Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 532(7): e25660, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039998

RESUMEN

Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.


Asunto(s)
Conducta Animal , Enfermedad de Lafora , Ratones Noqueados , Ubiquitina-Proteína Ligasas , Animales , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Ratones , Conducta Animal/fisiología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Encéfalo/metabolismo , Encéfalo/patología
2.
Biochem Biophys Res Commun ; 550: 62-69, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33684622

RESUMEN

Diabetic nephropathy (DN) is a common complication of diabetes, and a leading cause of end-stage renal disease. However, the pathogenesis that contributes to DKD is still not fully understood. Protein tyrosine phosphatase non-receptor type 14 (PTPN14), a non receptor tyrosine phosphatase, has numerous cellular events, such as inflammation and cell death. But its potential on DKD has not been investigated yet. In this study, we found that PTPN14 expression was markedly up-regulated in kidney samples of DKD patients, which were confirmed in diabetic mice and were clearly localized in glomeruli. The diabetic mouse model was established using streptozotocin (STZ) in wild type (WT) or PTPN knockout (KO) mice. After, STZ challenge, STZ mice displayed improved kidney functions. The results also showed that STZ-induced histological changes and podocyte injury in renal tissues, which were effectively alleviated by PTPN14 deletion. Moreover, PTPN14 deficiency significantly mitigated inflammatory response and fibrosis in glomeruli of STZ-challenged mice through restraining the activation of nuclear factor-κB (NF-κB) and transforming growth factor (TGF)-ß1 signaling pathways, respectively. The inhibitory effects of PTPN14 suppression on inflammation and fibrosis were confirmed in high glucose (HG)-incubated podocytes. We further found that thyroid receptor interactor protein 6 (TRIP6) expression was dramatically up-regulated in glomeruli of STZ-challenged mice, and was abolished by PTPN14 deletion, which was confirmed in HG-treated podocytes with PTPN14 knockdown. Intriguingly, our in vitro studies showed that PTPN14 directly interacted with TRIP6. Of note, over-expressing TRIP6 markedly abrogated the effects of PTPN14 silence to restrict inflammatory response and fibrosis in HG-incubated podocytes. Taken together, our findings demonstrated that targeting PTPN14 may provide feasible therapies for DKD treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Nefropatías Diabéticas/metabolismo , Fibrosis/prevención & control , Inflamación/prevención & control , Proteínas con Dominio LIM/metabolismo , Podocitos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Factores de Transcripción/metabolismo , Animales , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Humanos , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Podocitos/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
3.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411917

RESUMEN

Receptor degradation terminates signaling by activated receptor tyrosine kinases. Degradation of EGFR occurs in lysosomes and requires the switching of RAB5 for RAB7 on late endosomes to enable their fusion with the lysosome, but what controls this critical switching is poorly understood. We show that the tyrosine kinase FER alters PKCδ function by phosphorylating it on Y374, and that phospho-Y374-PKCδ prevents RAB5 release from nascent late endosomes, thereby inhibiting EGFR degradation and promoting the recycling of endosomal EGFR to the cell surface. The rapid association of phospho-Y374-PKCδ with EGFR-containing endosomes is diminished by PTPN14, which dephosphorylates phospho-Y374-PKCδ. In triple-negative breast cancer cells, the FER-dependent phosphorylation of PKCδ enhances EGFR signaling and promotes anchorage-independent cell growth. Importantly, increased Y374-PKCδ phosphorylation correlating with arrested late endosome maturation was identified in ∼25% of triple-negative breast cancer patients, suggesting that dysregulation of this pathway may contribute to their pathology.


