Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.671
Filtrar
1.
Cells ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38534350

RESUMEN

Inflammatory skin diseases include a series of disorders characterized by a strong activation of the innate and adaptive immune system in which proinflammatory cytokines play a fundamental role in supporting inflammation. Skin inflammation is a complex process influenced by various factors, including genetic and environmental factors, characterized by the dysfunction of both immune and non-immune cells. Psoriasis (PS) and atopic dermatitis (AD) are the most common chronic inflammatory conditions of the skin whose pathogeneses are very complex and multifactorial. Both diseases are characterized by an immunological dysfunction involving a predominance of Th1 and Th17 cells in PS and of Th2 cells in AD. Suppressor of cytokine signaling (SOCS) proteins are intracellular proteins that control inflammatory responses by regulating various signaling pathways activated by proinflammatory cytokines. SOCS signaling is involved in the regulation and progression of inflammatory responses in skin-resident and non-resident immune cells, and recent data suggest that these negative modulators are dysregulated in inflammatory skin diseases such as PS and AD. This review focuses on the current understanding about the role of SOCS proteins in modulating the activity of inflammatory mediators implicated in the pathogenesis of inflammatory skin diseases such as PS and AD.


Asunto(s)
Dermatitis Atópica , Psoriasis , Humanos , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Transducción de Señal/genética , Citocinas/metabolismo , Inflamación
2.
Int J Biol Macromol ; 262(Pt 1): 129876, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38310055

RESUMEN

Impaired polarization of M1 to M2 macrophages has been reported in diabetic wounds. We aimed to improve this polarization by down-regulation of expression of the "Suppressor of Cytokine Signaling 3" (SOCS3) gene in macrophages. Two oligodeoxynucleotide (ASO) sequences were designed against SOC3 mRNA and were loaded to mannosylated-polyethyleneimine (Man-PEI). The optimum N/P ratio for Man-PEI-ASO was determined to be 8 based on loading efficiency, particle size, zeta potential, cellular uptake and cytotoxicity assay. pH stability of ASO in Man-PEI-ASO and its protection from DNase I was confirmed. After in vitro treatment of macrophages with Man-PEI-ASO, SOCS3 was downregulated, SOCS1 upregulated, and SOCS1/SOCS3 ratio increased. Also, expressions of macrophage markers of M2 (IL-10, Arg1, CD206) increased and those of M1 (IL-1ß, NOS2, CD68) decreased, and secretion of pro-inflammatory cytokines (TNF-α and IL-1ß) decreased while that of anti-inflammatory cytokine IL-4 increased. All suggested a polarization into M2 phenotype. Finally, the Man-PEI-ASO was loaded in hydrogel and applied to a diabetic wound model in mice. It improved the healing to the level observed in non-diabetic wounds. We show that using antisense sequences against SOC3 mRNA, macrophage polarization could be directed into the M2 phenotype and healing of diabetic wound could be highly improved.


Asunto(s)
Diabetes Mellitus , Proteínas Supresoras de la Señalización de Citocinas , Humanos , Ratones , Animales , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Cicatrización de Heridas , Diabetes Mellitus/metabolismo , Macrófagos/metabolismo , ARN Mensajero/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
3.
mBio ; 15(3): e0321323, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38376239

RESUMEN

DEAD-box helicase (DDX) family members play differential roles in regulating innate antiviral immune response. However, the physiological roles played by DDX4 in antiviral innate immunity remain unclear. In this study, we unveiled that DDX4 acts as a positive regulatory molecule of Type-I interferon (IFN-I)-mediated antiviral activity. Our findings demonstrate that IFN-I upregulates DDX4 protein levels, and subsequently, overexpression of DDX4 enhances the IFN-I-mediated signaling pathway. This creates a positive feedback loop that amplifies the antiviral response. DDX4 was found to bind with deubiquitinase ubiquitin-specific protease 7 (USP7), leading to the disruption of the interaction between USP7 and suppressor of cytokine signaling 1 (SOCS1) and the subsequent degradation of SOCS1. This process enhances the antiviral function of IFN-I. Our findings provide new insights into the regulatory role of DDX4 in the IFN-I response.IMPORTANCEDDX4, identified as a putative RNA helicase that modulates RNA secondary structure through RNA binding, is primarily acknowledged for its role in regulating mRNA translation within the germline. Nevertheless, the extent of DDX4's involvement in the antiviral innate immune response remains largely unexplored. This study presents evidence of a previously unrecognized positive feedback loop between DDX4 and the antiviral response, suggesting that disruption of this loop may serve as a novel mechanism for viral evasion. Furthermore, our findings elucidate a positive regulatory mechanism by which the DDX4/USP7/SOCS1 axis mediates the antiviral activity of Type-I interferon, which provides new insight into strategies for improving the efficacy of IFN-based antiviral therapy.


