómero/genética , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Peso al Nacer , Femenino , Regulación de la Expresión Génica , Corazón/crecimiento & desarrollo , Tamaño de la Camada , Masculino , Condicionamiento Físico Animal , Embarazo , Ratas Endogámicas WKY , Proteínas Similares a la Proteína de Unión a TATA-Box/genética
20.
Lasers Med Sci ; 33(7): 1513-1519, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29696446

RESUMEN

Muscle injuries are the most prevalent type of injury in sports. A great number of athletes have relapsed in muscle injuries not being treated properly. Photobiomodulation therapy is an inexpensive and safe technique with many benefits in muscle injury treatment. However, little has been explored about the infrared laser effects on DNA and telomeres in muscle injuries. Thus, the aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes related to telomere and genomic stabilization in injured muscle. Wistar male rats were randomly divided into six groups: control, laser 25 mW, laser 75 mW, injury, injury laser 25 mW, and injury laser 75 mW. Photobiomodulation was performed with 904 nm, 3 J/cm2 at 25 or 75 mW. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly on the tibialis anterior muscle. After euthanasia, skeletal muscle samples were withdrawn and total RNA extracted for evaluation of mRNA levels from genomic (ATM and p53) and chromosome stabilization (TRF1 and TRF2) genes by real-time quantitative polymerization chain reaction. Data show that photobiomodulation reduces the mRNA levels from ATM and p53, as well reduces mRNA levels from TRF1 and TRF2 at 25 and 75 mW in injured skeletal muscle. In conclusion, photobiomodulation alters mRNA relative levels from genes related to genomic and telomere stabilization in injured skeletal muscle.


Asunto(s)
Cromosomas de los Mamíferos/genética , Genoma , Terapia por Luz de Baja Intensidad/métodos , Músculo Esquelético/lesiones , Músculo Esquelético/efectos de la radiación , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...