Asunto(s)
Endocitosis , Proteína Quinasa C-delta/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteolisis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Mitógenos/farmacología , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Ubiquitinación/efectos de los fármacos , Proteínas de Unión al GTP rab/metabolismo
4.
Mol Neurobiol ; 58(3): 1088-1101, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33094475

RESUMEN

Lafora disease (LD) is one of the progressive and fatal forms of a neurodegenerative disorder and is characterized by teenage-onset myoclonic seizures. Neuropathological changes in LD include the formation of abnormal glycogen as Lafora bodies, gliosis, and neuroinflammation. LD is caused by defects in the gene coding for phosphatase (laforin) or ubiquitin ligase (malin). Mouse models of LD, developed by targeted disruption of these two genes, develop most symptoms of LD and show increased susceptibility to induced seizures. Studies on mouse models also suggest that defective autophagy might contribute to LD etiology. In an attempt to understand the specific role of autophagy in LD pathogenesis, in this study, we fed LD animals with trehalose, an inducer of autophagy, for 3 months and looked at its effect on the neuropathology and seizure susceptibility. We demonstrate here that trehalose ameliorates gliosis, neuroinflammation, and endoplasmic reticulum stress and reduces susceptibility to induced seizures in LD animals. However, trehalose did not affect the formation of Lafora bodies, suggesting the epileptic phenotype in LD could be either secondary to or independent of Lafora bodies. Taken together, our results suggest that autophagy inducers can be considered as potential therapeutic molecules for Lafora disease.


Asunto(s)
Encéfalo/patología , Estrés del Retículo Endoplásmico , Inflamación/patología , Enfermedad de Lafora/complicaciones , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Trehalosa/uso terapéutico , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/complicaciones , Gliosis/patología , Glucanos/metabolismo , Inflamación/complicaciones , Enfermedad de Lafora/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pentilenotetrazol , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Convulsiones/genética , Trehalosa/farmacología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo
5.
J Comp Neurol ; 529(6): 1099-1120, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32785985

RESUMEN

Lafora disease (LD) is a genetic and fatal form of neurodegenerative disorder characterized by myoclonic epilepsy and cognitive deficits. LD is caused by loss-of-function mutations in the EPM2A or the NHLRC1 gene. A major hallmark of LD is the presence of abnormal glycogen aggregates in neurons and other tissues. Functional studies on the genes have, therefore, mostly focused on glycogen metabolism. The physiological basis of cognitive deficits in LD is thus largely unexplored. Alterations in dendritic spine morphology are known in neurodevelopmental and neuropsychiatric disorders. We, therefore, analyzed the dendritic spine morphologies in pyramidal neurons of the hippocampal and Cortical layer V of the Epm2a or Nhlrc1 knockout mice brain. We found a significant increase in the density, length, and reduction in the width of the dendritic spines in Postnatal day 21 to 12-month-old LD animals. Similar observations were made in the primary cultures of neurons derived from the hippocampi of the embryonic brain, suggesting that the aberrant spine phenotype could be a developmental defect in LD. We also looked at the cognitive and behavioral deficits as a possible readout of the spine abnormalities. The LD animals exhibited hyperactivity, reduced anxiety-like behavior, and deficits in the spatial and nonspatial memory. Such abnormalities were seen in the younger (1-2 months) as well as the older (7-8 months) age groups. Taken together, our results suggest that the dendritic spine abnormalities are primary developmental defects in the LD model and these defects might underlie some of the symptoms, including cognitive deficits, in LD.


Asunto(s)
Corteza Cerebral/patología , Disfunción Cognitiva/patología , Espinas Dendríticas/patología , Hipocampo/patología , Enfermedad de Lafora/patología , Memoria/fisiología , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Femenino , Hipocampo/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Masculino , Ratones , Ratones Noqueados , Embarazo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
6.
J Biol Chem ; 296: 100150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277363