Asunto(s)
Interferón Tipo I , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Inmunidad Innata , ARN
4.
Eur J Haematol ; 112(3): 439-449, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37950514

RESUMEN

OBJECTIVES: As a tumor suppressor gene, SOCS3 inhibits the growth of tumor cells by regulating JAK/STAT signaling pathway through negative feedback. This study aimed to investigate the biological function and mechanism of SOCS3 methylation mediated by DNMTs in the development of AML. METHODS: Bone marrow samples were collected from 70 AML patients and 20 healthy volunteers. The expression and methylation status of each gene were detected by RT-qPCR, western blot and MS-PCR, and the growth and apoptosis rate of leukemia cell lines were detected by CCK-8 and flow cytometry. The effects of changes in SOCS3 gene expression and methylation status of AML cell lines were observed by gene transfection and gene knockdown. RESULTS: The methylation rate of SOCS3 in AML initial treatment group was significantly higher than that in the remission group and the normal control group (60% vs. 0%, 0%). The expression of SOCS3 in the SOCS3 methylation group was significantly lower than that in the non-methylated group and control group, while the expression of DNMT1, DNMT3a, p-JAK2, p-STAT3 and p-STAT5 were significantly higher than those in the non-methylated group and control group. Demethylation treatment, SOCS3 transfection and DNMT3a knockdown could up-regulate the expression of SOCS3, which decreased the proliferation and increased the apoptosis of leukemia cell lines. CONCLUSION: SOCS3 methylation mediated by DNMTs promotes the occurrence and development of AML and can be used as a potential biomarker for the diagnosis and efficacy evaluation of AML.


Asunto(s)
Leucemia Mieloide Aguda , Transducción de Señal , Humanos , Línea Celular Tumoral , Proteínas Supresoras de la Señalización de Citocinas/genética , Metilación de ADN , Leucemia Mieloide Aguda/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
5.
Microbes Infect ; 26(3): 105282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38135025

RESUMEN

Mycobacterium tuberculosis (Mtb) infection leads to upregulation of Suppressors of Cytokine signaling (SOCS) expression in host macrophages (Mϕ). SOCS proteins inhibit cytokine signaling by negatively regulating JAK/STAT. We investigated this host-pathogen dialectic at the level of transcription. We used phorbol-differentiated THP-1 Mϕ infected with Mtb to investigate preferential upregulation of some SOCS isoforms that are known to inhibit signaling by IFN-γ, IL-12, and IL-6. We examined time kinetics of likely transcription factors and signaling molecules upstream of SOCS transcription, and survival of intracellular Mtb following SOCS upregulation. Our results suggest a plausible mechanism that involves PGE2 secretion during infection to induce the PKA/CREB axis, culminating in nuclear translocation of C/EBPß to induce expression of SOCS1. Mtb-infected Mϕ secreted IL-10, suggesting a mechanism of induction of STAT3, which may subsequently induce SOCS3. We provide evidence of temporal variation in SOCS isoform exspression and decay. Small-interfering RNA-mediated knockdown of SOCS1 and SOCS3 restored the pro-inflammatory milieu and reduced Mtb viability. In mice infected with Mtb, SOCS isoforms persisted across Days 28-85 post infection. Our results suggest that differential temporal regulation of SOCS isoforms by Mtb drives the host immune response towards a phenotype that facilitates the pathogen's survival.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Animales , Ratones , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Macrófagos/microbiología , Interleucina-12 , Isoformas de Proteínas/metabolismo
6.
J Nutr Biochem ; 123: 109512, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907171

