Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.327
Filtrar
1.
Protein Sci ; 33(6): e5004, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723164

RESUMEN

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Femenino , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos
2.
Nat Commun ; 15(1): 3901, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724505

RESUMEN

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Asunto(s)
Citoplasma , Inhibidor NF-kappaB alfa , FN-kappa B , Proteínas Tirosina Quinasas , Factor de Transcripción ReIA , Animales , Fosforilación , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , Ratones , Factor de Transcripción ReIA/metabolismo , Humanos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , FN-kappa B/metabolismo , Citoplasma/metabolismo , Proteolisis , Núcleo Celular/metabolismo , Replicación Viral , Células HEK293 , Transducción de Señal , Ratones Endogámicos C57BL , Citocinas/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Serina-Treonina Quinasas
3.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739166

RESUMEN

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down , Neurogénesis , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/patología , Síndrome de Down/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/genética , Neurogénesis/efectos de los fármacos , Ratones , Femenino , Embarazo , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Quinasas DyrK , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Masculino , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/patología
4.
Mol Biol Rep ; 51(1): 636, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727863

RESUMEN

BACKGROUND: Osteoporosis (OP), characterized by compromised bone integrity and increased fracture risk, poses a significant health challenge. Circular RNAs (circRNAs) have emerged as crucial regulators in various pathophysiological processes, prompting investigation into their role in osteoporosis. This study aimed to elucidate the involvement of circCOX6A1 in OP progression and understand its underlying molecular mechanisms. The primary objective was to explore the impact of circCOX6A1 on bone marrow-derived mesenchymal stem cells (BMSCs) and its potential interactions with miR-512-3p and DYRK2. METHODS: GSE161361 microarray analysis was employed to assess circCOX6A1 expression in OP patients. We utilized in vitro and in vivo models, including BMSC cultures, osteogenic differentiation assays, and an OVX-induced mouse model of OP. Molecular techniques such as quantitative RT-PCR, western blotting, and functional assays like alizarin red staining (ARS) were employed to evaluate circCOX6A1 effects on BMSC proliferation, apoptosis, and osteogenic differentiation. The interaction between circCOX6A1, miR-512-3p, and DYRK2 was investigated through dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. RESULTS: CircCOX6A1 was found to be upregulated in osteoporosis patients, and its expression inversely correlated with osteogenic differentiation of BMSCs. CircCOX6A1 knockdown enhanced osteogenic differentiation, as evidenced by increased mineralized nodule formation and upregulation of osteogenic markers. In vivo, circCOX6A1 knockdown ameliorated osteoporosis progression in OVX mice. Mechanistically, circCOX6A1 acted as a sponge for miR-512-3p, subsequently regulating DYRK2 expression. CONCLUSION: This study provides compelling evidence for the role of circCOX6A1 in osteoporosis pathogenesis. CircCOX6A1 negatively regulates BMSC osteogenic differentiation through the miR-512-3p/DYRK2 axis, suggesting its potential as a therapeutic target for mitigating OP progression.


Asunto(s)
Diferenciación Celular , Quinasas DyrK , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Osteoporosis , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , ARN Circular , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Osteogénesis/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Diferenciación Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Humanos , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Ratones , Células Madre Mesenquimatosas/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Femenino , Proliferación Celular/genética , Modelos Animales de Enfermedad , Apoptosis/genética , Persona de Mediana Edad
6.
J Med Chem ; 67(9): 6922-6937, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38648167

RESUMEN

Tauopathy, neuronal atrophy, and psychological impairments are hallmarks of neurodegenerative diseases, such as Alzheimer's disease, that currently lack efficacious clinical treatments capable of rectifying these issues. To address these unmet needs, we used rational drug design to combine the pharmacophores of DYRK1A inhibitors and isoDMTs to develop psychoplastogenic DYRK1A inhibitors. Using this approach, we discovered a nonhallucinogenic compound capable of promoting cortical neuron growth and suppressing tau hyperphosphorylation while also having the potential to mitigate the biological and psychological symptoms of dementia. Together, our results suggest that hybridization of the DYRK1A and psychoplastogen pharmacophores represents a promising strategy for identifying compounds that might address the cognitive as well as the behavioral and psychological symptoms of dementia.


