Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 67: 102896, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37783059

RESUMEN

Trastuzumab notably improves the outcome of human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients, however, resistance to trastuzumab remains a major hurdle to clinical treatment. In the present study, we identify a circular RNA intimately linked to trastuzumab resistance. circ-ß-TrCP, derived from the back-splicing of ß-TrCP exon 7 and 13, confers trastuzumab resistance by regulating NRF2-mediated antioxidant pathway in a KEAP1-independent manner. Concretely, circ-ß-TrCP encodes a novel truncated 343-amino acid peptide located in the nucleus, referred as ß-TrCP-343aa, which competitively binds to NRF2, blocks SCFß-TrCP-mediated NRF2 proteasomal degradation, and this protective effect of ß-TrCP-343aa on NRF2 protein requires GSK3 activity. Subsequently, the elevated NRF2 transcriptionally upregulates a cohort of antioxidant genes, giving rise to trastuzumab resistance. Moreover, the translation ability of circ-ß-TrCP is inhibited by eIF3j under both basal and oxidative stress conditions, and eIF3j is transcriptionally repressed by NRF2, thus forming a positive feedback circuit between ß-TrCP-343aa and NRF2, expediting trastuzumab resistance. Collectively, our data demonstrate that circ-ß-TrCP-encoded ß-TrCP protein isoform drives HER2-targeted therapy resistance in a NRF2-dependent manner, which provides potential therapeutic targets for overcoming trastuzumab resistance.


Asunto(s)
Antioxidantes , Neoplasias de la Mama , Humanos , Femenino , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/metabolismo , ARN Circular , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Trastuzumab/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Factor 2 Relacionado con NF-E2/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Isoformas de Proteínas/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral
2.
Mol Cell Biol ; 42(7): e0056321, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35674451

RESUMEN

Nrf2 activates cytoprotective gene expression, and Nrf2 activity is regulated through at least two protein degradation pathways: the Keap1-mediated and ß-TrCP-mediated pathways. To address the relative contributions of these pathways, we generated knock-in mouse lines expressing an Nrf2SA mutant that harbored two substitution mutations of serine residues interacting with ß-TrCP. The homozygous (Nrf2SA/SA) mice grew normally, with Nrf2 levels comparable to those of wild-type (WT) mice under unstressed conditions. However, when Keap1 activity was suppressed, high levels of Nrf2 accumulated in Nrf2SA/SA macrophages compared with that in WT macrophages. We crossed Nrf2SA/SA mice with mice in which Keap1 was knocked down to two different levels. We found that the Nrf2SA/SA mutation induced higher Nrf2 activity when the Keap1 level was strongly reduced, and these mice showed severe growth retardation. However, activation and growth retardation were not evident when Keap1 was moderately suppressed. These increases in Nrf2 activity induced by the Nrf2SA mutation caused severe hyperplasia and hyperkeratosis in the esophageal epithelium but did not cause abnormalities in the other tissues/organs examined. These results indicate that the ß-TrCP-mediated pathway cooperates with the Keap1-mediated pathway to regulate Nrf2 activity, which is apparent when the Keap1-mediated pathway is profoundly suppressed.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Proteínas con Repetición de beta-Transducina , Animales , Trastornos del Crecimiento , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteínas con Repetición de beta-Transducina/química
3.
Int J Biol Macromol ; 190: 233-243, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478796

RESUMEN

F-box protein FBXW8 is known to interact with scaffolding protein Cullin1 and Cullin7 to form SCF (SKP1, Cullin and F-box protein) complex. However, detail understanding about the importance of both Cullins for SCF-FBXW8 complex formation as well as its ubiquitin ligase activity remains elusive. Here, we show that, through in vitro and in vivo studies, Cullin1 and Cullin7 increase each other's binding to FBXW8 synergistically. Interestingly, absence of either Cullin results in abrogation of binding of other Cullin to FBXW8. Binding of SKP1 to FBXW8 also increases in the presence of both the Cullins. Thus, SKP1, Cullin1 and Cullin7 are essential to form Cullin1-SKP1-FBXW8-Cullin7 functional ubiquitin ligase complex. Further, using computational, mutational and biochemical analysis, we found that Cullin1 binds to N-terminus of FBXW8 through SKP1 while Cullin7 associates with C-terminus of FBXW8 to form Cullin1-SKP1-FBXW8-Cullin7 functional complex in a cooperative manner. Results showed that Cullin1-SKP1-FBXW8-Cullin7 complex plays a key role in maintaining the basal level expression of ß-TrCP1. Moreover, Cullin1-SKP1-FBXW8-Cullin7 complex promotes cell migration by activating ß-catenin via directing proteasomal degradation of ß-TrCP1. Overall, our study reveals the intriguing molecular mechanism of assembly of SKP1, Cullin1, Cullin7 and FBXW8 to form Cullin1-SKP1-FBXW8-Cullin7 functional complex that control the function of ß-TrCP1.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas F-Box/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Movimiento Celular , Proteínas Cullin/química , Proteínas F-Box/química , Humanos , Células MCF-7 , Unión Proteica , Estabilidad Proteica , Proteolisis , Proteínas Quinasas Asociadas a Fase-S/química , Especificidad por Sustrato , beta Catenina/metabolismo , Proteínas con Repetición de beta-Transducina/química
4.
Sci Rep ; 9(1): 6865, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053742