RESUMEN

Long-term consumption of a high-fat diet (HFD) disrupts energy homeostasis and leads to weight gain. The fat mass and obesity-associated (FTO) gene has been consistently identified to be associated with HFD-induced obesity. The hypothalamus is crucial for regulating energy balance, and HFD-induced hypothalamic leptin resistance contributes to obesity. FTO, an N6-methyladenosine (m6A) RNA methylation regulator, may be a key mediator of leptin resistance. However, the exact mechanisms remain unclear. Therefore, the present study aims to investigate the association between FTO and leptin resistance. After HFD or standard diet (SD) feeding in male mice for 22 weeks, m6A-sequencing and western blotting assays were used to identify target genes and assess protein level, and molecular interaction changes. CRISPR/Cas9 gene knockout system was employed to investigate the potential function of FTO in leptin resistance and obesity. Our data showed that chemokine (C-X3-C motif) ligand 1 (CX3CL1) was a direct downstream target of FTO-mediated m6A modification. Furthermore, upregulation of FTO/CX3CL1 and suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus impaired leptin-signal transducer and activator of transcription 3 signaling, resulting in leptin resistance and obesity. Compared to wild-type (WT) mice, FTO deficiency in leptin receptor-expressing neurons of the hypothalamus significantly inhibited the upregulation of CX3CL1 and SOCS3, and partially ameliorating leptin resistance under HFD conditions. Our findings reveal that FTO involved in the hypothalamic leptin resistance and provides novel insight into the function of FTO in the contribution to hypothalamic leptin resistance and obesity.


Asunto(s)
Dieta Alta en Grasa , Leptina , Animales , Masculino , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Quimiocina CX3CL1/metabolismo , Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética
7.
Sci Rep ; 13(1): 21814, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071211

RESUMEN

Metastasis of hepatoblastoma (HB) is a key factor that impairs the prognosis and treatment of children. The suppressor of cytokine signaling 2 (SOCS2) is a classical negative feedback protein that regulates cytokine signal transduction and has been known to be downregulated in several tumor, but the molecular mechanisms of its involvement in HB metastasis are unknown. We found that SOCS2 was a gene down-regulated in hepatoblastoma and associated with HB metastasis through bioinformatics. The qRT-PCR, Western blot and IHC showed that SOCS2 was significantly lower in HB tissues. Clinicopathological correlation analysis revealed that low expression of SOCS2 was significantly correlated with tumor metastasis (P = 0.046) and vascular invasion (P = 0.028), associated with poor prognosis. Overexpression of SOCS2 inhibited the migration and invasion of hepatoblastoma cells, while knockdown of SOCS2 expression promoted these malignant phenotypes. In vivo studies revealed overexpression of SOCS2 inhibited the formation of lung metastasis. Up-regulation of SOCS2 in HB cell inhibited EMT and JAK2/STAT5. Conversely, down-regulation of SOCS2 promoted EMT and JAK2/STAT5. The addition of the JAK2 inhibitor Fedratinib partially reversed the effects of si-SOCS2 on HB cells. SOCS2 may inhibit the migration and invasion of HB cells by inhibiting the JAK2/STAT5 signaling pathway. These results may provide guiding significance for the clinical treatment of HB.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Niño , Humanos , Hepatoblastoma/genética , Regulación hacia Abajo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Neoplasias Hepáticas/patología , Citocinas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo
8.
Front Immunol ; 14: 1208828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106428

RESUMEN

The field of antiviral therapeutics is fixated on COVID19 and rightly so as the fatalities at the height of the pandemic in the United States were almost 1,000,000 in a twelve month period spanning parts of 2020/2021. A coronavirus called SARS-CoV2 is the causative virus. Development of a vaccine through molecular biology approaches with mRNA as the inducer of virus spike protein has played a major role in driving down mortality and morbidity. Antivirals have been of marginal value in established infections at the level of hospitalization. Thus, the current focus is on early symptomatic infection of about the first five days. The Pfizer drug paxlovid which is composed of nirmatrelvir, a peptidomimetic protease inhibitor of SARS-CoV2 Mpro enzyme, and ritonavir to retard degradation of nirmatrelvir, is the current FDA recommended treatment of early COVID19. There is no evidence of broad antiviral activity of paxlovid against other diverse viruses such as the influenza virus, poxviruses, as well as a host of respiratory viruses. Although type I interferons (IFNs) are effective against SARS-CoV2 in cell cultures and in early COVID19 infections, they have not been broadly recommended as therapeutics for COVID19. We have developed stable peptidomimetics of both types I and II IFNs based on our noncanonical model of IFN signaling involving the C-terminus of the IFNs. We have also identified two members of intracellular checkpoint inhibitors called suppressors of cytokine signaling (SOCS), SOCS1 and SOCS3 (SOCS1/3), and shown that they are virus induced intrinsic virulence proteins with activity against IFN signaling enzymes JAK2 and TYK2. We developed a peptidomimetic antagonist, based on JAK2 activation loop, against SOCS1/3 and showed that it synergizes with the IFN mimetics for potent broad spectrum antiviral activity without the toxicity of intact IFN molecules. IFN mimetics and the SOCS1/3 antagonist should have an advantage over currently used antivirals in terms of safety and potency against a broad spectrum of viruses.