RESUMEN

Malstructured glycogen accumulates over time in Lafora disease (LD) and precipitates into Lafora bodies (LBs), leading to neurodegeneration and intractable fatal epilepsy. Constitutive reduction of glycogen synthase-1 (GYS1) activity prevents murine LD, but the effect of GYS1 reduction later in disease course is unknown. Our goal was to knock out Gys1 in laforin (Epm2a)-deficient LD mice after disease onset to determine whether LD can be halted in midcourse, or even reversed. We generated Epm2a-deficient LD mice with tamoxifen-inducible Cre-mediated Gys1 knockout. Tamoxifen was administered at 4 months and disease progression assessed at 12 months. We verified successful knockout at mRNA and protein levels using droplet digital PCR and Western blots. Glycogen determination and periodic acid-Schiff-diastase staining were used to analyze glycogen and LB accumulation. Immunohistochemistry using astrocytic (glial fibrillary acidic protein) and microglial (ionized calcium-binding adapter molecule 1) markers was performed to investigate neuroinflammation. In the disease-relevant organ, the brain, Gys1 mRNA levels were reduced by 85% and GYS1 protein depleted. Glycogen accumulation was halted at the 4-month level, while LB formation and neuroinflammation were significantly, though incompletely, prevented. Skeletal muscle analysis confirmed that Gys1 knockout inhibits glycogen and LB accumulation. However, tamoxifen-independent Cre recombination precluded determination of disease halting or reversal in this tissue. Our study shows that Gys1 knockdown is a powerful means to prevent LD progression, but this approach did not reduce brain glycogen or LBs to levels below those at the time of intervention. These data suggest that endogenous mechanisms to clear brain LBs are absent or, possibly, compromised in laforin-deficient murine LD.


Asunto(s)
Gliosis/prevención & control , Glucógeno Sintasa/fisiología , Inflamación/prevención & control , Enfermedad de Lafora/patología , Músculo Esquelético/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Animales , Femenino , Gliosis/metabolismo , Gliosis/patología , Inflamación/metabolismo , Inflamación/patología , Enfermedad de Lafora/tratamiento farmacológico , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación , Tamoxifeno/administración & dosificación
7.
Clin Exp Pharmacol Physiol ; 46(8): 734-742, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31034093

RESUMEN

Endometrial cancer is one of the chief culprits threatening women's lives. Although numerous epidemiological experiments have been carried out into the aetiology of endometrial cancer, the cause of the disease has been unclear up to now. In recent years, PTPN18, a member of the protein tyrosine phosphatases (PTP) family predicted to be tumour suppressors or oncogenes, has been confirmed to participate in the occurrence and progression of many cancers. Few studies, however, have explained the role in the endometrial cancer. So, it caught our attention to explore if PTPN18 participates in and plays a regulatory role in the proliferation, apoptosis, and metastasis of endometrial cancer. In our results, we found that PTPN18 was overexpressed in endometrial cancer tissue compared to paracancerous tissue by immunohistochemistry. Not only that, silencing of PTPN18 in endometrial cancer cell lines (HEC-1-A and HEC-1-B) can significantly impair proliferation detected by CCK8 assay and flow cytometry (FCM) analyses and inhibit the metastasis of endometrial cancer cells shown by the scratch test and the Transwell experiment. PTPN18 knockdown can promote the apoptosis of endometrial cancer. In addition, nude mice tumour formation assay confirmed the results in vivo. Although the exact function of PTPN18 in endometrial cancer is unclear, the targeted therapy drugs enhancing PTPN18 may be considered in the future treatment of endometrial carcinoma.


Asunto(s)
Apoptosis , Regulación hacia Abajo , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Neoplasias Endometriales/genética , Femenino , Silenciador del Gen , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/genética
8.
Cell Stem Cell ; 24(4): 608-620.e6, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30880025

RESUMEN

Hematopoietic stem cell (HSC) quiescence is a tightly regulated process crucial for hematopoietic regeneration, which requires a healthy and supportive microenvironmental niche within the bone marrow (BM). Here, we show that deletion of Ptpn21, a protein tyrosine phosphatase highly expressed in HSCs, induces stem cell egress from the niche due to impaired retention within the BM. Ptpn21-/- HSCs exhibit enhanced mobility, decreased quiescence, increased apoptosis, and defective reconstitution capacity. Ptpn21 deletion also decreased HSC stiffness and increased physical deformability, in part by dephosphorylating Spetin1 (Tyr246), a poorly described component of the cytoskeleton. Elevated phosphorylation of Spetin1 in Ptpn21-/- cells impaired cytoskeletal remodeling, contributed to cortical instability, and decreased cell rigidity. Collectively, these findings show that Ptpn21 maintains cellular mechanics, which is correlated with its important functions in HSC niche retention and preservation of hematopoietic regeneration capacity.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Septinas/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Nicho de Células Madre
9.
Rev Neurol ; 68(2): 66-74, 2019 Jan 16.
Artículo en Español | MEDLINE | ID: mdl-30638256