Asunto(s)
Enfermedad de Alzheimer , Quinasas DyrK , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteínas tau , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Humanos , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inhibidores , Ratones , Fosforilación , Diseño de Fármacos
7.
J Virol ; 98(5): e0034724, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38651897

RESUMEN

Angiotensin converting enzyme 2 (ACE2), the host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is differentially expressed in a wide variety of tissues and cell types. The expression of ACE2 is under tight regulation, but the mechanisms regulating ACE2 expression have not yet been well defined. Through a genome-wide CRISPR knockout screen, we discovered that host factors TRAF3, DYRK1A, and RAD54L2 (TDR) form a complex to regulate the expression of ACE2. Knockout of TRAF3, DYRK1A, or RAD54L2 reduces the mRNA levels of ACE2 and inhibits the cellular entry of SARS-CoV-2. On the other hand, SARS-CoV-2 continuously evolves by genetic mutations for the adaption to the host. We have identified mutations in spike (S) (P1079T) and nucleocapsid (N) (S194L) that enhance the replication of SARS-CoV-2 in cells that express ACE2 at a low level. Our results have revealed the mechanisms for the transcriptional regulation of ACE2 and the adaption of SARS-CoV-2. IMPORTANCE: The expression of ACE2 is essential for the entry of SARS-CoV-2 into host cells. We identify a new complex-the TDR complex-that acts to maintain the abundance of ACE2 in host cells. The identification and characterization of the TDR complex provide new targets for the development of therapeutics against SARS-CoV-2 infection. By analysis of SARS-CoV-2 virus replicating in cells expressing low levels of ACE2, we identified mutations in spike (P1079T) and nucleocapsid (S194L) that overcome the restriction of limited ACE2. Functional analysis of these key amino acids in S and N extends our knowledge of the impact of SARS-CoV-2 variants on virus infection and transmission.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Proteínas Serina-Treonina Quinasas , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , COVID-19/virología , COVID-19/metabolismo , COVID-19/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Internalización del Virus , Células HEK293 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Mutación , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
8.
Eur J Med Chem ; 271: 116409, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38663285

RESUMEN

Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), ß secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aß aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 µM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 µM) along with good anti-Aß aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 µM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aß-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Inhibidores de la Colinesterasa , Diseño de Fármacos , Triazinas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ratas , Relación Estructura-Actividad , Acetilcolinesterasa/metabolismo , Triazinas/química , Triazinas/farmacología , Triazinas/síntesis química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Estructura Molecular , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Quinasas DyrK , Relación Dosis-Respuesta a Droga , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Masculino , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Butirilcolinesterasa/metabolismo
9.
Sci Transl Med ; 16(741): eadj0133, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569018

RESUMEN

Transforming growth factor-ß (TGFß) drives fibrosis and disease progression in a number of chronic disorders, but targeting this ubiquitously expressed cytokine may not yield a viable and safe antifibrotic therapy. Here, we sought to identify alternative ways to inhibit TGFß signaling using human hepatic stellate cells and macrophages from humans and mice in vitro, as well as mouse models of liver, kidney, and lung fibrosis. We identified Mer tyrosine kinase (MERTK) as a TGFß-inducible effector of fibrosis that was up-regulated during fibrosis in multiple organs in three mouse models. We confirmed these findings in liver biopsy samples from patients with metabolic dysfunction-associated fatty liver disease (MAFLD). MERTK also induced TGFß expression and drove TGFß signaling resulting in a positive feedback loop that promoted fibrosis in cultured cells. MERTK regulated both canonical and noncanonical TGFß signaling in both mouse and human cells in vitro. MERTK increased transcription of genes regulating fibrosis by modulating chromatin accessibility and RNA polymerase II activity. In each of the three mouse models, disrupting the fibrosis-promoting signaling loop by reducing MERTK expression reduced organ fibrosis. Pharmacological inhibition of MERTK reduced fibrosis in these mouse models either when initiated immediately after injury or when initiated after fibrosis was established. Together, these data suggest that MERTK plays a role in modulating organ fibrosis and may be a potential target for treating fibrotic diseases.


