Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
PLoS One ; 18(1): e0278448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36638102

RESUMEN

SHP-1 is a cytosolic tyrosine phosphatase that is primarily expressed in hematopoietic cells. It acts as a negative regulator of numerous signaling pathways and controls multiple cellular functions involved in cancer pathogenesis. This study describes the binding preferences of SHP-1 (pY536) to c-Srcopen (pY416) and c-Srcclose (pY527) through in silico approaches. Molecular dynamics simulation analysis revealed more conformational changes in c-Srcclose upon binding to SHP-1, as compared to its active/open conformation that is stabilized by the cooperative binding of the C-SH2 domain and C-terminal tail of SHP-1 to c-Src SH2 and KD. In contrast, c-Srcclose and SHP-1 interaction is mediated by PTP domain-specific WPD-loop (WPDXGXP) and Q-loop (QTXXQYXF) binding to c-Srcclose C-terminal tail residues. The dynamic correlation analysis demonstrated a positive correlation for SHP-1 PTP with KD, SH3, and the C-terminal tail of c-Srcclose. In the case of the c-Srcopen-SHP-1 complex, SH3 and SH2 domains of c-Srcopen were correlated to C-SH2 and the C-terminal tail of SHP-1. Our findings reveal that SHP1-dependent c-Src activation through dephosphorylation relies on the conformational shift in the inhibitory C-terminal tail that may ease the recruitment of the N-SH2 domain to phosphotyrosine residue, resulting in the relieving of the PTP domain. Collectively, this study delineates the intermolecular interaction paradigm and underlying conformational readjustments in SHP-1 due to binding with the c-Src active and inactive state. This study will largely help in devising novel therapeutic strategies for targeting cancer development.


Asunto(s)
Proteína Tirosina Quinasa CSK , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Dominios Homologos src , Proteína Tirosina Quinasa CSK/química , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 6/química , Proteínas Tirosina Fosfatasas con Dominio SH2/química , Neoplasias
2.
Biochemistry ; 61(23): 2687-2697, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36346979

RESUMEN

Signal transduction pathways are responsible for maintaining cellular functions, including proliferation, differentiation, apoptosis, and cell cycle progression. These pathways are maintained through the propagation of phosphorylation signals by protein kinases, as well as the removal of phosphorylation signals by protein phosphatases. Depending on the context, post-translational modification could have either a positive or negative effect on a signaling pathway. Intricate networks of positive and negative regulators offer a challenging target for the dissection of cell signaling mechanisms, particularly regarding the more subtle dampening of signal transduction through phosphatases. We report the development of two complimentary methods for the optical control of a complex phosphatase: SH2 domain-containing protein tyrosine phosphatase-2 (SHP2). We investigated controlling the catalytic function of SHP2 through (1) site-specific incorporation of a caged tyrosine for light activation of catalytic activity for the control of an essential substrate binding residue and (2) site-specific incorporation of a caged lysine at a conserved residue within an allosteric pocket for the control of SHP2 binding partner docking sites. These methods are generalizable to proteins bearing either a protein tyrosine phosphatase (PTP) catalytic domain or an SH2 domain, including SHP1, PTP family phosphatases, and a diverse range of SH2 domain-containing proteins.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Dominios Homologos src , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Tirosina Fosfatasas con Dominio SH2 , Transducción de Señal , Fosforilación
3.
BMC Biotechnol ; 21(1): 60, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674683

RESUMEN

BACKGROUND: The current study was aimed at evaluating the role of the N-SH2 domain of SHP-2 as a partner protein in the expression of a toxic peptide, laterosporulin (LTS). We also investigated its effects on the formation of the disulfide bond and functional folding of the peptide in vitro. The N-SH2-LTS protein was expressed as a His-tagged fusion protein, capable of undergoing enzymatic cleavage. RESULTS: Based on the data presented herein, the total yield of the folded fusion protein from inclusion bodies was found to be about 105 mg/l, demonstrating a high-level of heterologous expression. After enzymatic cleavage, 1.5 mg of the folded recombinant laterosporulin was obtained from each 10 mg of the fusion protein. The purity of the recombinant laterosporulin was analyzed by RP-HPLC, to yield peptides with suitable purity (85%). CONCLUSIONS: Our findings indicated the advantages of using the N-SH2 domain of SHP-2 as a rapid and easy approach not only in producing easy target proteins but also in its function as a chaperone. N-SH2 domain of SHP-2 can influence on the purification of laterosporulin at reasonable yield and in a cost-effective fashion. The N-SH2 domain of SHP-2 as a protein chaperone may be potentially favorable to produce other proteins with disulfide bonds.