RESUMEN

Controlled ubiquitin-mediated protein degradation is essential for various cellular processes. GLI family regulates the transcriptional events of the sonic hedgehog pathway genes that are implicated in almost one fourth of human tumors. GLI3 phosphorylation by Ser/Thr kinases is a primary factor for their transcriptional activity that incurs the formation of both GLI3 repressor and activator forms. GLI3 processing is triggered in an ubiquitin-dependent manner via SCFßTrCP1 complex; however, structural characterization, mode of action based on sequence of phosphorylation signatures and induced conformational readjustments remain elusive. Here, through structural analysis and molecular dynamics simulation assays, we explored comparative binding pattern of GLI3 phosphopeptides against ßTrCP1. A comprehensive and thorough analysis demarcated GLI3 presence in the binding cleft shared by inter-bladed binding grooves of ß-propeller. Our results revealed the involvement of all seven WD40 repeats of ßTrCP1 in GLI3 interaction. Conversely, GLI3 phosphorylation pattern at primary protein kinase A (PKA) sites and secondary casein kinase 1 (CK1) or glycogen synthase kinase 3 (GSK3) sites was carefully evaluated. Our results indicated that GLI3 processing depends on the 19 phosphorylation sites (849, 852, 855, 856, 860, 861, 864, 865, 868, 872, 873, 876, 877, 880, 899, 903, 906, 907 and 910 positions) by a cascade of PKA, GSK3ß and CSKI kinases. The presence of a sequential phosphorylation in the binding induction of GLI3 and ßTrCP1 may be a hallmark to authenticate GLI3 processing. We speculate that mechanistic information of the individual residual contributions through structure-guided approaches may be pivotal for the rational design of specific and more potent inhibitors against activated GLI3 with a special emphasis on the anticancer activity.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteína Gli3 con Dedos de Zinc/química , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Humanos , Simulación de Dinámica Molecular , Conformación Proteica en Lámina beta , Termodinámica , Proteínas con Repetición de beta-Transducina/química
5.
Mol Oncol ; 13(2): 307-321, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30428154

RESUMEN

The ATR/CHK1 pathway is a key effector of cellular response to DNA damage and therefore is a critical regulator of genomic stability. While the ATR/CHK1 pathway is often inactivated by mutations, CHK1 itself is rarely mutated in human cancers. Thus, cellular levels of CHK1 likely play a key role in the maintenance of genomic stability and preventing tumorigenesis. Glucose deprivation is observed in many solid tumors due to high glycolytic rates of cancer cells and insufficient vascularization, yet cancer cells have devised mechanisms to survive in conditions of low glucose. Although CHK1 degradation through the ubiquitin-proteasome pathway following glucose deprivation has been previously reported, the detailed molecular mechanisms remain elusive. Here, we show that CHK1 is ubiquitinated and degraded upon glucose deprivation by the Skp1-Cullin-F-box (ß-TrCP) E3 ubiquitin ligase. Specifically, CHK1 contains a ß-TrCP recognizable degron domain, which is phosphorylated by AMPK in response to glucose deprivation, allowing for ß-TrCP to recognize CHK1 for subsequent ubiquitination and degradation. Our results provide a novel mechanism by which glucose metabolism regulates a DNA damage effector, and imply that glucose deprivation, which is often found in solid tumor microenvironments, may enhance mutagenesis, clonal expansion, and tumor progression by triggering CHK1 degradation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Glucosa/deficiencia , Ubiquitinación , Proteínas con Repetición de beta-Transducina/metabolismo , Secuencia de Aminoácidos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Células HEK293 , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Proteolisis/efectos de los fármacos , Estaurosporina/farmacología , Ubiquitinación/efectos de los fármacos , Proteínas con Repetición de beta-Transducina/química
6.
Genes Genomics ; 41(2): 167-174, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30267325