Asunto(s)
Hígado , Proteínas Tirosina Quinasas , Animales , Humanos , Ratones , Tirosina Quinasa c-Mer/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Hígado/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
10.
Elife ; 122024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588001

RESUMEN

Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.


Asunto(s)
Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas c-abl , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/metabolismo , Modelos Moleculares , Proteínas Tirosina Quinasas/metabolismo , Dominios Homologos src , Mesilato de Imatinib/farmacología
11.
Dev Biol ; 511: 63-75, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38621649

RESUMEN

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Asunto(s)
Quinasas DyrK , Regulación del Desarrollo de la Expresión Génica , Cresta Neural , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteínas de Xenopus , Xenopus laevis , Animales , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Transducción de Señal , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/metabolismo , Región Branquial/embriología , Región Branquial/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/embriología
12.
Mol Med Rep ; 29(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639190

RESUMEN

Traumatic Brain Injury (TBI) represents a significant public health challenge. Recovery from brain injury necessitates the collaborative efforts of various resident neural cells, predominantly microglia. The present study analyzed rat and mouse RNA expression micro­arrays, high­throughput RNA sequencing and single­cell sequencing data sourced from public databases. To construct an inflammation regulation network around TYRO protein tyrosine kinase­binding protein (TYROBP), to evaluate the role of TYROBP in cell death after TBI. These findings indicate that following TBI, neurons predominantly communicate with one another through the CXC chemokine ligand (CXCL) and CC chemokine ligand (CCL) signaling pathways, employing a paracrine mechanism to activate microglia. These activated microglia intensify the pathological progression of brain injury by releasing factors such as tumor necrosis factor α (TNF­α), vascular endothelial growth factor and transforming growth factor ß via the NF­κB pathway. Cells co­culture experiments demonstrated that neurons, impaired by mechanical injury, interact with microglia through non­contact mechanisms. Activated microglia secrete cytokines, including TNF­α, CXCL­8 and CCL2, which trigger an inflammatory response and facilitate neuronal apoptosis. TYROBP gene knockout in microglia was demonstrated to reduce this interaction and reduce neuronal cell apoptosis rates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Lesiones Traumáticas del Encéfalo , Microglía , Animales , Ratones , Ratas , Apoptosis , Lesiones Traumáticas del Encéfalo/metabolismo , Inflamación/metabolismo , Ligandos , Ratones Endogámicos C57BL , Microglía/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
13.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604522

RESUMEN

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Proteínas Tirosina Quinasas , Receptores Androgénicos , Factores de Empalme Serina-Arginina , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Fase G2/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fosforilación , Proliferación Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética
14.
J Chem Inf Model ; 64(8): 3488-3502, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38546820

RESUMEN

Covalent inhibitors represent a promising class of therapeutic compounds. Nonetheless, rationally designing covalent inhibitors to achieve a right balance between selectivity and reactivity remains extremely challenging. To better understand the covalent binding mechanism, a computational study is carried out using the irreversible covalent inhibitor of Bruton tyrosine kinase (BTK) ibrutinib as an example. A multi-µs classical molecular dynamics trajectory of the unlinked inhibitor is generated to explore the fluctuations of the compound associated with the kinase binding pocket. Then, the reaction pathway leading to the formation of the covalent bond with the cysteine residue at position 481 via a Michael addition is determined using the string method in collective variables on the basis of hybrid quantum mechanical-molecular mechanical (QM/MM) simulations. The reaction pathway shows a strong correlation between the covalent bond formation and the protonation/deprotonation events taking place sequentially in the covalent inhibition reaction, consistent with a 3-step reaction with transient thiolate and enolates intermediate states. Two possible atomistic mechanisms affecting deprotonation/protonation events from the thiolate to the enolate intermediate were observed: a highly correlated direct pathway involving proton transfer to the Cα of the acrylamide warhead from the cysteine involving one or a few water molecules and a more indirect pathway involving a long-lived enolate intermediate state following the escape of the proton to the bulk solution. The results are compared with experiments by simulating the long-time kinetics of the reaction using kinetic modeling.