Asunto(s)
Bacteriocinas , Dominios Homologos src , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Proteínas Tirosina Fosfatasas con Dominio SH2
4.
Sci Transl Med ; 13(588)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827975

RESUMEN

The phosphorylation status of oncoproteins is regulated by both kinases and phosphatases. Kinase inhibitors are rarely sufficient for successful cancer treatment, and phosphatases have been considered undruggable targets for cancer drug development. However, innovative pharmacological approaches for targeting phosphatases have recently emerged. Here, we review progress in the therapeutic targeting of oncogenic Src homology region 2 domain-containing phosphatase-2 (SHP2) and tumor suppressor protein phosphatase 2A (PP2A) and select other druggable oncogenic and tumor suppressor phosphatases. We describe the modes of action for currently available small molecules that target phosphatases, their use in drug combinations, and advances in clinical development toward future cancer therapies.


Asunto(s)
Antineoplásicos , Neoplasias , Proteína Fosfatasa 2 , Proteínas Tirosina Fosfatasas con Dominio SH2 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Genes Supresores de Tumor , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo
5.
Biophys J ; 120(10): 2054-2066, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33781765

RESUMEN

Immune receptors signal by recruiting (or tethering) enzymes to their cytoplasmic tails to catalyze reactions on substrates within reach. This is the case for the phosphatase SHP-1, which, upon tethering to inhibitory receptors, dephosphorylates diverse substrates to control T cell activation. Precisely how tethering regulates SHP-1 activity is incompletely understood. Here, we measure binding, catalysis, and molecular reach for tethered SHP-1 reactions. We determine the molecular reach of SHP-1 to be 13.0 nm, which is longer than the estimate from the allosterically active structure (5.3 nm), suggesting that SHP-1 can achieve a longer reach by exploring multiple active conformations. Using modeling, we show that when uniformly distributed, receptor-SHP-1 complexes can only reach 15% of substrates, but this increases to 90% when they are coclustered. When within reach, we show that membrane recruitment increases the activity of SHP-1 by a 1000-fold increase in local concentration. The work highlights how molecular reach regulates the activity of membrane-recruited SHP-1 with insights applicable to other membrane-tethered reactions.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Tirosina , Fosforilación , Proteína Fosfatasa 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatasas con Dominio SH2 , Tirosina/metabolismo
6.
Hum Cell ; 34(2): 325-334, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33415691

RESUMEN

In this study, we aimed to investigate the role of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) in cardiac remodeling after myocardial infarction (MI) and explore the underlying molecular mechanism. MI model was established by ligation of the left anterior descending coronary artery. C57/BL6J mice were randomly administered with 3.0 mg/kg/day PHPS1 (PHPS1-treated group) or normal saline (model group) by intraperitoneal injection. After 4 weeks of infusion, the effects of PHPS1 on cardiac remodeling were evaluated. Echocardiography results showed that PHPS1 treatment aggravated the MI-induced deterioration of cardiac function, with worse cardiac function parameters. PHPS1 treatment significantly increased the infarcted area, as well as the fibrotic area and the expression of collagen I and collagen III. Western blots and immunofluorescence staining showed that PHPS1 treatment up-regulated the expression of p-GRK2, p-SMAD2/3 and p-ERK1/2, while U0126 reversed the effect of PHPS1. The present study indicated that PHPS1 treatment contributed to myocardial fibrosis and infarction by activating ERK/SMAD signaling pathway, suggesting that SHP-2 may be a promising treatment target for cardiac remodeling after MI.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Proteínas Tirosina Fosfatasas con Dominio SH2/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Remodelación Ventricular/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Fibrosis/genética , Sistema de Señalización de MAP Quinasas/genética , Ratones Endogámicos C57BL , Miocardio/patología , Proteínas Tirosina Fosfatasas con Dominio SH2/administración & dosificación
7.
Hepatology ; 72(1): 155-168, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31610028

