Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638735

RESUMEN

In Arabidopsis seeds, ROS have been shown to be enabling actors of cellular signaling pathways promoting germination, but their accumulation under stress conditions or during aging leads to a decrease in the ability to germinate. Previous biochemical work revealed that a specific class of plastid thioredoxins (Trxs), the y-type Trxs, can fulfill antioxidant functions. Among the ten plastidial Trx isoforms identified in Arabidopsis, Trx y1 mRNA is the most abundant in dry seeds. We hypothesized that Trx y1 and Trx y2 would play an important role in seed physiology as antioxidants. Using reverse genetics, we found important changes in the corresponding Arabidopsis mutant seeds. They display remarkable traits such as increased longevity and higher and faster germination in conditions of reduced water availability or oxidative stress. These phenotypes suggest that Trxs y do not play an antioxidant role in seeds, as further evidenced by no changes in global ROS contents and protein redox status found in the corresponding mutant seeds. Instead, we provide evidence that marker genes of ABA and GAs pathways are perturbed in mutant seeds, together with their sensitivity to specific hormone inhibitors. Altogether, our results suggest that Trxs y function in Arabidopsis seeds is not linked to their previously identified antioxidant roles and reveal a new role for plastid Trxs linked to hormone regulation.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Plastidios/metabolismo , Semillas/metabolismo , Tiorredoxinas/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Germinación , Reguladores del Crecimiento de las Plantas/genética , Plastidios/genética , Semillas/crecimiento & desarrollo , Tiorredoxinas/genética
2.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360759

RESUMEN

Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Estrés Salino/efectos de los fármacos , Cloruro de Sodio/farmacología
3.
Mol Plant ; 14(10): 1624-1639, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34116221

RESUMEN

Iron (Fe) storage in plant seeds is not only necessary for seedling establishment following germination but is also a major source of dietary Fe for humans and other animals. Accumulation of Fe in seeds is known to be low during early seed development. However, the underlying mechanism and biological significance remain elusive. Here, we show that reduced expression of Arabidopsis YABBY transcription factor INNER NO OUTER (INO) increases embryonic Fe accumulation, while transgenic overexpression of INO results in the opposite effect. INO is highly expressed during early seed development, and decreased INO expression increases the expression of NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1), which encodes a transporter that contributes to seed Fe loading. The relatively high embryonic Fe accumulation conferred by decreased INO expression is rescued by the nramp1 loss-of-function mutation. We further demonstrated that INO represses NRAMP1 expression by binding to NRAMP1-specific promoter region. Interestingly, we found that excessive Fe loading into developing seeds of ino mutants results in greater oxidative damage, leading to increased cell death and seed abortion, a phenotype that can be rescued by the nramp1 mutation. Taken together, these results indicate that INO plays an important role in safeguarding reproduction by reducing Fe loading into developing seeds by repressing NRAMP1 expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hierro/metabolismo , Plantones/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Hierro/toxicidad , Regiones Promotoras Genéticas , Unión Proteica , Reproducción , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946960

RESUMEN

After germination, the meristem of the embryonic plant root becomes activated, expands in size and subsequently stabilizes to support post-embryonic root growth. The plant hormones auxin and cytokinin, together with master transcription factors of the PLETHORA (PLT) family have been shown to form a regulatory network that governs the patterning of this root meristem. Still, which functional constraints contributed to shaping the dynamics and architecture of this network, has largely remained unanswered. Using a combination of modeling approaches we reveal how the interplay between auxin and PLTs enables meristem activation in response to above-threshold stimulation, while its embedding in a PIN-mediated auxin reflux loop ensures localized PLT transcription and thereby, a finite meristem size. We furthermore demonstrate how this constrained PLT transcriptional domain enables independent control of meristem size and division rates, further supporting a division of labor between auxin and PLT. We subsequently reveal how the weaker auxin antagonism of the earlier active Arabidopsis response regulator 12 (ARR12) may arise from the absence of a DELLA protein interaction domain. Our model indicates that this reduced strength is essential to prevent collapse in the early stages of meristem expansion while at later stages the enhanced strength of Arabidopsis response regulator 1 (ARR1) is required for sufficient meristem size control. Summarizing, our work indicates that functional constraints significantly contribute to shaping the auxin-cytokinin-PLT regulatory network.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/crecimiento & desarrollo , Modelos Biológicos , Factores de Transcripción/fisiología , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Transporte Biológico , División Celular , Citocininas/biosíntesis , Citocininas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Retroalimentación Fisiológica , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Meristema/ultraestructura , Dinámicas no Lineales , Raíces de Plantas/crecimiento & desarrollo , Unión Proteica , Dominios Proteicos , Nicho de Células Madre/fisiología , Factores de Transcripción/química , Factores de Transcripción/genética
5.
Biochem Biophys Res Commun ; 560: 7-13, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33964505

RESUMEN

Zinc and iron are essential micronutrients for plant growth, and their homeostasis must be tightly regulated. Previously, it has been shown that Zinc-Induced Facilitator 1 (ZIF1) is involved in basal Zn tolerance by controlling the vacuolar storage of nicotianamine (NA). However, knowledge of the functional roles of two ZIF1 paralogs, ZIF-LIKE1 (ZIFL1) and ZIFL2, in metal homeostasis remains limited. Here, we functionally characterized the roles of ZIF1, ZIFL1, and ZIFL2 in Zn and Fe homeostasis. Expression of ZIF1 and ZIFL1 was induced by both excess Zn and Fe-deficiency, and their loss-of-function led to hypersensitivity under excess Zn and Fe-deficiency, suggesting functional overlap between ZIF1 and ZIFL1. By contrast, the disruption of ZIFL2 resulted in no obvious phenotypic alteration under both conditions. Additionally, the expression of ZIFL1, but not that of ZIFL2, in the zif1 mutant partially restored the phenotype under excess Zn, suggesting that ZIF1 and ZIFL1 perform functionally redundant roles in Zn homeostasis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Transporte de Catión/fisiología , Hierro/metabolismo , Zinc/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/genética , Homeostasis , Hierro/fisiología , Hierro/toxicidad , Mutación , Fenotipo , Plantones/metabolismo , Estrés Fisiológico/genética , Zinc/toxicidad
6.
EMBO Rep ; 22(7): e51944, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34018302

RESUMEN

Iron (Fe) deficiency affects global crop productivity and human health. However, the role of light signaling in plant Fe uptake remains uncharacterized. Here, we find that light-induced Fe uptake in tomato (Solanum lycopersicum L.) is largely dependent on phytochrome B (phyB). Light induces the phyB-dependent accumulation of ELONGATED HYPOCOTYL 5 (HY5) protein both in the leaves and roots. HY5 movement from shoots to roots activates the expression of FER transcription factor, leading to the accumulation of transcripts involved in Fe uptake. Mutation in FER abolishes the light quality-induced changes in Fe uptake. The low Fe uptake observed in phyB, hy5, and fer mutants is accompanied by lower photosynthetic electron transport rates. Exposure to red light at night increases Fe accumulation in wild-type fruit but has little effects on fruit of phyB mutants. Taken together, these results demonstrate that Fe uptake is systemically regulated by light in a phyB-HY5-FER-dependent manner. These findings provide new insights how the manipulation of light quality could be used to improve Fe uptake and hence the nutritional quality of crops.


Asunto(s)
Proteínas de Arabidopsis , Fitocromo B , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/biosíntesis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Hierro , Mutación , Fosfotransferasas/biosíntesis , Fosfotransferasas/genética , Fitocromo B/genética , Fitocromo B/metabolismo , Factores de Transcripción/genética
7.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800491

RESUMEN

Plant survival in temperate zones requires efficient cold acclimation, which is strongly affected by light and temperature signal crosstalk, which converge in modulation of hormonal responses. Cold under low light conditions affected Arabidopsis responses predominantly in apices, possibly because energy supplies were too limited for requirements of these meristematic tissues, despite a relatively high steady-state quantum yield. Comparing cold responses at optimal light intensity and low light, we found activation of similar defence mechanisms-apart from CBF1-3 and CRF3-4 pathways, also transient stimulation of cytokinin type-A response regulators, accompanied by fast transient increase of trans-zeatin in roots. Upregulated expression of components of strigolactone (and karrikin) signalling pathway indicated involvement of these phytohormones in cold responses. Impaired response of phyA, phyB, cry1 and cry2 mutants reflected participation of these photoreceptors in acquiring freezing tolerance (especially cryptochrome CRY1 at optimal light intensity and phytochrome PHYA at low light). Efficient cold acclimation at optimal light was associated with upregulation of trans-zeatin in leaves and roots, while at low light, cytokinin (except cis-zeatin) content remained diminished. Cold stresses induced elevation of jasmonic acid and salicylic acid (in roots). Low light at optimal conditions resulted in strong suppression of cytokinins, jasmonic and salicylic acid.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Congelación , Regulación de la Expresión Génica de las Plantas , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética
8.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916093

RESUMEN

Myrosinase is a plant defence enzyme catalysing the hydrolysis of glucosinolates, a group of plant secondary metabolites, to a range of volatile compounds. One of the products, isothiocyanates, proved to have neuroprotective and chemo-preventive properties, making myrosinase a pharmaceutically interesting enzyme. In this work, extracellular expression of TGG1 myrosinase from Arabidopsis thaliana in the Pichia pastoris KM71H (MutS) strain was upscaled to a 3 L laboratory fermenter for the first time. Fermentation conditions (temperature and pH) were optimised, which resulted in a threefold increase in myrosinase productivity compared to unoptimised fermentation conditions. Dry cell weight increased 1.5-fold, reaching 100.5 g/L without additional glycerol feeding. Overall, a specific productivity of 4.1 U/Lmedium/h was achieved, which was 102.5-fold higher compared to flask cultivations.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Glicósido Hidrolasas/biosíntesis , Glicósido Hidrolasas/genética , Saccharomycetales/metabolismo , Proteínas Recombinantes/biosíntesis
9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649234

RESUMEN

Cold stress is an adverse environmental condition that affects plant growth, development, and crop productivity. Under cold stress conditions, the expression of numerous genes that function in the stress response and tolerance is induced in various plant species, and the dehydration-responsive element (DRE) binding protein 1/C-repeat binding factor (DREB1/CBF) transcription factors function as master switches for cold-inducible gene expression. Cold stress strongly induces these DREB1 genes. Therefore, it is important to elucidate the mechanisms of DREB1 expression in response to cold stress to clarify the perception and response of cold stress in plants. Previous studies indicated that the central oscillator components of the circadian clock, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), are involved in cold-inducible DREB1 expression, but the underlying mechanisms are not clear. We revealed that the clock-related MYB proteins REVEILLE4/LHY-CCA1-Like1 (RVE4/LCL1) and RVE8/LCL5 are quickly and reversibly transferred from the cytoplasm to the nucleus under cold stress conditions and function as direct transcriptional activators of DREB1 expression. We found that CCA1 and LHY suppressed the expression of DREB1s under unstressed conditions and were rapidly degraded specifically in response to cold stress, which suggests that they act as transcriptional repressors and indirectly regulate the cold-inducible expression of DREB1s We concluded that posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression. Our findings clarify the complex relationship between the plant circadian clock and the regulatory mechanisms of cold-inducible gene expression.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción/genética
11.
Int J Biol Macromol ; 176: 325-331, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33582218

RESUMEN

Plant photobodies are the membrane-less organelles (MLOs) that can be generated by protein-protein interactions between active form of phytochrome B (phyB) and phytochrome-interacting factors (PIFs). These organelles regulate plant photomorphogenesis. In this study, we developed two chimeric proteins with fluorescent proteins, phyB fused to EGFP and PIF6 fused to mCherry, and investigated their exogenous expression in mammalian cells by confocal fluorescence microscopy. Results showed that irradiation with diffused 630-nm light induced formation and subsequent increase in sizes of the MLOs. The assembly and disassembly of the photo-inducible MLOs in the mammalian cell cytoplasm obeyed the laws inherent in the concentration-dependent phase separation of biopolymers. The sizes of MLOs formed from phyB and PIF6 in mammalian cells corresponded to the sizes of the so-called "early" photobodies in plant cells. These results suggested that the first step for the formation of plant photobodies might be based on the light-dependent liquid-liquid phase separation of PIFs and other proteins that can specifically interact with the active form of phyB. The developed chimeric proteins in principle can be used to control the assembly and disassembly of photo-inducible MLOs, and thereby to regulate various intracellular processes in mammalian cells.


Asunto(s)
Proteínas de Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fitocromo B , Arabidopsis , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células HEK293 , Humanos , Fitocromo B/biosíntesis , Fitocromo B/genética
12.
Molecules ; 26(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546346

RESUMEN

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sustancias Húmicas , Estrés Salino/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transcriptoma/efectos de los fármacos
13.
Nucleic Acids Res ; 49(2): 1133-1151, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33406240

RESUMEN

Alternative splicing generates multiple transcript and protein isoforms from a single gene and controls transcript intracellular localization and stability by coupling to mRNA export and nonsense-mediated mRNA decay (NMD). RNA interference (RNAi) is a potent mechanism to modulate gene expression. However, its interactions with alternative splicing are poorly understood. We used artificial microRNAs (amiRNAs, also termed shRNAmiR) to knockdown all splice variants of selected target genes in Arabidopsis thaliana. We found that splice variants, which vary by their protein-coding capacity, subcellular localization and sensitivity to NMD, are affected differentially by an amiRNA, although all of them contain the target site. Particular transcript isoforms escape amiRNA-mediated degradation due to their nuclear localization. The nuclear and NMD-sensitive isoforms mask RNAi action in alternatively spliced genes. Interestingly, Arabidopsis SPL genes, which undergo alternative splicing and are targets of miR156, are regulated in the same manner. Moreover, similar results were obtained in mammalian cells using siRNAs, indicating cross-kingdom conservation of these interactions among RNAi and splicing isoforms. Furthermore, we report that amiRNA can trigger artificial alternative splicing, thus expanding the RNAi functional repertoire. Our findings unveil novel interactions between different post-transcriptional processes in defining transcript fates and regulating gene expression.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Silenciamiento del Gen , Degradación de ARNm Mediada por Codón sin Sentido , Isoformas de Proteínas/genética , Interferencia de ARN , Precursores del ARN/metabolismo , ARN de Planta/metabolismo , Proteínas de Arabidopsis/biosíntesis , Exones , Genes de Plantas , Células HeLa , Humanos , MicroARNs/genética , Plantas Modificadas Genéticamente , Isoformas de Proteínas/biosíntesis , Protoplastos/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN de Planta/genética , Factores de Empalme Serina-Arginina/biosíntesis , Factores de Empalme Serina-Arginina/genética , Transcripción Genética , Transfección
14.
FEBS J ; 288(1): 281-292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32301545

RESUMEN

Proteogenic dipeptides are intermediates of proteolysis as well as an emerging class of small-molecule regulators with diverse and often dipeptide-specific functions. Herein, prompted by differential accumulation of dipeptides in a high-density Arabidopsis thaliana time-course stress experiment, we decided to pursue an identity of the proteolytic pathway responsible for the buildup of dipeptides under heat conditions. By querying dipeptide accumulation versus available transcript data, autophagy emerged as a top hit. To examine whether autophagy indeed contributes to the accumulation of dipeptides measured in response to heat stress, we characterized the loss-of-function mutants of crucial autophagy proteins to test whether interfering with autophagy would affect dipeptide accumulation in response to the heat treatment. This was indeed the case. This work implicates the involvement of autophagy in the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Relacionadas con la Autofagia/genética , Dipéptidos/genética , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Autofagia , Proteínas Relacionadas con la Autofagia/biosíntesis , Dipéptidos/biosíntesis , Luz , Mutación , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Triglicéridos/metabolismo
15.
Nucleic Acids Res ; 49(1): 190-205, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33332564

RESUMEN

Secondary wall thickening in the sclerenchyma cells is strictly controlled by a complex network of transcription factors in vascular plants. However, little is known about the epigenetic mechanism regulating secondary wall biosynthesis. In this study, we identified that ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1), a H3K4-histone methyltransferase, mediates the regulation of fiber cell wall development in inflorescence stems of Arabidopsis thaliana. Genome-wide analysis revealed that the up-regulation of genes involved in secondary wall formation during stem development is largely coordinated by increasing level of H3K4 tri-methylation. Among all histone methyltransferases for H3K4me3 in Arabidopsis, ATX1 is markedly increased during the inflorescence stem development and loss-of-function mutant atx1 was impaired in secondary wall thickening in interfascicular fibers. Genetic analysis showed that ATX1 positively regulates secondary wall deposition through activating the expression of secondary wall NAC master switch genes, SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). We further identified that ATX1 directly binds the loci of SND1 and NST1, and activates their expression by increasing H3K4me3 levels at these loci. Taken together, our results reveal that ATX1 plays a key role in the regulation of secondary wall biosynthesis in interfascicular fibers during inflorescence stem development of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Código de Histonas , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/genética , Inflorescencia/metabolismo , Proteínas de Plantas/genética , Tallos de la Planta/metabolismo , Factores de Transcripción/fisiología , Transcriptoma , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Genes de Plantas , Histonas/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/ultraestructura , ARN de Planta/biosíntesis , ARN de Planta/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Xilanos/metabolismo
16.
Methods Mol Biol ; 2200: 225-254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33175381

RESUMEN

RNA silencing plays a critical role in diverse biological processes in plants including growth, development, and responses to abiotic and biotic stresses. RNA silencing is guided by small non-coding RNAs (sRNAs) with the length of 21-24 nucleotides (nt) that are loaded into Argonaute (AGO) to repress expression of target loci and transcripts through transcriptional or posttranscriptional gene silencing mechanisms. Identification and quantitative characterization of sRNAs are crucial steps toward appreciation of their functions in biology. Here, we developed a step-by-step protocol to precisely illustrate the process of cloning of sRNA libraries and correspondingly computational analysis of the recovered sRNAs. This protocol can be used in all kinds of organisms, including Arabidopsis, and is compatible with various high-throughput sequence technologies such as Illumina Hiseq. Thus, we wish that this protocol represents an accurate way to identify and quantify sRNAs in vivo.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , ARN de Planta , ARN Pequeño no Traducido , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas Argonautas/biosíntesis , Proteínas Argonautas/genética , ARN de Planta/biosíntesis , ARN de Planta/genética , ARN Pequeño no Traducido/biosíntesis , ARN Pequeño no Traducido/genética
17.
Biol Pharm Bull ; 43(12): 1839-1846, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268701

RESUMEN

Polygala tenuifolia Willd. is a traditional Chinese herbal medicine that is widely used in treating nervous system disorders. Triterpene saponins in P. tenuifolia (polygala saponins) have excellent biological activity. As a precursor for the synthesis of presenegin, oleanolic acid (OA) plays an important role in the biosynthesis of polygala saponins. However, the mechanism behind the biosynthesis of polygala saponins remains to be elucidated. In this study, we found that CYP716A249 (GenBank: ASB17946) oxidized the C-28 position of ß-amyrin to produce OA. Using quantitative real-time PCR, we observed that CYP716A249 had the highest expression in the roots of 2-year-old P. tenuifolia, which provided a basis for the selection of samples for gene cloning. To identify the function of CYP716A249, the strain R-BE-20 was constructed by expressing ß-amyrin synthase in yeast. Then, CYP716A249 was co-expressed with ß-amyrin synthase to construct the strain R-BPE-20 by using the lithium acetate method. Finally, we detected ß-amyrin and OA by ultra-HPLC-Q Exactive hybrid quadrupole-Orbitrap high-resolution accurate mass spectrometry and GC-MS. The results of this study provide insights into the biosynthesis pathway of polygala saponins.


Asunto(s)
Clonación Molecular/métodos , Polygala/genética , Polygala/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Filogenia , Saccharomyces cerevisiae , Saponinas/biosíntesis , Saponinas/genética
18.
Dokl Biochem Biophys ; 494(1): 235-239, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33119824

RESUMEN

The physiological and molecular responses of Arabidopsis thaliana plants to cold stress were studied. Exposure to a low non-freezing temperature (4°C, 5 days) caused a decrease in the physiological functions and activity of a number of photosynthetic genes and elevation in expression of the cold stress gene COR15a, the product of which protects chloroplasts. It was shown for the first time that in parallel to a general inhibition of physiological functions under hypothermia, an increase in the expression of most genes for the chloroplast transcription apparatus was observed. This is obviously one of the compensatory mechanisms of adaptation aimed to maintain cellular homeostasis and physiological functions under hypothermia.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Adaptación Fisiológica , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frío/efectos adversos
19.
Protein J ; 39(5): 461-471, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33104960

RESUMEN

An abundance of protein structures has been solved in the last six decades that are paramount in defining the function of such proteins. For unsolved protein structures, however, predictions based on sequence and phylogenetic similarity can be useful for identifying key domains of interaction. Here, we describe expression and purification of a recombinant plant LRR-RLK ectodomain MIK1 using a modified baculovirus-mediated expression system with subsequent N-linked glycosylation analysis using LC-MS/MS and computational sequence-based analyses. Though highly ubiquitous, glycosylation site specificity and the degree of glycosylation influenced by genetic and exogenous factors are still largely unknown. Our experimental analysis of N-glycans on MIK1 identified clusters of glycosylation that may explicate the regions involved in MIK1 ectodomain binding. Whether these glycans are necessary for function is yet to be determined. Phylogenetic comparison using multiple sequence alignment between MIK1 and other LRR-RLKs, namely TDR in Arabidopsis thaliana, revealed conserved structural motifs that are known to play functional roles in ligand and receptor binding.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Expresión Génica , Filogenia , Proteínas Quinasas , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas Quinasas/biosíntesis , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
20.
Biochem Biophys Res Commun ; 533(4): 806-812, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32993965

RESUMEN

Reversible histone acetylation and deacetylation play crucial roles in modulating light-regulated gene expression during seedling development. However, it remains largely unknown how histone-modifying enzymes interpose within the molecular framework of light signaling network. In this study, we show that AtHDA15 positively regulates photomorphogenesis by directly binding to COP1, a master regulator in the repression of photomorphogenesis. hda15 T-DNA knock-out and RNAi lines exhibited light hyposensitivity with reduced HY5 and PIF3 protein levels leading to long hypocotyl phenotypes in the dark while its overexpression leads to increased HY5 concentrations and short hypocotyl phenotypes. In vivo and in vitro binding assays show that HDA15 directly interacts with COP1 inside the nucleus modulating COP1's repressive activities. As COP1 is established to act within the nucleus to regulate specific transcription factors associated with growth and development in skotomorphogenesis, the direct binding by HDA15 is predicted to abrogate activities of COP1 in the presence of light and modulate its repressive activities in the dark. Our results append the mounting evidence for the role of HDACs in post-translational regulation in addition to their well-known histone modifying functions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Histona Desacetilasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/biosíntesis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Histona Desacetilasas/genética , Histona Desacetilasas/fisiología , Hipocótilo/anatomía & histología , Hipocótilo/crecimiento & desarrollo , Luz , Mutación , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...