Asunto(s)
Adenina , Simulación de Dinámica Molecular , Piperidinas , Proteínas Tirosina Quinasas , Adenina/análogos & derivados , Adenina/química , Adenina/farmacología , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/química , Piperidinas/química , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Teoría Cuántica
15.
Biochim Biophys Acta Gen Subj ; 1868(6): 130600, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508285

RESUMEN

OBJECTIVES: Lung cancer is a leading cause of cancer-related mortality and remains one of the most poorly prognosed disease worldwide. Therefore, it is necessary to identify novel molecular markers with potential therapeutic effects. Recent findings have suggested that dual-specificity tyrosine-regulated kinase 2 (DYRK2) plays a tumor suppressive role in colorectal, breast, and hepatic cancers; however, its effect and mechanism in lung cancer remain poorly understood. Therefore, this study aimed to investigate the tumor-suppressive role and molecular mechanism of DYRK2 in lung adenocarcinoma (LUAD) by in vitro experiments and xenograft models. MATERIALS AND METHODS: The evaluation of DYRK2 expression was carried out using lung cancer cell lines and normal bronchial epithelial cells. Overexpression of DYRK2 was induced by an adenovirus vector, and cell proliferation was assessed through MTS assay and Colony Formation Assay. Cell cycle analysis was performed using flow cytometry. Additionally, proliferative capacity was evaluated in a xenograft model by subcutaneously implanting A549 cells into SCID mice (C·B17/Icr-scidjcl-scid/scid). RESULTS: Immunoblotting assays showed that DYRK2 was downregulated in most LUAD cell lines. DYRK2 overexpression using adenovirus vectors significantly suppressed cell proliferation compared with that in the control group. Additionally, DYRK2 overexpression suppressed tumor growth in a murine subcutaneous xenograft model. Mechanistically, DYRK2 overexpression inhibited the proliferation of LUAD cells via p21-mediated G1 arrest, which was contingent on p53. CONCLUSION: Taken together, these findings suggest that DYRK2 may serve as potential prognostic biomarker and therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Proliferación Celular , Quinasas DyrK , Puntos de Control de la Fase G1 del Ciclo Celular , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Animales , Humanos , Ratones , Células A549 , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Ratones SCID , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
PLoS One ; 19(3): e0301084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38530809

RESUMEN

There is an ongoing need for antifungal agents to treat humans. Identification of new antifungal agents can be based on screening compounds using whole cell assays. Screening compounds that target a particular molecule is possible in budding yeast wherein sophisticated strain engineering allows for controlled expression of endogenous or heterologous genes. We have considered the yeast Mps1 protein kinase as a reasonable target for antifungal agents because mutant or druggable forms of the protein, upon inactivation, cause rapid loss of cell viability. Furthermore, extensive analysis of the Mps1 in budding yeast has offered potential tactics for identifying inhibitors of its enzymatic activity. One such tactic is based on the finding that overexpression of Mps1 leads to cell cycle arrest via activation of the spindle assembly checkpoint. We have endeavored to adapt this assay to be based on the overexpression of Mps1 orthologs from pathogenic yeast in hopes of having a whole-cell assay system to test the activity of these orthologs. Mps1 orthologous genes from seven pathogenic yeast or other pathogenic fungal species were isolated and expressed in budding yeast. Two orthologs clearly produced phenotypes similar to those produced by the overexpression of budding yeast Mps1, indicating that this system for heterologous Mps1 expression has potential as a platform for identifying prospective antifungal agents.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Antifúngicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Estudios Prospectivos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo
17.
Blood Adv ; 8(8): 1981-1990, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507738