RESUMEN

INTRODUCTION: Lafora disease is autosomal recessive progressive myoclonus epilepsy with late childhood-to teenage-onset caused by loss-of-function mutations in either EPM2A or EPM2B genes encoding laforin or malin, respectively. DEVELOPMENT: The main symptoms of Lafora disease, which worsen progressively, are: myoclonus, occipital seizures, generalized tonic-clonic seizures, cognitive decline, neuropsychiatric syptoms and ataxia with a fatal outcome. Pathologically, Lafora disease is characterized by the presence of polyglucosans deposits (named Lafora bodies), in the brain, liver, muscle and sweat glands. Diagnosis of Lafora disease is made through clinical, electrophysiological, histological and genetic findings. Currently, there is no treatment to cure or prevent the development of the disease. Traditionally, antiepileptic drugs are used for the management of myoclonus and seizures. However, patients become drug-resistant after the initial stage. CONCLUSIONS: Lafora disease is a rare pathology that has serious consequences for patients and their caregivers despite its low prevalence. Therefore, continuing research in order to clarify the underlying mechanisms and hopefully developing new palliative and curative treatments for the disease is necessary.


TITLE: Enfermedad de Lafora: revision de la bibliografia.Introduccion. La enfermedad de Lafora es una forma de epilepsia mioclonica progresiva de herencia autosomica recesiva, de inicio en la infancia tardia o en la adolescencia, y producida por mutaciones de perdida de funcion en los genes EPM2A o EPM2B, los cuales codifican para las proteinas laforina y malina, respectivamente. Desarrollo. Los principales sintomas de la enfermedad, que empeoran progresivamente, son mioclonias, crisis occipitales, crisis tonicoclonicas generalizadas, deterioro cognitivo, sintomas neuropsiquiatricos y ataxia. El curso es progresivo y fatal. Patologicamente, se caracteriza por la presencia de depositos de poliglucosanos (denominados cuerpos de Lafora) en el cerebro, el higado, el musculo y las glandulas sudoriparas. El diagnostico de enfermedad de Lafora se realiza mediante hallazgos clinicos, electrofisiologicos, histologicos y geneticos. En la actualidad no existe un tratamiento que erradique o prevenga su desarrollo. Tradicionalmente, se utilizan farmacos antiepilepticos para el tratamiento de las mioclonias y las convulsiones, aunque aparecen resistencias a estas. Conclusiones. La enfermedad de Lafora es una patologia rara que, pese a su baja prevalencia, supone graves consecuencias para los pacientes y sus cuidadores. Asi pues, resulta necesario continuar la investigacion para clarificar los mecanismos subyacentes y desarrollar nuevos tratamientos paliativos y curativos de la enfermedad.


Asunto(s)
Enfermedad de Lafora , Animales , Anticonvulsivantes/uso terapéutico , Encéfalo/patología , Terapia Combinada , Progresión de la Enfermedad , Resistencia a Medicamentos , Glucanos/análisis , Humanos , Cuerpos de Inclusión/patología , Enfermedad de Lafora/diagnóstico , Enfermedad de Lafora/epidemiología , Enfermedad de Lafora/genética , Enfermedad de Lafora/terapia , Ratones , Ratones Noqueados , Cuidados Paliativos , Procesamiento Proteico-Postraduccional/genética , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Psicoterapia , Apoyo Social , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Estimulación del Nervio Vago
10.
Mol Neurobiol ; 56(6): 4322-4345, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30315478