RESUMEN

BACKGROUND AND AIMS: The survival benefit of sorafenib for patients with hepatocellular carcinoma (HCC) is unsatisfactory due to the development of adaptive resistance. Increasing evidence has demonstrated that drug resistance can be acquired by cancer cells by activating a number of signaling pathways through receptor tyrosine kinases (RTKs); nevertheless, the detailed mechanism for the activation of these alternative pathways is not fully understood. APPROACH AND RESULTS: Given the physiological role of Src homology 2 domain-containing phosphatase 2 (SHP2) as a downstream effector of many RTKs for activation of various signaling cascades, we first found that SHP2 was markedly up-regulated in our established sorafenib-resistant cell lines as well as patient-derived xenografts. Upon sorafenib treatment, adaptive resistance was acquired in HCC cells through activation of RTKs including AXL, epidermal growth factor receptor, EPH receptor A2, and insulin-like growth factor 1 receptor, leading to RAS/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), and AKT reactivation. We found that the SHP2 inhibitor SHP099 abrogated sorafenib resistance in HCC cell lines and organoid culture in vitro by blocking this negative feedback mechanism. Interestingly, this sensitization effect was also mediated by induction of cellular senescence. SHP099 in combination with sorafenib was highly efficacious in the treatment of xenografts and genetically engineered models of HCC. CONCLUSIONS: SHP2 blockade by SHP099 in combination with sorafenib attenuated the adaptive resistance to sorafenib by impeding RTK-induced reactivation of the MEK/ERK and AKT signaling pathways. SHP099 in combination with sorafenib may be a safe therapeutic strategy against HCC.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Piperidinas/administración & dosificación , Pirimidinas/administración & dosificación , Proteínas Tirosina Fosfatasas con Dominio SH2/antagonistas & inhibidores , Sorafenib/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Combinación de Medicamentos , Humanos , Piperidinas/farmacología , Pirimidinas/farmacología , Proteínas Tirosina Quinasas Receptoras/fisiología , Sorafenib/farmacología
8.
Front Immunol ; 10: 2575, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781099

RESUMEN

Hyper-inflammation during acute phase and sequential hypo-inflammation during immunosuppressive phase in macrophages/monocytes lead to multiorgan failure syndrome and immune collapse of sepsis, in which toll-like receptor (TLR)-triggered inflammatory responses play a major role. Here, we reported that Siglecg deficiency attenuated TLR4-triggered pro-inflammatory cytokine production and increased anti-inflammatory cytokine [interleukin-10 [IL-10]] production in vivo and in vitro at both acute and immunosuppressive phases. Siglecg deficiency also protected mice from lipopolysaccharide (LPS)-induced sepsis with less inflammation in the lung and less tissue destruction in the spleen. Siglec-G inhibited proto-oncogene tyrosine-protein kinase Src (Src) activation via recruiting and activating tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP1) through immunoreceptor tyrosine-based inhibitory motif (ITIM) domain. Src could inhibit TLR4-induced inflammatory cytokines and promote anti-inflammatory cytokine IL-10. Mechanical investigation showed that Src could interact with and phosphorylate STAT3. Src could also promote HIF1α degradation through activating GSK3ß. Our study reveals that Siglec-G orchestrates TLR-induced inflammation, which outlines that blocking Siglec-G or activating Src may be a promising strategy for both acute and chronic inflammatory diseases.


Asunto(s)
Inflamación/inmunología , Lectinas/deficiencia , Receptores de Antígenos de Linfocitos B/deficiencia , Sepsis/inmunología , Familia-src Quinasas/metabolismo , Animales , Citocinas/metabolismo , Activación Enzimática , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-10/metabolismo , Lectinas/fisiología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Receptores de Antígenos de Linfocitos B/fisiología , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Factor de Transcripción STAT3/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Transducción de Señal , Receptores Toll-Like/metabolismo
9.
Biol Pharm Bull ; 41(12): 1843-1852, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30504685

RESUMEN

Ulcerative colitis is characterized by colonic mucosal bleeding and ulceration, often with repeated active and remission stages. One factor in ulcerative colitis development is increased susceptibility to commensal bacteria and lipopolysaccharide (LPS). LPS activates macrophages to release nitric oxide (NO) through Toll-like receptor 4 (TLR4) signaling. However, whether NO is beneficial or detrimental to colitis remains controversial. In this study, we investigated whether NO enhances the development of colitis in mice treated with dextran sulfate sodium (DSS) and inflammation in cells treated with low-dose LPS. An NO donor, NOC18, induced colitis and increased CD14 protein and nitrotyrosine levels in colonic macrophages from mice treated with DSS for 7 d (molecular weight: 5000). In the mouse peritoneal macrophage cell line RAW264.7 stimulated with 3 ng/mL LPS, NO activated the CD14-TLR4-nuclear factor kappa B (NF-κB) axis. Low-dose LPS stimulation did not change the levels of signal transducer and activator of transcription (STAT) 3 phosphorylation, CD14, inducible NO synthase, interleukin (IL)-6, or NF-κB. In addition, low-dose LPS increased phosphorylation of src homology protein tyrosine phosphatase 2 (SHP2), a negative regulator of STAT3 phosphorylation. However, NO decreased SHP2 phosphorylation and significantly activated the downstream signaling molecules. NO increased SHP2 nitration in LPS-stimulated RAW264.7 cells and DSS-treated mice. These results indicate that SHP2 nitration in macrophages might be involved in activation of the CD14-TLR4-NF-κB axis through STAT3 signaling in mice with DSS-induced colitis.