Asunto(s)
COVID-19 , Interferón Tipo I , Mpox , Peptidomiméticos , Humanos , Pandemias , ARN Viral , Proteína 1 Supresora de la Señalización de Citocinas/genética , SARS-CoV-2/genética , Antivirales/uso terapéutico , Antivirales/farmacología , Proteínas Supresoras de la Señalización de Citocinas/genética , Interferón Tipo I/metabolismo
9.
J Clin Immunol ; 44(1): 36, 2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38157076

RESUMEN

By inhibition of JAK-STAT signaling, SOCS1 acts as a master regulator of the cytokine response across numerous tissue types and cytokine pathways. Haploinsufficiency of SOCS1 has recently emerged as a monogenic immunodysregulatory disease with marked clinical variability. Here, we describe a patient with severe dermatitis, recurrent skin infections, and psoriatic arthritis that harbors a novel heterozygous mutation in SOCS1. The variant, c.202_203delAC, generates a frameshift in SOCS1, p.Thr68fsAla*49, which leads to complete loss of protein expression. Unlike WT SOCS1, Thr68fs SOCS1 fails to inhibit JAK-STAT signaling when expressed in vitro. The peripheral immune signature from this patient was marked by a redistribution of monocyte sub-populations and hyper-responsiveness to multiple cytokines. Despite this broad hyper-response across multiple cytokine pathways in SOCS1 haploinsufficiency, the patient's clinical disease was markedly responsive to targeted IL4Rα- and IL17-blocking therapy. In accordance, the mutant allele was unable to regulate IL4Rα signaling. Further, patient cells were unresponsive to IL4/IL13 while on monoclonal antibody therapy. Together, this study reports a novel SOCS1 mutation and suggests that IL4Rα blockade may serve as an unexpected, but fruitful therapeutic target for some patients with SOCS1 haploinsufficiency.


Asunto(s)
Haploinsuficiencia , Proteínas Supresoras de la Señalización de Citocinas , Humanos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Transducción de Señal , Citocinas/metabolismo , Interleucina-17/genética
10.
Angew Chem Int Ed Engl ; 62(49): e202312603, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37847126

RESUMEN

Immunotherapies have shed light on the treatment of many cancers, but have not improved the outcomes of glioma (GBM). Here, we demonstrated that suppressor of cytokine signaling 1 (SOCS1) was associated with the GBM-associated immunosuppression and developed a multifunctional nanomedicine, which silenced SOCS1 in the tumor microenvironment (TME) of GBM and triggered strong antitumor immunity against GBM. Synthetic high-density lipoprotein (sHDL) was selected as the nanocarrier and a peptide was used to facilitate the blood-brain-barrier (BBB) penetration. The nanocarrier was loaded with a small interfering RNA (siRNA), a peptide, and an adjuvant to trigger antitumor immunity. The nanomedicine concentrated on the TME in vivo, further promoting dendritic cell maturation and T cell proliferation, triggering strong cytotoxic T lymphocyte responses, and inhibiting tumor growth. Our work provides an alternative strategy to simultaneously target and modulate the TME in GBM patients and points to an avenue for enhancing the efficacy of immunotherapeutics.


Asunto(s)
Glioma , Microambiente Tumoral , Humanos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Lipoproteínas HDL , Nanomedicina , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Glioma/terapia , ARN Interferente Pequeño/genética , Línea Celular Tumoral
11.
BMC Pulm Med ; 23(1): 385, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828534