RESUMEN

Glaucomatous neurodegeneration represents one of the major causes of irreversible blindness worldwide. Yet, the detailed molecular mechanisms that initiate optic nerve damage and retinal ganglion cell (RGC) loss are not fully understood. Members of the protein tyrosine phosphatase (PTP) superfamily are key players in numerous neurodegenerative diseases. In order to investigate the potential functional relevance of the PTP megakaryocyte 2 (Meg2) in retinal neurodegeneration, we analyzed Meg2 knockout (KO) and heterozygous (HET)-synonym protein-tyrosine phosphatase non-receptor type 9 (Ptpn9)-mice. Interestingly, via global microarray and quantitative real-time PCR (RT-qPCR) analyses of Meg2 KO and HET retinae, we observed a dysregulation of several candidate genes that are highly associated with retinal degeneration and intraocular pressure (IOP) elevation, the main risk factor for glaucoma. Subsequent IOP measurements in Meg2 HET mice verified progressive age-dependent IOP elevation. Ultrastructural analyses and immunohistochemistry showed severe optic nerve degeneration accompanied by a dramatic loss of RGCs. Additionally, HET mice displayed reactive micro-/macrogliosis and early activation of the classical complement cascade with pronounced deposition of the membrane attack complex (MAC) in the retina and optic nerve. When treated with latanoprost, significant IOP lowering prevented RGC loss and microglial invasion in HET mice. Finally, electroretinogram (ERG) recordings revealed reduced a- and b-wave amplitudes, indicating impaired retinal functionality in Meg2 HET mice. Collectively, our findings indicate that the heterozygous loss of Meg2 in mice is sufficient to cause IOP elevation and glaucomatous neurodegeneration. Thus, Meg2 HET mice may serve as a novel animal model to study the pathomechanism involved in the onset and progression of glaucoma.


Asunto(s)
Progresión de la Enfermedad , Glaucoma/complicaciones , Glaucoma/fisiopatología , Presión Intraocular , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Degeneración Retiniana/complicaciones , Degeneración Retiniana/fisiopatología , Animales , Activación de Complemento/efectos de los fármacos , Regulación hacia Abajo/genética , Glaucoma/genética , Glaucoma/patología , Gliosis/complicaciones , Gliosis/patología , Heterocigoto , Presión Intraocular/efectos de los fármacos , Latanoprost/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Fármacos Neuroprotectores/farmacología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Nervio Óptico/ultraestructura , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Regulación hacia Arriba/genética
11.
Nat Commun ; 9(1): 4849, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451841

RESUMEN

Myotubular myopathy (MTM) is a severe X-linked disease without existing therapies. Here, we show that tamoxifen ameliorates MTM-related histopathological and functional abnormalities in mice, and nearly doubles survival. The beneficial effects of tamoxifen are mediated primarily via estrogen receptor signaling, as demonstrated through in vitro studies and in vivo phenotypic rescue with estradiol. RNA sequencing and protein expression analyses revealed that rescue is mediated in part through post-transcriptional reduction of dynamin-2, a known MTM modifier. These findings demonstrate an unexpected ability of tamoxifen to improve the murine MTM phenotype, providing preclinical evidence to support clinical translation.


Asunto(s)
Dinamina II/genética , Músculo Esquelético/efectos de los fármacos , Miopatías Estructurales Congénitas/tratamiento farmacológico , Sustancias Protectoras/farmacología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Receptores de Estrógenos/genética , Tamoxifeno/farmacología , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Dinamina II/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Acoplamiento Excitación-Contracción/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Longevidad/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Receptores de Estrógenos/metabolismo
12.
Nat Commun ; 9(1): 4848, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451843

RESUMEN

X-linked myotubular myopathy (XLMTM, also known as XLCNM) is a severe congenital muscular disorder due to mutations in the myotubularin gene, MTM1. It is characterized by generalized hypotonia, leading to neonatal death of most patients. No specific treatment exists. Here, we show that tamoxifen, a well-known drug used against breast cancer, rescues the phenotype of Mtm1-deficient mice. Tamoxifen increases lifespan several-fold while improving overall motor function and preventing disease progression including lower limb paralysis. Tamoxifen corrects functional, histological and molecular hallmarks of XLMTM, with improved force output, myonuclei positioning, myofibrillar structure, triad number, and excitation-contraction coupling. Tamoxifen normalizes the expression level of the XLMTM disease modifiers DNM2 and PI3KC2B, likely contributing to the phenotypic rescue. Our findings demonstrate that tamoxifen is a promising candidate for clinical evaluation in XLMTM patients.