Asunto(s)
Colitis Ulcerosa/metabolismo , Mucosa Intestinal/metabolismo , Óxido Nítrico/metabolismo , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Receptor Toll-Like 4/metabolismo , Tirosina/análogos & derivados , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/inmunología , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Lipopolisacáridos/farmacología , Ratones , Donantes de Óxido Nítrico/farmacología , Fosforilación , Células RAW 264.7 , Transducción de Señal , Tirosina/metabolismo
10.
Free Radic Biol Med ; 76: 96-106, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25150199

RESUMEN

Valproic acid (VPA) with its inhibitory activity of histone deacetylase has been used in the treatment of epilepsy and bipolar disorder associated with cerebrovascular dysfunction. Because nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays a role in the maintenance of vascular function, NO is likely to mediate VPA׳s drug effect, but its effect on NO production remains controversial. We investigated whether and how VPA regulates NO production in bovine aortic endothelial cells (BAECs) and mice. VPA increased NO production in BAECs, which was accompanied by a decrease in phosphorylation of eNOS at serine 116 (eNOS-Ser(116)) and cyclin-dependent kinase 5 at tyrosine 15 (CDK5-Tyr(15)). Ectopic expression of p25, a CDK5 activator, restored the VPA-inhibited eNOS-Ser(116) phosphorylation. In silico analysis revealed that the CDK5-Tyr(15) residue might be a substrate for SH2 domain-containing protein tyrosine phosphatase 1 (SH-PTP1), and CDK5 actually interacted with SH-PTP1. VPA increased SH-PTP1 expression and its activity. Stibogluconate, a specific SH-PTP1 inhibitor, reversed the VPA-inhibited phosphorylation of CDK5-Tyr(15) and eNOS-Ser(116). Knockdown of SH-PTP1 using small interfering RNA also reversed all the observed effects of VPA. Finally, both serum NO level and acetylcholine-induced aortic relaxation increased in VPA-medicated male mice. These increases were accompanied by increased SH-PTP1 expression and decreased phosphorylation of CDK5-Tyr(15) and eNOS-Ser(116) in mouse aortas. In conclusion, VPA increases NO production by inhibiting the CDK5-Tyr(15)-eNOS-Ser(116) phosphorylation axis; this process is mediated by SH-PTP1. VPA may be useful in the treatment of NO-related cerebrocardiovascular diseases.


Asunto(s)
Anticonvulsivantes/farmacología , Aorta/metabolismo , Endotelio Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Serina/metabolismo , Ácido Valproico/farmacología , Animales , Aorta/citología , Aorta/efectos de los fármacos , Western Blotting , Bovinos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Inmunoprecipitación , Masculino , Ratones , Ratones Endogámicos ICR , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Tirosina Fosfatasas con Dominio SH2 , Transducción de Señal/efectos de los fármacos , Resonancia por Plasmón de Superficie
11.
Circ Res ; 114(7): 1125-32, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24515523

RESUMEN

RATIONALE: Fluid shear stress differentially regulates endothelial cell stress fiber formation with decreased stress fibers in areas of disturbed flow compared with steady flow areas. Importantly, stress fibers are critical for several endothelial cell functions including cell shape, mechano-signal transduction, and endothelial cell-cell junction integrity. A key mediator of steady flow-induced stress fiber formation is Src that regulates downstream signaling mediators such as phosphorylation of cortactin, activity of focal adhesion kinase, and small GTPases. OBJECTIVE: Previously, we showed that thioredoxin-interacting protein (TXNIP, also VDUP1 [vitamin D upregulated protein 1] and TBP-2 [thioredoxin binding protein 2]) was regulated by fluid shear stress; TXNIP expression was increased in disturbed flow compared with steady flow areas. Although TXNIP was originally characterized for its role in redox and metabolic cellular functions, recent reports show important scaffold functions related to its α-arrestin structure. Based on these findings, we hypothesized that TXNIP acts as a biomechanical sensor that regulates Src kinase activity and stress fiber formation. METHODS AND RESULTS: Using en face immunohistochemistry of the aorta and cultured endothelial cells, we show inverse relationship between TXNIP expression and Src activity. Specifically, steady flow increased Src activity and stress fiber formation, whereas it decreased TXNIP expression. In contrast, disturbed flow had opposite effects. We studied the role of TXNIP in regulating Src homology phosphatase-2 plasma membrane localization and vascular endothelial cadherin binding because Src homology phosphatase-2 indirectly regulates dephosphorylation of Src tyrosine 527 that inhibits Src activity. Using immunohistochemistry and immunoprecipitation, we found that TXNIP prevented Src homology phosphatase-2-vascular endothelial cadherin interaction. CONCLUSIONS: In summary, these data characterize a fluid shear stress-mediated mechanism for stress fiber formation that involves a TXNIP-dependent vascular endothelial cadherin-Src homology phosphatase-2-Src pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Fibras de Estrés/metabolismo , Tiorredoxinas/metabolismo , Familia-src Quinasas/metabolismo , Animales , Cadherinas/metabolismo , Proteínas Portadoras/genética , Bovinos , Membrana Celular/metabolismo , Humanos , Ratones , Unión Proteica , Transporte de Proteínas , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Tiorredoxinas/genética
12.
PLoS One ; 7(9): e45596, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029125