RESUMEN

Beta-transducin repeat containing protein 1 (ß-TrCP1) is a versatile F-box protein that is responsible for substrate recognition of SCFß-TrCP1 ubiquitin ligase. In human cells, two major alternatively spliced isoforms (b and f) of ß-TrCP1 were found. Recently, we identified that CENP-W interacts with the ß-TrCP1 and regulates the cellular distribution of ß-TrCP1. In this study, we examined whether CENP-W, a new kinetochore component, may differentially regulate the two major isoforms of human ß-TrCP1 (b and f), especially in the cytoplasmic-nuclear shuttling of ß-TrCP1. An in vivo binding assay was performed to examine whether CENP-W binds differently to the two isoforms of ß-TrCP1. EGFP-conjugated ß-TrCP1 isoforms were co-transfected with NLS-defective mutant CENP-W and their cellular distribution were observed using a fluorescence microscopy. Although CENP-W interacts with both b and f isoforms, it has a greater affinity for the b isoform rather than f isoform. Moreover, CENP-W effectively regulates the nuclear-cytoplasmic shuttling of these two ß-TrCP1 isoforms, but with a slight preference towards the b isoform. The Elongin C-binding motif existing in the b isoform may be involved in their specific association. CENP-W showed a higher affinity toward the ß-TrCP1 b isoform, and translocated isoform b more efficiently than isoform f, which may allow a fine regulation of of ß-TrCP1 in the cells.


Asunto(s)
Empalme Alternativo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Sitios de Unión , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Isoformas de Proteínas/metabolismo , Proteínas con Repetición de beta-Transducina/química
7.
Biochim Biophys Acta Gen Subj ; 1862(10): 2271-2280, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30031111

RESUMEN

Apoptosis signal-regulating kinase 1 (ASK1) is a key player in the homeostatic response of many organisms. Of the many functions of ASK1, it is most well-known for its ability to induce canonical caspase 3-dependent apoptosis through the MAPK pathways in response to reactive oxygen species (ROS). As ASK1 is a regulator of apoptosis, its proper regulation is critical for the well-being of an organism. To date, several E3 ubiquitin ligases have been identified that are capable of degrading ASK1, signifying the importance of maintaining ASK1 expression levels during stress responses. ASK1 protein regulation under unstimulated conditions, however, is still largely unknown. Using tandem mass spectrometry, we have identified beta-transducin repeat containing protein (ß-TrCP), an E3 ubiquitin ligase, as a novel interacting partner of ASK1 that is capable of ubiquitinating and subsequently degrading ASK1 through the ubiquitin-proteasome system (UPS). This interaction requires the seven WD domains of ß-TrCP and the C-terminus of ASK1. By silencing the ß-TrCP genes, we observed a significant increase in caspase 3 activity in response to oxidative stress, which could subsequently be suppressed by silencing ASK1. These findings suggest that ß-TrCP is capable of suppressing oxidative stress-induced caspase 3-dependent apoptosis through suppression of ASK1, assisting in the organism's ability to maintain homeostasis in an unstable environment.


Asunto(s)
Apoptosis , MAP Quinasa Quinasa Quinasa 5/metabolismo , Estrés Oxidativo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Células HEK293 , Humanos , MAP Quinasa Quinasa Quinasa 5/química , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación , Proteínas con Repetición de beta-Transducina/química
8.
Mol Cell Biol ; 38(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29941490

RESUMEN

Cancer cells often heavily depend on the ubiquitin-proteasome system (UPS) for their growth and survival. Irrespective of their strong dependence on the proteasome activity, cancer cells, except for multiple myeloma, are mostly resistant to proteasome inhibitors. A major cause of this resistance is the proteasome bounce-back response mediated by NRF1, a transcription factor that coordinately activates proteasome subunit genes. To identify new targets for efficient suppression of UPS, we explored, using immunoprecipitation and mass spectrometry, the possible existence of nuclear proteins that cooperate with NRF1 and identified O-linked N-acetylglucosamine transferase (OGT) and host cell factor C1 (HCF-1) as two proteins capable of forming a complex with NRF1. O-GlcNAcylation catalyzed by OGT was essential for NRF1 stabilization and consequent upregulation of proteasome subunit genes. Meta-analysis of breast and colorectal cancers revealed positive correlations in the relative protein abundance of OGT and proteasome subunits. OGT inhibition was effective at sensitizing cancer cells to a proteasome inhibitor both in culture cells and a xenograft mouse model. Since active O-GlcNAcylation is a feature of cancer metabolism, our study has clarified a novel linkage between cancer metabolism and UPS function and added a new regulatory axis to the regulation of the proteasome activity.


Asunto(s)
Factor 1 Relacionado con NF-E2/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteasoma/farmacología , Acetilglucosamina/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Femenino , Glicosilación , Células HEK293 , Células HeLa , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Factor 1 Relacionado con NF-E2/química , Factor 1 Relacionado con NF-E2/genética , Neoplasias/genética , Factor Nuclear 1 de Respiración , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Ubiquitina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/metabolismo
9.
Arch Biochem Biophys ; 651: 34-42, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856966

RESUMEN

Circadian rhythm is rhythmic gene expression that is involved in various processes of life over a day and night cycle. The rhythmic sleep disorders arise due to misalignment of sleep-wake cycle influenced by phosphorylation of PERIOD2 (PER2) phosphodegron (SSGYGS), the conserved interaction site of ß-transducin repeat-containing protein (ßTrCP1). Here, we employed in silico approach to study the interaction pattern of ßTrCP1 with PER2WT, PER2SER480ALA and PER2SER484ALA phosphodegron peptides. Substitution of phosphorylatable SER480 or SER484 into ALA resulted in the shifting of PER2 phosphodegron binding at the lower face of ß-propeller, by involvement of both SER residues. PER2 binding at the shallow cavity of ßTrCP1 induced conformational readjustment in ARG524 residue that connected the upper hemisphere base (10.5 Å) with the roof of lower hemisphere (6.6 Å) to create a uniform tunnel-like structure. In the absence of phosphorylation, PER2 and ßTrCP1 binding stability may be compromised resulting in the enhancement of PER2 level in the cytoplasm that may disrupt circadian clock and aging. Taken together, this study will help in understanding the structural basis of conserved phosphoswitch mechanism in the mammalian circadian oscillation.


Asunto(s)
Proteínas Circadianas Period/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Secuencia de Aminoácidos , Ritmo Circadiano , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Circadianas Period/química , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Termodinámica , Proteínas con Repetición de beta-Transducina/química
10.
Development ; 144(22): 4137-4147, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28982686

RESUMEN

The mitosis-meiosis transition is essential for spermatogenesis. Specific and timely downregulation of the transcription factor DMRT1, and consequent induction of Stra8 expression, is required for this process in mammals, but the molecular mechanism has remained unclear. Here, we show that ß-TrCP, the substrate recognition component of an E3 ubiquitin ligase complex, targets DMRT1 for degradation and thereby controls the mitosis-meiosis transition in mouse male germ cells. Conditional inactivation of ß-TrCP2 in male germ cells of ß-TrCP1 knockout mice resulted in sterility due to a lack of mature sperm. The ß-TrCP-deficient male germ cells did not enter meiosis, but instead underwent apoptosis. The induction of Stra8 expression was also attenuated in association with the accumulation of DMRT1 at the Stra8 promoter in ß-TrCP-deficient testes. DMRT1 contains a consensus ß-TrCP degron sequence that was found to bind ß-TrCP. Overexpression of ß-TrCP induced the ubiquitylation and degradation of DMRT1. Heterozygous deletion of Dmrt1 in ß-TrCP-deficient spermatogonia increased meiotic cells with a concomitant reduction of apoptosis. Collectively, our data indicate that ß-TrCP regulates the transition from mitosis to meiosis in male germ cells by targeting DMRT1 for degradation.


Asunto(s)
Meiosis , Mitosis , Espermatozoides/citología , Espermatozoides/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Fertilidad , Eliminación de Gen , Marcación de Gen , Heterocigoto , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteolisis , Túbulos Seminíferos/patología , Espermatogénesis , Especificidad por Sustrato , Testículo/patología , Factores de Transcripción/metabolismo , Ubiquitinación , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/metabolismo
11.
J Mol Graph Model ; 72: 96-105, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28092836

RESUMEN

The critical role of ßTrCP1 in cancer development makes it a discerning target for the development of small drug like molecules. Currently, no inhibitor exists that is able to target its substrate binding site. Through molecular docking and dynamics simulation assays, we explored the comparative binding pattern of ßTrCP1-WD40 domain with ACV and its phospho-derivatives (ACVMP, ACVDP and ACVTP). Consequently, through principal component analysis, ßTrCP1-ACVTP was found to be more stable complex by obscuring a reduced conformational space than other systems. Thus based on the residual contribution and hydrogen bonding pattern, ACVTP was considered as a noteworthy inhibitor which demarcated binding in the cleft formed by ßTrCP1-WD40 specific ß-propeller. The outcomes of this study may provide a platform for rational design of specific and potent inhibitor against ßTrCP1, with special emphasis on anticancer activity.


Asunto(s)
Aciclovir/farmacología , Antineoplásicos/farmacología , Antivirales/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas con Repetición de beta-Transducina/metabolismo , Aciclovir/química , Antineoplásicos/química , Apoproteínas/química , Sitios de Unión , Humanos , Análisis de Componente Principal , Estructura Secundaria de Proteína , Termodinámica , Factores de Tiempo , Proteínas con Repetición de beta-Transducina/química
12.
J Chem Inf Model ; 57(2): 223-233, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28004927

RESUMEN

NF-κB is a major transcription factor whose activation is triggered through two main activation pathways: the canonical pathway involving disruption of IκB-α/NF-κB complexes and the alternative pathway whose activation relies on the inducible proteolysis of the inhibitory protein p100. One central step controlling p100 processing consists in the interaction of the E3 ubiquitin ligase ß-TrCP with p100, thereby leading to its ubiquitinylation and subsequent either complete degradation or partial proteolysis by the proteasome. However, the interaction mechanism between p100 and ß-TrCP is still poorly defined. In this work, a diphosphorylated 21-mer p100 peptide model containing the phosphodegron motif was used to characterize the interaction with ß-TrCP by NMR. In parallel, docking simulations were performed in order to obtain a model of the 21P-p100/ß-TrCP complex. Saturation transfer difference (STD) experiments were performed in order to highlight the residues of p100 involved in the interaction with the ß-TrCP protein. These results highlighted the importance of pSer865 and pSer869 residues in the interaction with ß-TrCP and particularly the Tyr867 that fits inside the hydrophobe ß-TrCP cavity with the Arg474 guanidinium group. Four other arginines, Arg285, Arg410, Arg431, and Arg521, were found essential in the stabilization of p100 on the ß-TrCP surface. Importantly, the requirement for these five arginine residues of ß-TrCP for the interaction with p100 was further confirmed in vivo, thereby validating the docking model through a biological approach.


Asunto(s)
Simulación del Acoplamiento Molecular , Subunidad p52 de NF-kappa B/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Mutación , Subunidad p52 de NF-kappa B/química , Unión Proteica , Conformación Proteica , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/genética
13.
Mol Biosyst ; 12(7): 2233-46, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27156994

RESUMEN

The current interest in the identification and characterization of ßTrCP1 substrates necessitates a promising approach with broad structural constraints of WD40 potential binding sites. Here, we employed an in silico integrative approach to identify putative novel substrates of ßTrCP1. Through a screened degradation motif (DSGXXS) for the entire human proteome and comparative substrate binding analysis of ßTrCP1, we identified 344 substrates, sharing high sequence similarity with the consensus motif. Subsequent filtering on the basis of functional annotation and clustering resulted in the isolation of hits having clear roles in various cancer types. These substrates were phosphorylated at the Ser residues (Ser14 and Ser18) of the conserved motif. A comprehensive and thorough analysis of ßTrCP1-phosphopeptide association indicated residual contributions located at the upper face of the ß-propeller. Evidently, upon binding to phosphopeptides, the central channel of ßTrCP1 attains a more open conformation to assist substrate binding. To elaborate the oncogenic function of ßTrCP1, the SKP1-ßTrCP1-CDH6 ternary complex was docked against CUL1-RBX1 and the acquired model exactly resembled the previously characterized SKP1-ßTrCP1-ß-catenin model. Overall, a deeper understanding of substrate targeting mechanisms coupled with the structural knowledge of ßTrCP1 and associated proteins will be useful for designing novel targets for cancer therapeutics.


Asunto(s)
Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas con Repetición de beta-Transducina/química , Secuencias de Aminoácidos , Sitios de Unión , Análisis por Conglomerados , Enlace de Hidrógeno , Conformación Molecular , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Posición Específica de Matrices de Puntuación , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas con Repetición de beta-Transducina/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(13): 3527-32, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976582

RESUMEN

Skp1-Cul1-F-box (SCF) E3 ligases play key roles in multiple cellular processes through ubiquitination and subsequent degradation of substrate proteins. Although Skp1 and Cul1 are invariant components of all SCF complexes, the 69 different human F-box proteins are variable substrate binding modules that determine specificity. SCF E3 ligases are activated in many cancers and inhibitors could have therapeutic potential. Here, we used phage display to develop specific ubiquitin-based inhibitors against two F-box proteins, Fbw7 and Fbw11. Unexpectedly, the ubiquitin variants bind at the interface of Skp1 and F-box proteins and inhibit ligase activity by preventing Cul1 binding to the same surface. Using structure-based design and phage display, we modified the initial inhibitors to generate broad-spectrum inhibitors that targeted many SCF ligases, or conversely, a highly specific inhibitor that discriminated between even the close homologs Fbw11 and Fbw1. We propose that most F-box proteins can be targeted by this approach for basic research and for potential cancer therapies.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Ubiquitinas/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cullin/química , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas F-Box/antagonistas & inhibidores , Proteínas F-Box/química , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Variación Genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Biblioteca de Péptidos , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/química , Ubiquitinas/genética , Proteínas con Repetición de beta-Transducina/antagonistas & inhibidores , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/genética
15.
Free Radic Biol Med ; 88(Pt B): 147-157, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25937177

RESUMEN

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of cellular homeostasis that controls the expression of more than 1% of human genes related to biotransformation reactions, redox homeostasis, energetic metabolism, DNA repair, and proteostasis. Its activity has a tremendous impact on physiology and pathology and therefore it is very tightly regulated, mainly at the level of protein stability. In addition to the very well established regulation by the ubiquitin E3 ligase adapter Keap1, recent advances have identified a novel mechanism based on signaling pathways that regulate glycogen synthase kinse-3 (GSK-3). This kinase phosphorylates specific serine residues in the Neh6 domain of Nrf2 to create a degradation domain that is then recognized by the ubiquitin ligase adapter ß-TrCP and tagged for proteasome degradation by a Cullin1/Rbx1 complex. Here we review the mechanistic elements and the signaling pathways that participate in this regulation by GSK-3/ß-TrCP. These pathways include those activated by ligands of tyrosine kinase, G protein-coupled, metabotropic, and ionotropic receptors that activate phosphatidyl inositol 3-kinase (PI3K)/ATK and by the canonical WNT signaling pathway, where a fraction of Nrf2 interacts with Axin1/GSK-3. Considering that free Nrf2 protein is localized in the nucleus, we propose a model termed "double flux controller" to explain how Keap1 and ß-TrCP coordinate the stability of Nrf2 in several scenarios. The GSK-3/ß-TrCP axis provides a novel therapeutic strategy to modulate Nrf2 activity.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/fisiología , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Glucógeno Sintasa Quinasa 3/química , Humanos , Factor 2 Relacionado con NF-E2/química , Estructura Terciaria de Proteína , Proteínas con Repetición de beta-Transducina/química
16.
mBio ; 6(1)2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25626907

RESUMEN

UNLABELLED: NF-κB plays a critical role in the induction and maintenance of innate and adaptive immune transcriptional programs. An associated inhibitor of κB protein (IκB) regulates NF-κB activation and contains a degron motif (DSGΦxS) that undergoes phosphorylation following pathogen recognition or other proinflammatory signals. The E3 ubiquitin ligase SCF(ß-TrCP) recognizes this phosphodegron through its ß-transducin repeat-containing protein (ß-TrCP) subunit and induces IκB degradation, allowing NF-κB to translocate to the nucleus and modulate gene expression. Rotavirus (RV), a major cause of pediatric gastroenteritis, can block NF-κB activation through the action of its nonstructural protein NSP1, a putative E3 ubiquitin ligase that mediates the degradation of ß-TrCP or other immunomodulatory proteins in a virus strain-specific manner. Here, we show that NSP1 targets ß-TrCP by mimicking the IκB phosphodegron. The NSP1 proteins of most human and porcine RV strains conserve a C-terminal phosphodegron-like (PDL) motif, DSGΦS. Deletion of this motif or mutation of its serine residues disrupts NSP1-mediated degradation of ß-TrCP and inhibition of NF-κB activation. Additionally, a point mutation within the phosphodegron-binding pocket protects ß-TrCP from NSP1-mediated turnover. Fusion of the PDL motif to an NSP1 protein known to target other immunomodulatory proteins generates a chimeric NSP1 protein that can induce ß-TrCP degradation and block NF-κB activation. Other viral proteins (Epstein-Barr virus LMP1, HIV-1 Vpu, and vaccinia virus A49) also contain a PDL motif and interact with ß-TrCP to inhibit NF-κB activation. Taken together, these data suggest that targeting ß-TrCP by molecular mimicry may be a common strategy used by human viruses to evade the host immune response. IMPORTANCE: The transcription factor NF-κB, a central regulator of the host response to infection, is a frequent target of viral antagonism. Pathogen detection activates NF-κB by inducing the phosphorylation of an associated inhibitor protein (IκB), which targets IκB for degradation by the E3 ubiquitin ligase ß-TrCP. Rotavirus, a significant cause of childhood gastroenteritis, antagonizes NF-κB through the activity of its NSP1 protein, a putative E3 ubiquitin ligase that mediates ß-TrCP turnover. Here, we show that NSP1 functions by mimicking the IκB phosphodegron recognized by ß-TrCP. Nearly all human rotavirus strains conserve this motif at the NSP1 C terminus, and its removal disrupts NSP1 antagonist activity. This sequence conserves the biochemical properties of the IκB phosphodegron and can rescue antagonist activity when fused to an NSP1 protein otherwise inactive against ß-TrCP. Other viral proteins also mimic IκB to disrupt NF-κB activation, indicating that this is an important immune evasion strategy.


Asunto(s)
FN-kappa B/metabolismo , Infecciones por Rotavirus/virología , Rotavirus/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Secuencia de Aminoácidos , Interacciones Huésped-Patógeno , Humanos , Imitación Molecular , Datos de Secuencia Molecular , FN-kappa B/química , FN-kappa B/genética , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Rotavirus/química , Rotavirus/genética , Infecciones por Rotavirus/genética , Infecciones por Rotavirus/metabolismo , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/genética
17.
Sci Signal ; 7(356): rs8, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25515538

RESUMEN

Cellular proteins are degraded by the ubiquitin-proteasome system (UPS) in a precise and timely fashion. Such precision is conferred by the high substrate specificity of ubiquitin ligases. Identification of substrates of ubiquitin ligases is crucial not only to unravel the molecular mechanisms by which the UPS controls protein degradation but also for drug discovery purposes because many established UPS substrates are implicated in disease. We developed a combined bioinformatics and affinity purification-mass spectrometry (AP-MS) workflow for the system-wide identification of substrates of SCF(ßTrCP), a member of the SCF family of ubiquitin ligases. These ubiquitin ligases are characterized by a multisubunit architecture typically consisting of the invariable subunits Rbx1, Cul1, and Skp1 and one of 69 F-box proteins. The F-box protein of this member of the family is ßTrCP. SCF(ßTrCP) binds, through the WD40 repeats of ßTrCP, to the DpSGXX(X)pS diphosphorylated motif in its substrates. We recovered 27 previously reported SCF(ßTrCP) substrates, of which 22 were verified by two independent statistical protocols, thereby confirming the reliability of this approach. In addition to known substrates, we identified 221 proteins that contained the DpSGXX(X)pS motif and also interacted specifically with the WD40 repeats of ßTrCP. Thus, with SCF(ßTrCP), as the example, we showed that integration of structural information, AP-MS, and degron motif mining constitutes an effective method to screen for substrates of ubiquitin ligases.


Asunto(s)
Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Secuencias de Aminoácidos , Células HEK293 , Humanos , Proteínas Ligasas SKP Cullina F-box/química , Especificidad por Sustrato , Proteínas con Repetición de beta-Transducina/química
18.
Nucleic Acids Res ; 42(3): e18, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362839

RESUMEN

A major challenge in cancer genomics is uncovering genes with an active role in tumorigenesis from a potentially large pool of mutated genes across patient samples. Here we focus on the interactions that proteins make with nucleic acids, small molecules, ions and peptides, and show that residues within proteins that are involved in these interactions are more frequently affected by mutations observed in large-scale cancer genomic data than are other residues. We leverage this observation to predict genes that play a functionally important role in cancers by introducing a computational pipeline (http://canbind.princeton.edu) for mapping large-scale cancer exome data across patients onto protein structures, and automatically extracting proteins with an enriched number of mutations affecting their nucleic acid, small molecule, ion or peptide binding sites. Using this computational approach, we show that many previously known genes implicated in cancers are enriched in mutations within the binding sites of their encoded proteins. By focusing on functionally relevant portions of proteins--specifically those known to be involved in molecular interactions--our approach is particularly well suited to detect infrequent mutations that may nonetheless be important in cancer, and should aid in expanding our functional understanding of the genomic landscape of cancer.


Asunto(s)
Genes Relacionados con las Neoplasias , Sitios de Unión/genética , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Mutación Missense , Neoplasias/genética , Polimorfismo Genético , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Ribonucleasa III/química , Ribonucleasa III/genética , Programas Informáticos , Factores de Transcripción/química , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/genética
19.
Oncogene ; 32(32): 3765-81, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22964642

RESUMEN

Identification of regulatable mechanisms by which transcription factor NF-E2 p45-related factor 2 (Nrf2) is repressed will allow strategies to be designed that counter drug resistance associated with its upregulation in tumours that harbour somatic mutations in Kelch-like ECH-associated protein-1 (Keap1), a gene that encodes a joint adaptor and substrate receptor for the Cul3-Rbx1/Roc1 ubiquitin ligase. We now show that mouse Nrf2 contains two binding sites for ß-transducin repeat-containing protein (ß-TrCP), which acts as a substrate receptor for the Skp1-Cul1-Rbx1/Roc1 ubiquitin ligase complex. Deletion of either binding site in Nrf2 decreased ß-TrCP-mediated ubiquitylation of the transcription factor. The ability of one of the two ß-TrCP-binding sites to serve as a degron could be both increased and decreased by manipulation of glycogen synthase kinase-3 (GSK-3) activity. Biotinylated-peptide pull-down assays identified DSGIS(338) and DSAPGS(378) as the two ß-TrCP-binding motifs in Nrf2. Significantly, our pull-down assays indicated that ß-TrCP binds a phosphorylated version of DSGIS more tightly than its non-phosphorylated counterpart, whereas this was not the case for DSAPGS. These data suggest that DSGIS, but not DSAPGS, contains a functional GSK-3 phosphorylation site. Activation of GSK-3 in Keap1-null mouse embryonic fibroblasts (MEFs), or in human lung A549 cells that contain mutant Keap1, by inhibition of the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB)/Akt pathway markedly reduced endogenous Nrf2 protein and decreased to 10-50% of normal the levels of mRNA for prototypic Nrf2-regulated enzymes, including the glutamate-cysteine ligase catalytic and modifier subunits, glutathione S-transferases Alpha-1 and Mu-1, haem oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Pre-treatment of Keap1(-/-) MEFs or A549 cells with the LY294002 PI3K inhibitor or the MK-2206 PKB/Akt inhibitor increased their sensitivity to acrolein, chlorambucil and cisplatin between 1.9-fold and 3.1-fold, and this was substantially attenuated by simultaneous pre-treatment with the GSK-3 inhibitor CT99021.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Factor 2 Relacionado con NF-E2/fisiología , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Antineoplásicos/farmacología , Sitios de Unión , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Factor 2 Relacionado con NF-E2/análisis , Factor 2 Relacionado con NF-E2/química , Fosfatidilinositol 3-Quinasas/fisiología , Fosforilación , Estructura Terciaria de Proteína , Ubiquitinación , Proteínas con Repetición de beta-Transducina/química , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
20.
PLoS One ; 7(10): e47298, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071779

RESUMEN

Substantial evidence supports the oncogenic role of the E3 ubiquitin ligase S-phase kinase-associated protein 2 (Skp2) in many types of cancers through its ability to target a broad range of signaling effectors for ubiquitination. Thus, this oncogenic E3 ligase represents an important target for cancer drug discovery. In this study, we report a novel mechanism by which CG-12, a novel energy restriction-mimetic agent (ERMA), down-regulates the expression of Skp2 in prostate cancer cells. Pursuant to our previous finding that upregulation of ß-transducin repeat-containing protein (ß-TrCP) expression represents a cellular response in cancer cells to ERMAs, including CG-12 and 2-deoxyglucose, we demonstrated that this ß-TrCP accumulation resulted from decreased Skp2 expression. Evidence indicates that Skp2 targets ß-TrCP for degradation via the cyclin-dependent kinase 2-facilitated recognition of the proline-directed phosphorylation motif (412)SP. This Skp2 downregulation was attributable to Sirt1-dependent suppression of COP9 signalosome (Csn)5 expression in response to CG-12, leading to increased cullin 1 neddylation in the Skp1-cullin1-F-box protein complex and consequent Skp2 destabilization. Moreover, we determined that Skp2 and ß-TrCP are mutually regulated, providing a feedback mechanism that amplifies the suppressive effect of ERMAs on Skp2. Specifically, cellular accumulation of ß-TrCP reduced the expression of Sp1, a ß-TrCP substrate, which, in turn, reduced Skp2 gene expression. This Skp2-ß-TrCP-Sp1 feedback loop represents a novel crosstalk mechanism between these two important F-box proteins in cancer cells with aberrant Skp2 expression under energy restriction, which provides a proof-of-concept that the oncogenic Csn5/Skp2 signaling axis represents a "druggable" target for this novel ERMA.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Próstata/enzimología , Proteínas Quinasas Asociadas a Fase-S/genética , Sitios de Unión , Neoplasias de la Mama/metabolismo , Complejo del Señalosoma COP9 , Línea Celular Tumoral , Metabolismo Energético , Retroalimentación Fisiológica , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/fisiología , Sirtuina 1/metabolismo , Sirtuina 1/fisiología , Proteínas con Repetición de beta-Transducina/química , Proteínas con Repetición de beta-Transducina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...