RESUMEN

BACKGROUND: Pulmonary rehabilitation training is of great significance for the prognosis of chronic obstructive pulmonary disease (COPD) patients. The purpose of this study was to investigate the therapeutic effect and pathway of a new sequential noninvasive positive pressure ventilation (NIPPV) + inspiratory muscle training (IMT) therapy. METHODS: A total of 100 COPD patients were enrolled and randomly divided into oxygen therapy (OT), NIPPV, IMT and sequential (NIPPV + IMT) group. Lung function, exercise endurance, quality of life, and dyspnea symptoms were examined and recorded. Then, reactive oxygen species (ROS), malonaldehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) levels were detected by enzyme-linked immunoassay, and suppressor of cytokine signaling 5 (SOCS5)/janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway expression changes were detected by quantitative real time-polymerase chain reaction (qRT-PCR) and western blot. A mouse model of COPD was then established to further verify the effects of SOCS5/JAK2/STAT3 pathways on lung function and oxidative stress. RESULTS: After 8 weeks of treatment, NIPPV, IMT or sequential (NIPPV + IMT) significantly improved exercise endurance, quality of life and dyspnea, reduced oxidative stress, promoted SOCS5 expression and inhibited the activation of JAK2/STAT3 pathway, and no significant effect was observed on lung function of COPD patients. Notably, sequential (NIPPV + IMT) showed better therapeutic outcomes than either IMT or NIPPV alone. Moreover, results at the animal level showed that overexpression of SOCS5 significantly reduced pulmonary inflammatory infiltration, pathological changes and oxidative stress levels in COPD mice, enhanced lung function, and inhibited the activation of JAK2/STAT3 pathway. CONCLUSION: Our results elucidated that sequential (NIPPV + IMT) significantly relieved COPD development by regulating SOCS5/JAK2/STAT3 signaling-mediated oxidative stress.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Factor de Transcripción STAT3 , Humanos , Animales , Ratones , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Calidad de Vida , Disnea/terapia , Estrés Oxidativo , Músculos/metabolismo , Respiración con Presión Positiva , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/farmacología
12.
Mol Immunol ; 162: 102-110, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37672963

RESUMEN

BACKGROUND: The SOCS proteins act as suppressors of cytokine signaling by impeding certain signaling pathways. SOCS5, a constituent of the SOCS family, has been associated with the management of allergic reactions, primarily by impeding the signaling of interleukin-4 (IL-4), which is known to have a cardinal function in accelerating the development of an allergic reaction. The key goal of our research was to explore the probable ramifications of the SOCS5 single nucleotide polymorphism (SNP) namely rs41379147 on the expression of SOCS5 mRNA and serum IL-12 levels, as well as to analyze the interaction between SOCS5 genotypes and various clinicopathological parameters in atopic diseases. METHODS: The study involved the enrollment of 314 subjects comprising 154 atopic individuals and 160 healthy controls. PCR-RFLP was employed to conduct SNP analysis. Real-Time PCR was employed to quantify SOCS5 mRNA. The enzyme-linked immunosorbent assay (ELISA) technique was used for the quantification of interleukin-12 and total IgE levels in the serum while as chemiluminescence was used to determine Vitamin D levels. RESULTS: The PCR-RFLP analysis indicated a lack of statistically significant variation in genotypic and allelic frequencies between the cases and controls (p > 0.05) for - 9147 C/T SNP either in total atopy (OR-0.70, 95% CI=0.43-1.12, p =0.15), and on subgroup stratifications of chronic urticaria (OR-0.81, 95 % CI = 0.42-1.59, p = 0.61), allergic rhinitis (OR-0.63, 95 % CI = 0.33-1.19, p = 0.16) and bronchial asthma (OR-0.66,95% CI = 0.29-1.4, p=0.32). There was reduced mRNA expression of SOCS5 in total atopic cases, allergic rhinitis, bronchial asthma and chronic urticaria in comparison to controls which advocates the fact that SOCS5 has a protective role in allergic disease development. Despite the reduced amounts of IL-12 in total atopic cases and different allergic disorders in comparison to controls, IL-12 showed significant positive correlation with SOCS5 mRNA expression (p < 0.05). CONCLUSION: SOCS5 SNP rs41379147(C/T) does not pose any significant risk towards the development of any allergic disorder and has no impact on the expression of SOCS5 and IL-12. Our study has shown the reduced mRNA expression of SOCS5 among individuals diagnosed with chronic urticaria, allergic rhinitis and bronchial asthma and the expression of SOCS5 showed complete dependence on the cytokine milieu of IL12. The modulation of SOCS5 and IL-12 may represent potential curative targets for treating the menace of allergic diseases and present promising avenues for future investigation.