RESUMEN

CXCL8, one of the first chemokines found in the brain, is upregulated in the brains and cerebrospinal fluid of HIV-1 infected individuals suggesting its potential role in human immune deficiency virus (HIV)-associated neuroinflammation. Astrocytes are known to be the major contributors to the CXCL8 pool. Interleukin (IL)-1ß activated astrocytes exhibit significant upregulation of CXCL8. In order to determine the signaling pathways involved in CXCL8 regulation in astrocytes, we employed pharmacological inhibitors for non-receptor Src homology-2 domain-containing protein tyrosine phosphatase (SHP) 2 and mitogen-activated protein kinases (MAPK) pathway and observed reduced expression of CXCL8 following IL-1ß stimulation. Overexpression of SHP2 and p38 enzymes in astrocytes led to elevated CXCL8 expression; however, inactivating SHP2 and p38 with dominant negative mutants abrogated CXCL8 induction. Furthermore, SHP2 overexpression resulted in higher SHP2 and p38 enzyme activity whereas p38 overexpression resulted in higher p38 but not SHP2 enzyme activity. Phosphorylation of SHP2 was important for phosphorylation of p38, which in turn was critical for phosphorylation of extracellular signal regulated kinase (ERK). Thus, our findings suggest an important role for SHP2 in CXCL8 expression in astrocytes during inflammation, as SHP2, directly or indirectly, modulates p38 and ERK MAPK in the signaling cascade leading to CXCL8 production. This study provides detailed understanding of the mechanisms involved in CXCL8 production during neuroinflammation.


Asunto(s)
Astrocitos/metabolismo , Interleucina-8/metabolismo , Proteínas Tirosina Fosfatasas con Dominio SH2/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Astrocitos/citología , Western Blotting , Citocinas/fisiología , VIH-1/fisiología , Humanos , Mediadores de Inflamación/fisiología , Fosforilación
13.
Clin Exp Immunol ; 167(3): 438-46, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22288587

RESUMEN

The immune receptor expressed on myeloid cells 1 (IREM-1/CD300F) has been shown to inhibit various inflammatory processes in myeloid cells, such as macrophages and mast cells. IREM-1 exerts its inhibitory effect through its intracellular immunoreceptor tyrosine-based inhibition motifs (ITIMs). In order to generate immunomodulatory molecules that can regulate the inflammatory activation of macrophages, decapeptides representing each of the five ITIM-like sequences in the cytoplasmic tail of IREM-1 were synthesized in conjugation with human immunodeficiency virus-transactivator of transcription (HIV-TAT(48-57)), which was added to promote internalization of the peptides. Interestingly, all these TAT-ITIM fusion peptides inhibited Toll-like receptor (TLR)-mediated production of proinflammatory molecules, including matrix metalloproteinase (MMP)-9, tumour necrosis factor (TNF)-α, monocyte chemotactic protein-1 (MCP-1) and interleukin (IL)-8. When various TLR ligands were used to stimulate the human macrophage-like cell line human acute monocytic leukaemia cell line (THP)-1, the TAT-ITIM peptides blocked both myeloid differentiation factor 88 (MyD88) and Toll-interleukin 1 receptor (TIR)-domain-containing adapter-inducing interferon-ß (TRIF)-mediated TLR signalling pathways. Utilization of specific inhibitors and detection of the active form of signalling adaptors by Western blot analysis further demonstrated that the inhibitory effects of these TAT-ITIM peptides require activation of Src homology 2 (SH2)-containing tyrosine phosphatase (SHP) and/or phosphoinositide 3-kinase (PI3K). These data indicate that these synthetic peptides may be used to regulate immune responses that involve TLR-mediated inflammatory activation of macrophages.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Inmunológicos/inmunología , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Receptores Toll-Like/inmunología , Secuencia de Aminoácidos , Línea Celular , Humanos , Interleucina-8/biosíntesis , Metaloproteinasa 9 de la Matriz/biosíntesis , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Transducción de Señal/inmunología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/inmunología
14.
Cell Immunol ; 272(1): 39-44, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22000807