RESUMEN

ABSTRACT: Bruton's tyrosine kinase (BTK) is an enzyme needed for B-cell survival, and its inhibitors have become potent targeted medicines for the treatment of B-cell malignancies. The initial activation event of cytoplasmic protein-tyrosine kinases is the phosphorylation of a conserved regulatory tyrosine in the catalytic domain, which in BTK is represented by tyrosine 551. In addition, the tyrosine 223 (Y223) residue in the SRC homology 3 (SH3) domain has, for more than 2 decades, generally been considered necessary for full enzymatic activity. The initial recognition of its potential importance stems from transformation assays using nonlymphoid cells. To determine the biological significance of this residue, we generated CRISPR-Cas-mediated knockin mice carrying a tyrosine to phenylalanine substitution (Y223F), maintaining aromaticity and bulkiness while prohibiting phosphorylation. Using a battery of assays to study leukocyte subsets and the morphology of lymphoid organs, as well as the humoral immune responses, we were unable to detect any difference between wild-type mice and the Y223F mutant. Mice resistant to irreversible BTK inhibitors, through a cysteine 481 to serine substitution (C481S), served as an additional immunization control and mounted similar humoral immune responses as Y223F and wild-type animals. Collectively, our findings suggest that phosphorylation of Y223 serves as a useful proxy for phosphorylation of phospholipase Cγ2 (PLCG2), the endogenous substrate of BTK. However, in contrast to a frequently held conception, this posttranslational modification is dispensable for the function of BTK.


Asunto(s)
Proteínas Tirosina Quinasas , Dominios Homologos src , Ratones , Animales , Agammaglobulinemia Tirosina Quinasa , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Tirosina
18.
Sci Rep ; 14(1): 5801, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461201

RESUMEN

Mimicry of receptor functions by designing synthetic receptors would be one of the recently hot research trends in cell engineering. While several types of synthetic receptors have been designed to induce desired cell fates in response to external stimuli, little is known about which receptor type signals more efficiently for inducing a certain cell fate. In this study, we compared the performance of three types of synthetic receptor scaffolds, i.e. myristoylated, cytosolic, and transmembrane types that signal through JAK-dependent phosphorylation of tyrosine motifs to transduce growth signaling. As a result, the phosphorylation levels of JAK and subsequent downstream signaling molecules were significantly maintained in the cytosolic type receptors, leading to more efficient cell growth than the other types. In contrast, the phosphorylation levels of JAK decreased in a motif-dependent manner in the transmembrane type receptors. Although various studies on receptor engineering based on domain or motif engineering have been reported, to our knowledge this study is the first to demonstrate that synthetic receptor scaffolds significantly affect the efficiency of cell fate signals. These findings are important for both receptor biology and receptor engineering, providing guidelines for rationally designing synthetic receptors that can transduce as efficient signaling as possible.


Asunto(s)
Receptores Artificiales , Receptores Artificiales/metabolismo , Transducción de Señal , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Diferenciación Celular
19.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474165

RESUMEN

Cisplatin (CDDP) stands out as an effective chemotherapeutic agent; however, its application is linked to the development of significant adverse effects, notably nephro- and ototoxicity. The human organic cation transporter 2 (hOCT2), found in abundance in the basolateral membrane domain of renal proximal tubules and the Corti organ, plays a crucial role in the initiation of nephro- and ototoxicity associated with CDDP by facilitating its uptake in kidney and ear cells. Given its limited presence in cancer cells, hOCT2 emerges as a potential druggable target for mitigating unwanted toxicities associated with CDDP. Potential strategies for mitigating CDDP toxicities include competing with the uptake of CDDP by hOCT2 or inhibiting hOCT2 activity through rapid regulation mediated by specific signaling pathways. This study investigated the interaction between the already approved cationic drugs disopyramide, imipramine, and orphenadrine with hOCT2 that is stably expressed in human embryonic kidney cells. Regarding disopyramide, its influence on CDDP cellular transport by hOCT2 was further characterized through inductively coupled plasma isotope dilution mass spectrometry. Additionally, its potential protective effects against cellular toxicity induced by CDDP were assessed using a cytotoxicity test. Given that hOCT2 is typically expressed in the basolateral membrane of polarized cells, with specific regulatory mechanisms, this work studied the regulation of hOCT2 that is stably expressed in Madin-Darby Canine Kidney (MDCK) cells. These cells were cultured in a matrix to induce the formation of cysts, exposing hOCT2 in the basolateral plasma membrane domain, which was freely accessible to experimental solutions. The study specifically tested the regulation of ASP+ uptake by hOCT2 in MDCK cysts through the inhibition of casein kinase II (CKII), calmodulin, or p56lck tyrosine kinase. Furthermore, the impact of this manipulation on the cellular toxicity induced by CDDP was examined using a cytotoxicity test. All three drugs-disopyramide, imipramine, and orphenadrine-demonstrated inhibition of ASP+ uptake, with IC50 values in the micromolar (µM) range. Notably, disopyramide produced a significant reduction in the CDDP cellular toxicity and platinum cellular accumulation when co-incubated with CDDP. The activity of hOCT2 in MDCK cysts experienced a significant down-regulation under inhibition of CKII, calmodulin, or p56lck tyrosine kinase. Interestingly, only the inhibition of p56lck tyrosine kinase demonstrated the capability to protect the cells against CDDP toxicity. In conclusion, certain interventions targeting hOCT2 have demonstrated the ability to reduce CDDP cytotoxicity, at least in vitro. Further investigations in in vivo systems are warranted to ascertain their potential applicability as co-treatments for mitigating undesired toxicities associated with CDDP in patients.


Asunto(s)
Quistes , Ototoxicidad , Humanos , Animales , Perros , Transportador 2 de Cátion Orgánico , Proteínas de Transporte de Catión Orgánico/metabolismo , Cisplatino/metabolismo , Disopiramida , Calmodulina/metabolismo , Imipramina , Orfenadrina , Células de Riñón Canino Madin Darby , Proteínas Tirosina Quinasas/metabolismo
20.
Rev Invest Clin ; 76(1): 45-59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38442372

RESUMEN

Background: Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks receptors for targeted therapy. Deeper insight into the molecular mechanisms regulating TNBC metastasis is urgently needed. The epithelial-mesenchymal transition process facilitates the metastasis of neighboring epithelial tumor cells. Protein kinase, membrane-associated tyrosine/threonine 1 (PKMYT1), a member of the Wee family of protein kinases, is upregulated in BC, and its high expression predicts poor prognosis in BC patients. Notch signaling activation is a pathognomonic feature of TNBC. PKMYT1 has been found to induce EMT in non-small cell lung cancer by activating Notch signaling. However, whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling remains unknown. Objectives: The objective of this study was to investigate whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling. Methods: Fifty cases of surgically resected BC samples (tumor and adjacent non-tumor tissue samples) were collected from patients diagnosed with BC. We measured the expression of PKMYT1 in clinical samples with real-time quantitative polymerase chain reaction (RT-qPCR). For in vitro analysis, RT-qPCR and Western blotting were conducted to evaluate PKMYT1 expression in TNBC cells. Then, the viability, migration, and invasion of TNBC cells were detected by cell counting kit-8 assays, wound healing assays, and Transwell assays. The EMT event was examined by evaluating the levels of EMT-associated proteins. For in vivo analysis, xenograft models in nude mice were established to explore PKMYT1 roles. E-cadherin and Ki67 expression in xenograft models were estimated by immunohistochemistry staining. Hematoxylin and eosin staining was performed to assess tumor metastasis. The underlying mechanisms by which PKMYT1 affected the malignant phenotypes of TNBC cells were explored by Western blotting measuring the pathway-associated proteins. Results: PKMYT1 was upregulated in BC tissues and cells, and its knockdown prevented cell proliferation, migration, invasion, and EMT event in TNBC. Mechanistically, Notch signaling was inactivated by PKMYT1 depletion, and Notch activation abolished the PKMYT1 silencing-induced inhibition in the malignant phenotypes of TNBC cells. For in vivo analysis, PKMYT1 knockdown inhibited tumorigenesis and metastasis of TNBC. Conclusion: PKMYT1 promotes EMT, proliferation, migration, and invasion of TNBC cells and facilitates tumor growth and metastasis by activating Notch signaling.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Proteínas de la Membrana/metabolismo , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...