Asunto(s)
Asma , Urticaria Crónica , Hipersensibilidad Inmediata , Rinitis Alérgica , Humanos , Interleucina-12/genética , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple/genética , Asma/genética , Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética
13.
Biochem Biophys Res Commun ; 679: 98-109, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37677983

RESUMEN

BACKGROUND: Cancer stem cells are one fundamental reason for the high recurrence rate of hepatocellular carcinoma (HCC) and its resistance to treatment. This study explored the mechanism by which SOCS2-AS1 affects HCC cell stemness. METHODS: Stem cells of HCC cell lines Huh7 and SNU-398 were sorted as NANOG-positive by flow cytometry. Stem cell sphere formation ability was detected. Stem cell viability, migration, invasion, and apoptosis were assessed by colony formation assays, Transwell assays, wound-healing assays, and TUNEL assays, respectively. The binding sites for SOCS2-AS1, miR-454-3p, miR-454-3p, and CPEB1 mRNA were assessed by dual-luciferase reporter assays. Quantitative real-time PCR (qPCR) and Western blot studies were performed to evaluate gene expression levels. ChIP and EMSA assays were conducted to confirm that YY1 binds with the SOCS2-AS1 promoter. A subcutaneous xenograft model was used to verify results in vivo. Tumor tissues were analyzed by H&E and TUNEL staining. RESULTS: SOCS2-AS1 was expressed at low levels in NANOG+ HCC stem cells, and HCC patients with a high level of SOCS2-AS1 expression had a higher survival rate. SOCS2-AS1 inhibited HCC cell stemness, migration, and invasion, and increased the cisplatin sensitivity of HCC cells by regulating miR-454-3p/CPEB1. YY1 was confirmed as a transcription factor of SOCS2-AS1, and served to inhibit SOCS2-AS1 transcription. YY1 knockdown suppressed HCC stemness via SOCS2-AS1. The role of SOCS2-AS1 was confirmed in a subcutaneous xenograft model, and SOCS2-AS1 overexpression enhanced the inhibitory effect of cisplatin on HCC in vivo. CONCLUSIONS: YY1-regulated lncRNA SOCS2-AS1 suppresses HCC cell stemness and progression via miR-454-3p/CPEB1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cisplatino , Línea Celular Tumoral , Células Madre Neoplásicas/patología , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Movimiento Celular/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
14.
J Exp Clin Cancer Res ; 42(1): 205, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563692

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumor and has "immunologically cold" features. Changing GBM to an "immunologically hot" tumor requires a strong trigger that induces initial immune responses in GBM. Allogeneic natural killer cells (NKCs) have gained considerable attention as promising immunotherapeutic tools against cancer, where gene-edited NKCs would result in effective anti-cancer treatment. The present study focused on the immune checkpoint molecule cytokine-inducible SH2-containing protein (CISH, or CIS) as a critical negative regulator in NKCs. METHODS: The GBM tumor environment featured with immunological aspect was analyzed with Cancer immunogram and GlioVis. We generated human primary CIS-deleted NKCs (NK dCIS) using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) with single guide RNA targeting genome sites on CIS coding exons. The genome-edited NKCs underwent microarray with differential expression analysis and gene set enrichment analysis (GSEA). The anti-GBM activity of the genome-edited NKCs was evaluated by apoptosis induction effects against allogeneic GBM cells and spheroids. We further detected in vivo antitumor effects using xenograft brain tumor mice. RESULTS: We successfully induced human CIS-deleted NKCs (NK dCIS) by combining our specific human NKC expansion method available for clinical application and genome editing technology. CIS gene-specific guide RNA/Cas9 protein complex suppressed CIS expression in the expanded NKCs with high expansion efficacy. Comprehensive gene expression analysis demonstrated increased expression of 265 genes and decreased expression of 86 genes in the NK dCIS. Gene set enrichment analysis revealed that the enriched genes were involved in NKC effector functions. Functional analysis revealed that the NK dCIS had increased interferon (IFN)ɤ and tumor necrosis factor (TNF) production. CIS deletion enhanced NKC-mediated apoptosis induction against allogeneic GBM cells and spheroids. Intracranial administration of the allogeneic NKCs prolonged the overall survival of xenograft brain tumor mice. Furthermore, the NK dCIS extended the overall survival of the mice. CONCLUSION: The findings demonstrated the successful induction of human primary NK dCIS with CRISPR/Cas9 with efficient expansion. CIS deletion enhanced the NKC-mediated anti-tumor effects in allogeneic GBM and could be a promising immunotherapeutic alternative for patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Carcinoma Intraductal no Infiltrante , Glioblastoma , Trasplante de Células Madre Hematopoyéticas , Proteínas Supresoras de la Señalización de Citocinas , Animales , Humanos , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Sistemas CRISPR-Cas , Glioblastoma/genética , Glioblastoma/terapia , Células Asesinas Naturales , Proteínas Supresoras de la Señalización de Citocinas/genética
15.
Nat Commun ; 14(1): 5200, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626025

RESUMEN

Human height is strongly influenced by genetics but the contribution of modifiable epigenetic factors is under-explored, particularly in low and middle-income countries (LMIC). We investigate links between blood DNA methylation and child height in four LMIC cohorts (n = 1927) and identify a robust association at three CpGs in the suppressor of cytokine signaling 3 (SOCS3) gene which replicates in a high-income country cohort (n = 879). SOCS3 methylation (SOCS3m)-height associations are independent of genetic effects. Mendelian randomization analysis confirms a causal effect of SOCS3m on height. In longitudinal analysis, SOCS3m explains a maximum 9.5% of height variance in mid-childhood while the variance explained by height polygenic risk score increases from birth to 21 years. Children's SOCS3m is associated with prenatal maternal folate and socio-economic status. In-vitro characterization confirms a regulatory effect of SOCS3m on gene expression. Our findings suggest epigenetic modifications may play an important role in driving child height in LMIC.


Asunto(s)
Metilación de ADN , Proteínas Supresoras de la Señalización de Citocinas , Femenino , Embarazo , Humanos , Niño , Metilación de ADN/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Epigénesis Genética , Epigenómica , Citocinas , Proteína 3 Supresora de la Señalización de Citocinas/genética
16.
Cell Rep ; 42(8): 113014, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37605534

RESUMEN

CXCL9 expression is a strong predictor of response to immune checkpoint blockade therapy. Accordingly, we sought to develop therapeutic strategies to enhance the expression of CXCL9 and augment antitumor immunity. To perform whole-genome CRISPR-Cas9 screening for regulators of CXCL9 expression, a CXCL9-GFP reporter line is generated using a CRISPR knockin strategy. This approach finds that IRF1 limits CXCL9 expression in both tumor cells and primary myeloid cells through induction of SOCS1, which subsequently limits STAT1 signaling. Thus, we identify a subset of STAT1-dependent genes that do not require IRF1 for their transcription, including CXCL9. Targeting of either IRF1 or SOCS1 potently enhances CXCL9 expression by intratumoral macrophages, which is further enhanced in the context of immune checkpoint blockade therapy. We hence show a non-canonical role for IRF1 in limiting the expression of a subset of STAT1-dependent genes through induction of SOCS1.


Asunto(s)
Sistemas CRISPR-Cas , Inhibidores de Puntos de Control Inmunológico , Retroalimentación , Proteínas Supresoras de la Señalización de Citocinas/genética , Transducción de Señal
17.
Pathol Res Pract ; 249: 154760, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586215

RESUMEN

One of the most devastating diseases with the highest prevalence and mortality rate worldwide is lung cancer. Non-small cell lung cancer (NSCLC) is the subtype of lung cancer in 85% of cases. In this work, the expression levels of the STAT, SOCS and PIAS family genes involved in angiogenesis, proliferation and differentiation were examined. Using QRT-PCR technique, the expression level of STAT3 gene was assessed and tumor tissue samples had higher expression than normal tissue. In addition, the histological grade of adenocarcinoma was associated with the increase in STAT3 gene expression. The expression of the SOCS1 and SOCS2 genes in tumors was measured to be 0.58-fold and 0.36-fold lower than in healthy samples adjacent to the tumor, but this reduction in expression was not significant. In addition, when examining the relationship between the expression of SOCS1 and 2 and the clinical features of tumor samples, there was a significant decrease in the expression of the SOCS1 and 2 genes in the adenocarcinoma subtype. Compared to neighboring tumor samples, the expression of PIAS1 in the tumors was not different with controls. Our research revealed that tissue samples from adenocarcinoma had higher levels of STAT3 expression. Taken together, the mentioned genes can be suggested as possible targets for further studies in NSCLC.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Adenocarcinoma/genética , Perfilación de la Expresión Génica
18.
Cell Rep ; 42(8): 112968, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37578862

RESUMEN

The miR-17∼92 family microRNAs (miRNAs) play a key role in germinal center (GC) reaction through promoting T follicular helper (TFH) cell differentiation. It remains unclear whether they also have intrinsic functions in B cell differentiation and function. Here we show that mice with B cell-specific deletion of the miR-17∼92 family exhibit impaired GC reaction, plasma cell differentiation, and antibody production in response to protein antigen immunization and chronic viral infection. Employing CRISPR-mediated functional screening, we identify Socs3 as a key functional target of miR-17∼92 in regulating plasma cell differentiation. Mechanistically, SOCS3, whose expression is elevated in miR-17∼92 family-deficient B cells, interacts with NIK and promotes its ubiquitination and degradation, thereby impairing NF-κB signaling and plasma cell differentiation. This moderate increase in SOCS3 expression has little effect on IL-21-STAT3 signaling. Our study demonstrates differential sensitivity of two key signaling pathways to alterations in the protein level of an miRNA target gene.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Linfocitos T Colaboradores-Inductores , Linfocitos B , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Diferenciación Celular/genética , Centro Germinal
19.
Exp Biol Med (Maywood) ; 248(20): 1695-1707, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37646261

RESUMEN

Resistin and suppressors of cytokine signaling (SOCSs) have been reported to regulate prostate cancer (PCa) cell proliferation and survival, respectively. Whether any of the SOCS molecules mediate the mitogenic effect of resistin on PCa cells is unknown. Using PC-3 human PCa cells, we found that resistin upregulates the expression of SOCS3 and SOCS5 mRNA, but not SOCS7 mRNA, in a dose- and time-dependent manner. The resistin-induced increases in SOCS3 and SOCS5 expression and cell proliferation were prevented by pretreatment with specific inhibitors of the TLR4, ERK, p38 MAPK, JNK, PI3K, and JAK2 proteins. However, pretreatment with a TLR2 inhibitor had no effect on resistin-mediated SOCS3 and SOCS5 expression. In addition, the effects of resistin on SOCS3, SOCS5, and SOCS7 mRNA levels were cell type-specific. Overexpression of either SOCS3 or SOCS5 enhanced further resistin-stimulated growth of PC-3 cells, whereas silencing SOCS3 or SOCS5 antagonized resistin-increased cell growth. Further PCa tissue analysis demonstrated higher levels of RETN, TLR4, SOCS3, and SOCS5 mRNAs in cancer tissues than benign prostate hyperplasia and indicated positive correlations among RETN, TLR4, and SOCS5. These data suggest that SOCS5, TLR4, and, to a lesser extent, SOCS3 can mediate the mitogenic effect of resistin on PC-3 PCa cells.


Asunto(s)
Próstata , Neoplasias de la Próstata , Humanos , Masculino , Células PC-3 , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Resistina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Receptor Toll-Like 4/metabolismo
20.
Clin Exp Allergy ; 53(11): 1147-1161, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37641429

RESUMEN

Suppressor of cytokine signalling (SOCS) proteins bind to certain cytokine receptors, Janus kinases and signalling molecules to regulate signalling pathways, thus controlling immune and inflammatory responses. Dysregulated expression of various types of SOCS molecules was indicated in multiple types of allergic diseases. SOCS1, SOCS2, SOCS3, SOCS5, and cytokine-inducible SH2 domain protein (CISH) can differentially exert anti-allergic impacts through different mechanisms, such as suppressing Th2 cell development and activation, reducing eosinophilia, decreasing IgE production, repressing production of pro-allergic chemokines, promoting Treg cell differentiation and activation, suppressing Th17 cell differentiation and activation, increasing anti-allergic Th1 responses, inhibiting M2 macrophage polarization, modulating survival and development of mast cells, reducing pro-allergic activity of keratinocytes, and suppressing pulmonary fibrosis. Although some anti-allergic effects were attributed to SOCS3, it can perform pro-allergic impacts through several pathways, such as promoting Th2 cell development and activation, supporting eosinophilia, boosting pro-allergic activity of eosinophils, increasing IgE production, enhancing the expression of the pro-allergic chemokine receptor, reducing Treg cell differentiation, increasing pro-allergic Th9 responses, as well as supporting mucus secretion and collagen deposition. In this review, we discuss the contrasting roles of SOCS proteins in contexts of allergic disorders to provide new insights regarding the pathophysiology of these diseases and possibly explore SOCS proteins as potential therapeutic targets for alleviating allergies.


Asunto(s)
Antialérgicos , Eosinofilia , Hipersensibilidad , Humanos , Hipersensibilidad/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Citocinas/metabolismo , Inmunoglobulina E/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...