RESUMEN

Although recent evidence supports a functional relationship between platelet endothelial cell adhesion molecule (PECAM-1) and Syk tyrosine kinase, little is known about the interaction of Syk with PECAM-1. We report that down-regulation of Syk inhibits the spreading of human THP-1 macrophage cells. Moreover, our data indicate that Syk binds PECAM-1 through its immune tyrosine-based inhibitory motif (ITIM), and dual phosphorylation of the ITIM domain of PECAM-1 leads to activation of Syk. Our results indicate that the distance between the phosphotyrosines could be up to 22 amino acids in length, depending on the conformational flexibility, and that the dual ITIM tyrosine motifs of PECAM-1 facilitate immunoreceptor tyrosine-based activation motif-like signaling. The preferential binding of PECAM-1 to Src homology region 2 domain-containing phosphatase-2 or Syk may depend on their relative affinities, and could provide a mechanism by which signal transduction from PECAM-1 is internally regulated by both positive and negative signaling enzymes.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/inmunología , Macrófagos/metabolismo , Fosfotirosina/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/inmunología , Proteínas Tirosina Quinasas/inmunología , Proteínas Tirosina Fosfatasas con Dominio SH2/inmunología , Transducción de Señal/inmunología , Dominios Homologos src/inmunología , Secuencias de Aminoácidos , Sitios de Unión , Línea Celular , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Silenciador del Gen/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Datos de Secuencia Molecular , Péptidos , Fosforilación/efectos de los fármacos , Fosforilación/inmunología , Fosfotirosina/genética , Fosfotirosina/inmunología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Unión Proteica/genética , Unión Proteica/inmunología , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/farmacología , Proteínas Tirosina Fosfatasas con Dominio SH2/genética , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Transducción de Señal/genética , Quinasa Syk , Dominios Homologos src/genética
15.
Circ Res ; 108(6): 664-75, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21293003

RESUMEN

RATIONALE: Grb2-associated binder (Gab) docking proteins, consisting of Gab1, Gab2, and Gab3, have crucial roles in growth factor-dependent signaling. Various proangiogenic growth factors regulate angiogenesis and endothelial function. However, the roles of Gab proteins in angiogenesis remain elusive. OBJECTIVE: To elucidate the role of Gab proteins in postnatal angiogenesis. METHODS AND RESULTS: Endothelium-specific Gab1 knockout (Gab1ECKO) mice were viable and showed no obvious defects in vascular development. Therefore, we analyzed a hindlimb ischemia (HLI) model of control, Gab1ECKO, or conventional Gab2 knockout (Gab2KO) mice. Intriguingly, impaired blood flow recovery and necrosis in the operated limb was observed in all of Gab1ECKO, but not in control or Gab2KO mice. Among several proangiogenic growth factors, hepatocyte growth factor (HGF) induced the most prominent tyrosine phosphorylation of Gab1 and subsequent complex formation of Gab1 with SHP2 (Src homology-2-containing protein tyrosine phosphatase 2) and phosphatidylinositol 3-kinase subunit p85 in human endothelial cells (ECs). Gab1-SHP2 complex was required for HGF-induced migration and proliferation of ECs via extracellular signal-regulated kinase (ERK)1/2 pathway and for HGF-induced stabilization of ECs via ERK5. In contrast, Gab1-p85 complex regulated activation of AKT and contributed partially to migration of ECs after HGF stimulation. Microarray analysis demonstrated that HGF upregulated angiogenesis-related genes such as KLF2 (Krüppel-like factor 2) and Egr1 (early growth response 1) via Gab1-SHP2 complex in human ECs. In Gab1ECKO mice, gene transfer of vascular endothelial growth factor, but not HGF, improved blood flow recovery and ameliorated limb necrosis after HLI. CONCLUSION: Gab1 is essential for postnatal angiogenesis after ischemia via HGF/c-Met signaling.