Asunto(s)
Actividad Motora/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Miopatías Estructurales Congénitas/tratamiento farmacológico , Sustancias Protectoras/farmacología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Tamoxifeno/farmacología , Animales , Fosfatidilinositol 3-Quinasas Clase II/genética , Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dinamina II/genética , Dinamina II/metabolismo , Estimulación Eléctrica , Acoplamiento Excitación-Contracción/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Genes Letales , Humanos , Longevidad/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia
13.
Neurobiol Dis ; 120: 88-97, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30176350

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by an expansion of a CAG repeat in the huntingtin (htt) gene, which results in an aberrant form of the protein (mhtt). This leads to motor and cognitive deficits associated with corticostriatal and hippocampal alterations. The levels of STriatal-Enriched protein tyrosine Phosphatase (STEP), a neural-specific tyrosine phosphatase that opposes the development of synaptic strengthening, are decreased in the striatum of HD patients and also in R6/1 mice, thereby contributing to the resistance to excitotoxicity described in this HD mouse model. Here, we aimed to analyze whether STEP inactivation plays a role in the pathophysiology of HD by investigating its effect on motor and cognitive impairment in the R6/1 mouse model of HD. We found that genetic deletion of STEP delayed the onset of motor dysfunction and prevented the appearance of cognitive deficits in R6/1 mice. This phenotype was accompanied by an increase in pERK1/2 levels, a delay in the decrease of striatal DARPP-32 levels and a reduction in the size of mhtt aggregates, both in the striatum and CA1 hippocampal region. We also found that acute pharmacological inhibition of STEP with TC-2153 improved cognitive function in R6/1 mice. In conclusion, our results show that deletion of STEP has a beneficial effect on motor coordination and cognition in a mouse model of HD suggesting that STEP inhibition could be a good therapeutic strategy in HD patients.


Asunto(s)
Cognición/fisiología , Modelos Animales de Enfermedad , Enfermedad de Huntington/metabolismo , Destreza Motora/fisiología , Farmacogenética/métodos , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Animales , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Farmacogenética/tendencias , Proteínas Tirosina Fosfatasas no Receptoras/genética
14.
Mol Neurobiol ; 55(10): 8084-8102, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29508281

RESUMEN

The striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase involved in synaptic transmission. The current hypothesis on STEP function holds that it opposes synaptic strengthening by dephosphorylating and inactivating key neuronal proteins involved in synaptic plasticity and intracellular signaling, such as the MAP kinases ERK1/2 and p38, as well as the tyrosine kinase Fyn. Although STEP has a predominant role at the post-synaptic level, it is also expressed in nerve terminals. To better investigate its physiological role at the presynaptic level, we functionally investigated brain synaptosomes and autaptic hippocampal neurons from STEP knockout (KO) mice. Synaptosomes purified from mutant mice were characterized by an increased basal and evoked glutamate release compared with wild-type animals. Under resting conditions, STEP KO synaptosomes displayed increased cytosolic Ca2+ levels accompanied by an enhanced basal activity of Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and hyperphosphorylation of synapsin I at CaMKII sites. Moreover, STEP KO hippocampal neurons exhibit an increase of excitatory synaptic strength attributable to an increased size of the readily releasable pool of synaptic vesicles. These results provide new evidence that STEP plays an important role at nerve terminals in the regulation of Ca2+ homeostasis and neurotransmitter release.


Asunto(s)
Calcio/metabolismo , Ácido Glutámico/metabolismo , Homeostasis , Espacio Intracelular/metabolismo , Neostriado/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Transmisión Sináptica , Animales , Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Citosol/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones Noqueados , Modelos Biológicos , Mutación/genética , Fosforilación , Terminales Presinápticos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Sinapsis/metabolismo , Sinapsinas/metabolismo , Sinaptosomas/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(50): 14432-14437, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911767