Asunto(s)
Animales Recién Nacidos , Proteínas Portadoras/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Miembro Posterior/irrigación sanguínea , Isquemia/complicaciones , Neovascularización Patológica/etiología , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Arterias/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neovascularización Patológica/fisiopatología , Fosfoproteínas/deficiencia , Fosforilación/efectos de los fármacos , Flujo Sanguíneo Regional , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Tirosina/metabolismo
16.
Cell Signal ; 23(5): 893-900, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21262349

RESUMEN

B cells require signals transduced by the B cell antigen receptor (BCR) to provide humoral adaptive immunity. These signals are modulated by co-receptors like the Fcγ receptor IIb (FcγRIIb) that prevents activation of B cells after co-ligation with the BCR. Positive and negative effectors need to be precisely organized into signaling complexes, which requires adapter proteins like the growth factor receptor-bound protein 2 (Grb2). Here, we address the question how Grb2-mediated signal integration is affected by FcγRIIb. Our data reveal that concomitant engagement of BCR and FcγRIIb leads to markedly increased Grb2-mediated formation of ternary protein complexes comprising downstream of kinase-3 (Dok-3), Grb2, and the SH2 domain-containing inositol phosphatase (SHIP). Consistently, we found Grb2 to be required for full FcγRIIb-mediated negative regulation. To investigate how FcγRIIb influences the entire Grb2 interactions, we utilized quantitative mass spectrometry to make a differential interactome analysis. This approach revealed a shift of Grb2 interactions towards negative regulators like Dok-3, SHIP and SHP-2 and reduced binding to other proteins like CD19. Hence, we provide evidence that Grb2-mediated signal integration is a dynamic process that is important for the crosstalk between the BCR and its co-receptor FcγRIIb.


Asunto(s)
Linfocitos B/metabolismo , Proteína Adaptadora GRB2/metabolismo , Receptores de IgG/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Linfocitos B/inmunología , Calcio/metabolismo , Espectrometría de Masas , Ratones , Modelos Biológicos , Unión Proteica , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo
17.
Mol Cell Biochem ; 335(1-2): 195-202, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19763791

RESUMEN

CoA Synthase (CoASy, 4'-phosphopantetheine adenylyltransferase/dephospho-CoA kinase) mediates two final stages of de novo coenzyme A (CoA) biosynthesis in higher eukaryotes. Unfortunately very little is known about regulation of this important metabolic pathway. In this study, we demonstrate that CoASy interacts in vitro with Src homology-2 (SH2) domains of a number of signaling proteins, including Src homology-2 domains containing protein tyrosine phosphatase (Shp2PTP). Complexes between CoASy and Shp2PTP exist in vivo in mammalian cells and this interaction is regulated in a growth-factor-dependent manner. We have also demonstrated that endogenous CoASy is phosphorylated on tyrosine residues in vivo, and that cytoplasmic protein tyrosine kinases can mediate this phosphorylation in vitro and in vivo. Importantly, Shp2PTP-mediated CoASy in vitro dephosphorylation leads to an increase in CoASy enzymatic phosphopantetheine adenylyltransferase (PPAT) activity. We therefore argue that CoASy is a novel potential substrate of Shp2PTP and phosphorylation of CoASy at tyrosine residue(s) could represent unrecognized before mechanism of modulation intracellular CoA level in response to hormonal and (or) other extracellular stimuli.


Asunto(s)
Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Transferasas/metabolismo , Tirosina/metabolismo , Células Cultivadas , Humanos , Fosforilación
18.
Biochemistry ; 48(6): 1399-409, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19166311

RESUMEN

Protein tyrosine phosphatases (PTPs) are known to be regulated by phosphorylation, localization, and protein-protein interactions. More recently, redox-dependent inactivation has emerged as a critical factor in attenuating PTP activity in response to cellular stimuli. The tandem Src homology 2 domain-containing PTPs (SHPs) belong to the family of nonreceptor PTPs whose activity can be modulated by reversible oxidation in vivo. Herein we have investigated in vitro the kinetic and mechanistic details of reversible oxidation of SHP-1 and SHP-2. We have confirmed the susceptibility of the active site cysteines of SHPs to oxidative inactivation, with rate constants for oxidation similar to other PTPs (2-10 M(-1) s(-1)). Both SHP-1 and SHP-2 can be reduced and reactivated with the reductants DTT and gluthathione, whereas only the catalytic domain of SHP-2 is subject to reactivation by thioredoxin. Stabilization of the reversible oxidation state of the SHPs proceeds via a novel mechanism unlike for other PTPs wherein oxidation yields either a disulfide between the catalytic cysteine and a nearby "backdoor" cysteine or a sulfenylamide bond with the amide backbone nitrogen of the adjacent amino acid. Instead, in the reversibly oxidized and inactivated SHPs, the catalytic cysteine is rereduced while two conserved backdoor cysteines form an intramolecular disulfide. Formation of this backdoor-backdoor disulfide is dependent on the presence of the active site cysteine and can proceed via either active site cysteine-backdoor cysteine intermediate. Removal of both backdoor cysteines leads to irreversible oxidative inactivation, demonstrating that these two cysteines are necessary and sufficient for ensuring reversible oxidation of the SHPs. Our results extend the mechanisms by which redox regulation of PTPs is used to modulate intracellular signaling pathways.


Asunto(s)
Cisteína/metabolismo , Proteínas Tirosina Fosfatasas con Dominio SH2/química , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Disulfuros/metabolismo , Ditiotreitol/farmacología , Activación Enzimática/efectos de los fármacos , Glutatión/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Cinética , Mutagénesis/efectos de los fármacos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Factores de Tiempo
19.
Cell Cycle ; 7(24): 3858-68, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19066472

RESUMEN

Tyrosine phosphorylation of the cell cycle regulator p27(Kip1) plays a crucial role in its binding to cyclin dependent kinases and its subcellular localization. While Src and Bcr-Abl were shown to be responsible for tyrosine phosphorylation, no data are available on the dephosphorylation of p27(Kip1) and the phosphatase involved. Considering the associated dephosphorylation as a pivotal event in the regulation of cell cycle proteins, we focused on the tyrosine phosphatase SHP-2, which is regulated in promyelocytic leukemia cells on G-CSF stimulation. SHP-2 was thus found in association with p27(Kip1) and the G-CSF receptor, and we observed a nuclear translocation of SHP-2 on G-CSF stimulation. Using a catalytically inactive form of SHP-2 and siRNA directed against SHP-2, we could demonstrate the involvement of SHP-2 in tyrosine dephosphorylation of p27(Kip1). Moreover, SHP-2 was strongly activated on G-CSF stimulation and specifically dephosphorylated p27(Kip1) in vitro. Most importantly, we could illustrate that SHP-2 modulates p27(Kip1) stability and contributes to p27(Kip1)-mediated cell cycle progression. Taken together, our results demonstrate that SHP-2 is a key regulator of p27(Kip1) tyrosine phosphorylation.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Línea Celular , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Humanos , Fosforilación , ARN Interferente Pequeño , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo
20.
Endothelium ; 15(3): 127-36, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18568953

RESUMEN

Protein-zero related (PZR) is an immunoglobulin V (IgV)-type immunoreceptor with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PZR interacts with Src homology 2 domain-containing tyrosine phosphatase (SHP-2) via its tyrosine-phosphorylated ITIMs, for which c-Src is a putative kinase. Towards elucidating PZR function in endothelial cells (ECs), the authors cloned PZR from bovine aortic endothelial cells (BAECs) and characterized it. Mature bovine PZR had 94.8% and 92.7% sequence identity with canine and human proteins, respectively, and the two ITIM sequences were conserved among higher vertebrates. PZR was expressed in many cell types and was localized to cell contacts and intracellular granules in BAECs and mesothelioma (REN) cells. Coimmunoprecipitation revealed that PZR, Grb-2-associated binder-1 (Gab1), and platelet endothelial cell adhesion molecule-1 (PECAM-1) were three major SHP-2-binding proteins in BAECs. H(2)O(2) enhanced PZR tyrosine phosphorylation and PZR/SHP-2 interaction in ECs in a dose-and time-dependent manner. To see if tyrosine kinases other than Src are also capable of phosphorylating PZR, the authors cotransfected HEK293 cells with PZR and one of several tyrosine kinases and found that c-Src, c-Fyn, c-Lyn, Csk, and c-Abl, but not c-Fes, phosphorylated PZR and increased PZR/SHP-2 interaction. These results suggest that PZR is a cell adhesion protein that may be involved in SHP-2-dependent signaling at interendothelial cell contacts.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Secuencias de Aminoácidos , Animales , Aorta/citología , Encéfalo/irrigación sanguínea , Capilares/citología , Proteínas Portadoras/química , Bovinos , Técnicas de Cultivo de Célula , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Pollos , Secuencia Conservada , Perros , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Endotelio Vascular/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Riñón/citología , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Filogenia , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas con Dominio SH2/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Transfección , Tirosina/metabolismo , Venas Umbilicales/citología , Venas/citología , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...