RESUMEN

Mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation-contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear. During normal skeletal muscle EC coupling, transverse (t) tubule depolarization triggers sarcoplasmic reticulum (SR) Ca2+ release through ryanodine receptor channels gated by conformational coupling with the t-tubule voltage-sensing dihydropyridine receptors. We report that MTM1 deficiency is associated with a 60% depression of global SR Ca2+ release over the full range of voltage sensitivity of EC coupling. SR Ca2+ release in the diseased fibers is also slower than in normal fibers, or delayed following voltage activation, consistent with the contribution of Ca2+-gated ryanodine receptors to EC coupling. In addition, we found that SR Ca2+ release is spatially heterogeneous within myotubularin-deficient muscle fibers, with focally defective areas recapitulating the global alterations. Importantly, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity rescues the Ca2+ release defects in isolated muscle fibers and increases the lifespan and mobility of XLMTM mice, providing proof of concept for the use of PtdIns 3-kinase inhibitors in myotubular myopathy and suggesting that unbalanced PtdIns 3-kinase activity plays a critical role in the pathological process.


Asunto(s)
Señalización del Calcio/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Androstadienos/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Acoplamiento Excitación-Contracción/efectos de los fármacos , Acoplamiento Excitación-Contracción/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/fisiología , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/fisiopatología , Técnicas de Placa-Clamp , Proteínas Tirosina Fosfatasas no Receptoras/genética , Wortmanina
16.
Nature ; 529(7586): 408-12, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26760201

RESUMEN

Phosphoinositides are a minor class of short-lived membrane phospholipids that serve crucial functions in cell physiology ranging from cell signalling and motility to their role as signposts of compartmental membrane identity. Phosphoinositide 4-phosphates such as phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are concentrated at the plasma membrane, on secretory organelles, and on lysosomes, whereas phosphoinositide 3-phosphates, most notably phosphatidylinositol 3-phosphate (PI(3)P), are a hallmark of the endosomal system. Directional membrane traffic between endosomal and secretory compartments, although inherently complex, therefore requires regulated phosphoinositide conversion. The molecular mechanism underlying this conversion of phosphoinositide identity during cargo exit from endosomes by exocytosis is unknown. Here we report that surface delivery of endosomal cargo requires hydrolysis of PI(3)P by the phosphatidylinositol 3-phosphatase MTM1, an enzyme whose loss of function leads to X-linked centronuclear myopathy (also called myotubular myopathy) in humans. Removal of endosomal PI(3)P by MTM1 is accompanied by phosphatidylinositol 4-kinase-2α (PI4K2α)-dependent generation of PI(4)P and recruitment of the exocyst tethering complex to enable membrane fusion. Our data establish a mechanism for phosphoinositide conversion from PI(3)P to PI(4)P at endosomes en route to the plasma membrane and suggest that defective phosphoinositide conversion at endosomes underlies X-linked centronuclear myopathy caused by mutation of MTM1 in humans.


Asunto(s)
Endosomas/metabolismo , Exocitosis , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Células HeLa , Humanos , Hidrólisis , Fusión de Membrana , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Monoéster Fosfórico Hidrolasas/deficiencia , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
17.
Pain ; 157(2): 377-386, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26270590

RESUMEN

The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception.


Asunto(s)
Nocicepción/fisiología , Umbral del Dolor/efectos de los fármacos , Dolor/patología , Dolor/fisiopatología , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Animales , Benzotiepinas/farmacología , Benzotiepinas/uso terapéutico , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/patología , Inflamación/inducido químicamente , Inflamación/complicaciones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/fisiología , Nocicepción/efectos de los fármacos , Dolor/etiología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal
18.
PLoS One ; 10(5): e0127408, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25992601

RESUMEN

The STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific phosphatase whose dysregulation in expression and/or activity is associated with several neuropsychiatric disorders. We recently showed that long-term excessive consumption of ethanol induces a sustained inhibition of STEP activity in the dorsomedial striatum (DMS) of mice. We further showed that down-regulation of STEP expression in the DMS, and not in the adjacent dorsolateral striatum, increases ethanol intake, suggesting that the inactivation of STEP in the DMS contributes to the development of ethanol drinking behaviors. Here, we compared the consequence of global deletion of the STEP gene on voluntary ethanol intake to the consumption of an appetitive rewarding substance (saccharin) or an aversive solution (quinine or denatonium). Whereas saccharin intake was similar in STEP knockout (KO) and wild type (WT) littermate mice, the consumption of ethanol as well as quinine and denatonium was increased in STEP KO mice. These results suggested that the aversive taste of these substances was masked upon deletion of the STEP gene. We therefore hypothesized that STEP contributes to the physiological avoidance towards aversive stimuli. To further test this hypothesis, we measured the responses of STEP KO and WT mice to lithium-induced conditioned place aversion (CPA) and found that whereas WT mice developed lithium place aversion, STEP KO mice did not. In contrast, conditioned place preference (CPP) to ethanol was similar in both genotypes. Together, our results indicate that STEP contributes, at least in part, to the protection against the ingestion of aversive agents.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Terapia Aversiva , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Condicionamiento Psicológico , Eliminación de Gen , Cloruro de Litio , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Compuestos de Amonio Cuaternario/farmacología , Quinina/farmacología , Sacarina/farmacología
19.
Methods Enzymol ; 534: 245-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24359958

RESUMEN

The endolysosomal system and autophagy are essential components of macromolecular turnover in eukaryotic cells. The low-abundance signaling lipid PI(3,5)P2 is a key regulator of this pathway. Analysis of mouse models with defects in PI(3,5)P2 biosynthesis has revealed the unique dependence of the mammalian nervous system on this signaling pathway. This insight led to the discovery of the molecular basis for several human neurological disorders, including Charcot-Marie-Tooth disease and Yunis-Varon syndrome. Spontaneous mutants, conditional knockouts, transgenic lines, and gene-trap alleles of Fig4, Vac14, and Pikfyve (Fab1) in the mouse have provided novel information regarding the role of PI(3,5)P2in vivo. This review summarizes what has been learned from mouse models and highlights the utility of manipulating complex signaling pathways in vivo.


Asunto(s)
Flavoproteínas/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Alelos , Animales , Astrocitos/metabolismo , Astrocitos/patología , Modelos Animales de Enfermedad , Femenino , Flavoproteínas/metabolismo , Técnicas de Inactivación de Genes , Neuropatía Hereditaria Motora y Sensorial/metabolismo , Neuropatía Hereditaria Motora y Sensorial/patología , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfoinosítido Fosfatasas , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia
20.
FASEB J ; 27(8): 3384-94, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23695157

RESUMEN

Mutations in the phosphoinositide phosphatase myotubularin (MTM1) results in X-linked myotubular/centronuclear myopathy (XLMTM), characterized by a severe decrease in muscle mass and strength in patients and murine models. However, the molecular mechanism involved in the muscle hypotrophy is unclear. Here we show that the IGF1R/Akt pathway is affected in Mtm1-deficient murine muscles, characterized by an increase in IGF1 receptor and Akt levels in both the presymptomatic and symptomatic phases. Moreover, up-regulation of atrogenes was observed in the presymptomatic phase of the myopathy, supporting overactivation of the ubiquitin-proteasome pathway. In parallel, the autophagy machinery was affected as indicated by the increase in the number of autophagosomes and of autophagy markers, such as LC3 and P62. However, phosphorylation of FOXO3a and mTOR were abnormal at late but not at early stages of the disease, suggesting that myotubularin acts both upstream in the IGF1R/Akt pathway and downstream on the balance between the autophagy and ubiquitin-proteasome pathways in vivo. Adeno-associated virus-mediated delivery of Mtm1 into Mtm1-null muscles rescued muscle mass and normalized the expression levels of IGF1 receptor, the ubiquitin-proteasome pathway, and autophagy markers. These data support the hypothesis that the unbalanced regulation of the ubiquitin proteasome pathway and the autophagy machinery is a primary cause of the XLMTM pathogenesis.


Asunto(s)
Autofagia , Miopatías Estructurales Congénitas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Transducción de Señal , Ubiquitina/metabolismo , Animales , Western Blotting , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Miopatías Estructurales Congénitas/genética , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA