Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plant Dis ; 107(9): 2778-2783, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36774560

RESUMEN

Abscisic acid (ABA) is a classical hormone involved in the plant defense against abiotic stresses, especially drought. However, its role in the defense response against biotic stresses is controversial: it can induce resistance to some pathogens but can also increase the susceptibility to other pathogens. Information regarding the effect of ABA on the relationship between plants and sedentary phytonematodes, such as Meloidogyne paranaensis, is scarce. In this study, we found that ABA changed the susceptibility level of Arabidopsis thaliana against M. paranaensis. The population of M. paranaensis was reduced by 58.3% with the exogenous application of ABA 24 h before the nematode inoculation, which demonstrated that ABA plays an important role in the preinfectional defense of A. thaliana against M. paranaensis. The increase in the nematode population density in the ABA biosynthesis mutant, aba2-1, corroborated the results observed with the exogenous application of ABA. The phytohormone did not show nematicide or nematostatic effects on M. paranaensis juveniles in in vitro tests, indicating that the response is linked to intrinsic plant factors, which was corroborated by the decrease in the number of nematodes in the abi4-1 mutant. This reduction indicates that the gene expression regulation by transcript factors is possibly related to regulatory cascades mediated by ABA in the response of A. thaliana against M. paranaensis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo
2.
Anal Bioanal Chem ; 414(26): 7721-7730, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36068347

RESUMEN

The detection of phytohormones in real time has attracted increasing attention because of their critical roles in regulating the development and signaling of plants, especially in defense against biotic stresses. Herein, stainless steel sheet electrodes modified with carbon cement were coupled with paper-based analysis devices for direct and simultaneous detection of salicylic acid (SA) and indole-3-acetic acid (IAA) in plants. We demonstrated that the excellent conductivity of stainless steel sheet electrodes enabled us to simultaneously differentiate IAA and SA at a level of 10 nM. With our approach, the content of IAA and SA in Arabidopsis thaliana leaves infected or not infected with Pst DC3000 could be rapidly quantified at the same time. Our experimental results on differentiation of IAA and SA at different time points showed that there were antagonistic interactions between the IAA and SA after infection of Arabidopsis leaves with Pst DC3000. By offering a cost-effective approach for rapid and sensitive detection of IAA and SA, this study suggests that electrochemical detection can be used in the study and development of precision agriculture technology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Salicílico/farmacología , Acero Inoxidable , Reguladores del Crecimiento de las Plantas , Proteínas de Arabidopsis/farmacología , Pseudomonas syringae/fisiología , Ácidos Indolacéticos , Electrodos , Estrés Fisiológico , Carbono/farmacología , Enfermedades de las Plantas
3.
Adv Sci (Weinh) ; 9(21): e2201403, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524639

RESUMEN

Stomatal movement is indispensable for plant growth and survival in response to environmental stimuli. Cytosolic Ca2+ elevation plays a crucial role in ABA-induced stomatal closure during drought stress; however, to what extent the Ca2+ movement across the plasma membrane from the apoplast to the cytosol contributes to this process still needs clarification. Here the authors identify (-)-catechin gallate (CG) and (-)-gallocatechin gallate (GCG), components of green tea, as inhibitors of voltage-dependent K+ channels which regulate K+ fluxes in Arabidopsis thaliana guard cells. In Arabidopsis guard cells CG/GCG prevent ABA-induced: i) membrane depolarization; ii) activation of Ca2+ permeable cation (ICa ) channels; and iii) cytosolic Ca2+ transients. In whole Arabidopsis plants co-treatment with CG/GCG and ABA suppressed ABA-induced stomatal closure and surface temperature increase. Similar to ABA, CG/GCG inhibited stomatal closure is elicited by the elicitor peptide, flg22 but has no impact on dark-induced stomatal closure or light- and fusicoccin-induced stomatal opening, suggesting that the inhibitory effect of CG/GCG is associated with Ca2+ -related signaling pathways. This study further supports the crucial role of ICa channels of the plasma membrane in ABA-induced stomatal closure. Moreover, CG and GCG represent a new tool for the study of abiotic or biotic stress-induced signal transduction pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Catequina , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/farmacología , Estomas de Plantas/metabolismo , Té/metabolismo
4.
Plant Cell Environ ; 45(2): 378-391, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34919280

RESUMEN

Maintenance of genome stability is an essential requirement for all living organisms. Formaldehyde and UV-B irradiation cause DNA damage and affect genome stability, growth and development, but the interplay between these two genotoxic factors is poorly understood in plants. We show that Arabidopsis adh2/gsnor1 mutant, which lacks alcohol dehydrogenase 2/S-nitrosoglutathione reductase 1 (ADH2/GSNOR1), are hypersensitive to low fluence UV-B irradiation or UV-B irradiation-mimetic chemicals. Although the ADH2/GSNOR1 enzyme can act on different substrates, notably on S-hydroxymethylglutathione (HMG) and S-nitrosoglutathione (GSNO), our study provides several lines of evidence that the sensitivity of gsnor1 to UV-B is caused mainly by UV-B-induced formaldehyde accumulation rather than other factors such as alteration of the GSNO concentration. Our results demonstrate an interplay between formaldehyde and UV-B that exacerbates genome instability, leading to severe DNA damage and impaired growth and development in Arabidopsis, and show that ADH2/GSNOR1 is a key player in combating these effects.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Formaldehído/efectos adversos , Glutatión Reductasa/genética , Rayos Ultravioleta/efectos adversos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/farmacología , Glutatión Reductasa/farmacología , Mutágenos/farmacología
5.
Plant Physiol ; 185(2): 405-423, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721904

RESUMEN

In plants, root hairs undergo a highly polarized form of cell expansion called tip-growth, in which cell wall deposition is restricted to the root hair apex. In order to identify essential cellular components that might have been missed in earlier genetic screens, we identified conditional temperature-sensitive (ts) root hair mutants by ethyl methanesulfonate mutagenesis in Arabidopsis thaliana. Here, we describe one of these mutants, feronia-temperature sensitive (fer-ts). Mutant fer-ts seedlings were unaffected at normal temperatures (20°C), but failed to form root hairs at elevated temperatures (30°C). Map based-cloning and whole-genome sequencing revealed that fer-ts resulted from a G41S substitution in the extracellular domain of FERONIA (FER). A functional fluorescent fusion of FER containing the fer-ts mutation localized to plasma membranes, but was subject to enhanced protein turnover at elevated temperatures. While tip-growth was rapidly inhibited by addition of rapid alkalinization factor 1 (RALF1) peptides in both wild-type and fer-ts mutants at normal temperatures, root elongation of fer-ts seedlings was resistant to added RALF1 peptide at elevated temperatures. Additionally, at elevated temperatures fer-ts seedlings displayed altered reactive oxygen species (ROS) accumulation upon auxin treatment and phenocopied constitutive fer mutant responses to a variety of plant hormone treatments. Molecular modeling and sequence comparison with other Catharanthus roseus receptor-like kinase 1L (CrRLK1L) receptor family members revealed that the mutated glycine in fer-ts is highly conserved, but is not located within the recently characterized RALF23 and LORELI-LIKE-GLYCOPROTEIN 2 binding domains, perhaps suggesting that fer-ts phenotypes may not be directly due to loss of binding to RALF1 peptides.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfotransferasas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal , Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Membrana Celular/metabolismo , Pared Celular/metabolismo , Ácidos Indolacéticos/farmacología , Mutación , Hormonas Peptídicas/farmacología , Fenotipo , Fosfotransferasas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/parasitología , Temperatura
6.
Development ; 148(5)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33593817

RESUMEN

The shoot apical meristem (SAM) is a reservoir of stem cells that gives rise to all post-embryonic above-ground plant organs. The size of the SAM remains stable over time owing to a precise balance of stem cell replenishment versus cell incorporation into organ primordia. The WUSCHEL (WUS)/CLAVATA (CLV) negative feedback loop is central to SAM size regulation. Its correct function depends on accurate spatial expression of WUS and CLV3 A signaling pathway, consisting of ERECTA family (ERf) receptors and EPIDERMAL PATTERNING FACTOR LIKE (EPFL) ligands, restricts SAM width and promotes leaf initiation. Although ERf receptors are expressed throughout the SAM, EPFL ligands are expressed in its periphery. Our genetic analysis of Arabidopsis demonstrated that ERfs and CLV3 synergistically regulate the size of the SAM, and wus is epistatic to ERf genes. Furthermore, activation of ERf signaling with exogenous EPFLs resulted in a rapid decrease of CLV3 and WUS expression. ERf-EPFL signaling inhibits expression of WUS and CLV3 in the periphery of the SAM, confining them to the center. These findings establish the molecular mechanism for stem cell positioning along the radial axis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Transducción de Señal/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Cicloheximida/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Homeodominio/genética , Meristema/fisiología , Mutagénesis , Hojas de la Planta/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(46): 29178-29189, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139535

RESUMEN

Ethylene is an important plant hormone that regulates plant growth, in which the master transcriptionactivator EIN3 (Ethylene Insensitive 3)-mediated transcriptional activation plays vital roles. However, the EIN3-mediated transcriptional repression in ethylene response is unknown. We report here that a Transcriptional Repressor of EIN3-dependent Ethylene-response 1 (TREE1) interacts with EIN3 to regulate transcriptional repression that leads to an inhibition of shoot growth in response to ethylene. Tissue-specific transcriptome analysis showed that most of the genes are down-regulated by ethylene in shoots, and a DNA binding motif was identified that is important for this transcriptional repression. TREE1 binds to the DNA motif to repress gene expression in an EIN3-dependent manner. Genetic validation demonstrated that repression of TREE1-targeted genes leads to an inhibition of shoot growth. Overall, this work establishes a mechanism by which transcriptional repressor TREE1 interacts with EIN3 to inhibit shoot growth via transcriptional repression in response to ethylene.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , ADN de Plantas , Proteínas de Unión al ADN/farmacología , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/farmacología , Transcriptoma
8.
PLoS One ; 15(5): e0233383, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32428035

RESUMEN

ERECTA gene family encodes leucine-rich repeat receptor-like kinases that control major aspects of plant development such as elongation of aboveground organs, leaf initiation, development of flowers, and epidermis differentiation. To clarify the importance of ERECTA signaling for the development of soybean (Glycine max), we expressed the dominant-negative ERECTA gene from Arabidopsis thaliana that is truncated in the kinase domain (AtΔKinase). Expression of AtΔKinase in soybean resulted in the short stature, reduced number of leaves, reduced leaf surface area and enhanced branching in the transgenic plants. The transgenic AtΔKinase soybean plants exhibited increased tolerance to water deficit stress due to the reduction of total leaf area and reduced transpiration compared to the wild-type plants. Production of seeds in AtΔKinase lines was higher compared to wild type at regular conditions of cultivation and after exposure to drought stress. Transgenic seedlings expressing AtΔKinase were also able to withstand salt stress better than the wild-type. Established results demonstrated the significance of native soybean genes (GmER and GmERL) in development and stress response of soybean, and suggested that the truncated ERECTA gene of Arabidopsis thaliana can be used to manipulate the growth and stress response of different crop species.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Glycine max/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/farmacología , Receptores de Superficie Celular/genética , Estrés Fisiológico/efectos de los fármacos , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Glycine max/anatomía & histología
9.
Chem Biol Drug Des ; 96(2): 790-800, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32248621

RESUMEN

Non-small cell lung cancer (NSCLC) has the highest morbidity and mortality worldwide. OTU deubiquitinase 5 (OTUD5), a deubiquitinating enzyme, can enhance the stability of p53 and programmed cell death 5 (PDCD5), a protein related to the apoptosis, by deubiquitination. This study aimed to explore the biological function and underlying mechanism of OTUD5 in NSCLC. Western blot and qRT-PCR were used to detect the expression of OTUD5 protein and mRNA in NSCLC tissues and cells, respectively. RNAi was adopted to construct an OTUD5 low-expression model while the plasmids overexpressing p53 and PDCD5 were used to establish the overexpression models, respectively. CCK-8 assay, transwell assay, and apoptosis assay were carried out to analyze the changes in the proliferation, migration, and chemoresistance of A549 and HCC827 cells. The mechanism of OTUD5 in NSCLC was studied by Western blot. Down-regulated OTUD5 in NSCLC tissues was significantly correlated to a poor prognosis. The knockdown of OTUD5 inactivated p53 and PDCD5, promoting the proliferation and metastasis of NSCLC cells while inhibiting their apoptosis. OTUD5 knockdown also enhanced the resistance of NSCLC cells to doxorubicin and cisplatin. OTUD5 acted as a tumor suppressor in NSCLC by regulating the p53 and PDCD5 pathways.


Asunto(s)
Antineoplásicos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Arabidopsis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Antineoplásicos/farmacología , Apoptosis , Proteínas de Arabidopsis/farmacología , Línea Celular Tumoral , Proliferación Celular , Cisplatino/metabolismo , Cisplatino/farmacología , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Transducción de Señal , Proteasas Ubiquitina-Específicas/farmacología
10.
Plant J ; 103(2): 617-633, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32215973

RESUMEN

Plant cell wall remodeling plays a key role in the control of cell elongation and differentiation. In particular, fine-tuning of the degree of methylesterification of pectins was previously reported to control developmental processes as diverse as pollen germination, pollen tube elongation, emergence of primordia or elongation of dark-grown hypocotyls. However, how pectin degradation can modulate plant development has remained elusive. Here we report the characterization of a polygalacturonase (PG), AtPGLR, the gene for which is highly expressed at the onset of lateral root emergence in Arabidopsis. Due to gene compensation mechanisms, mutant approaches failed to determine the involvement of AtPGLR in plant growth. To overcome this issue, AtPGLR has been expressed heterologously in the yeast Pichia pastoris and biochemically characterized. We showed that AtPGLR is an endo-PG that preferentially releases non-methylesterified oligogalacturonides with a short degree of polymerization (< 8) at acidic pH. The application of the purified recombinant protein on Amaryllis pollen tubes, an excellent model for studying cell wall remodeling at acidic pH, induced abnormal pollen tubes or cytoplasmic leakage in the subapical dome of the pollen tube tip, where non-methylesterified pectin epitopes are detected. Those leaks could either be repaired by new ß-glucan deposits (mostly callose) in the cell wall or promoted dramatic burst of the pollen tube. Our work presents the full biochemical characterization of an Arabidopsis PG and highlights the importance of pectin integrity in pollen tube elongation.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Tubo Polínico/fisiología , Poligalacturonasa/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Tubo Polínico/efectos de los fármacos , Poligalacturonasa/genética , Poligalacturonasa/farmacología , Saccharomycetales
11.
Development ; 146(5)2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30770391

RESUMEN

Root hairs are protrusions from root epidermal cells with crucial roles in plant soil interactions. Although much is known about patterning, polarity and tip growth of root hairs, contributions of membrane trafficking to hair initiation remain poorly understood. Here, we demonstrate that the trans-Golgi network-localized YPT-INTERACTING PROTEIN 4a and YPT-INTERACTING PROTEIN 4b (YIP4a/b) contribute to activation and plasma membrane accumulation of Rho-of-plant (ROP) small GTPases during hair initiation, identifying YIP4a/b as central trafficking components in ROP-dependent root hair formation.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Genes de Plantas , Proteínas de la Membrana/farmacología , Raíces de Plantas/fisiología , Proteínas de Unión al GTP rho/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Membrana Celular/fisiología , Genotipo , Proteínas de la Membrana/genética , Proteínas de Unión al GTP Monoméricas/fisiología , Mutación , Fenotipo , Transporte de Proteínas , Semillas , Red trans-Golgi/fisiología
12.
BMC Plant Biol ; 18(1): 183, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189843

RESUMEN

BACKGROUND: Pollen development is a strictly controlled post-meiotic process during which microspores differentiate into microgametophytes and profound structural and functional changes occur in organelles. Annexin 5 is a calcium- and lipid-binding protein that is highly expressed in pollen grains and regulates pollen development and physiology. To gain further insights into the role of ANN5 in Arabidopsis development, we performed detailed phenotypic characterization of Arabidopsis plants with modified ANN5 levels. In addition, interaction partners and subcellular localization of ANN5 were analyzed to investigate potential functions of ANN5 at cellular level. RESULTS: Here, we report that RNAi-mediated suppression of ANN5 results in formation of smaller pollen grains, enhanced pollen lethality, and delayed pollen tube growth. ANN5 RNAi knockdown plants also displayed aberrant development during the transition from the vegetative to generative phase and during embryogenesis, reflected by delayed bolting time and reduced embryo size, respectively. At the subcellular level, ANN5 was delivered to the nucleus, nucleolus, and cytoplasm, and was frequently localized in plastid nucleoids, suggesting a likely role in interorganellar communication. Furthermore, ANN5-YFP co-immunoprecipitated with RABE1b, a putative GTPase, and interaction in planta was confirmed in plastidial nucleoids using FLIM-FRET analysis. CONCLUSIONS: Our findings let us to propose that ANN5 influences basal cell homeostasis via modulation of plastid activity during pollen maturation. We hypothesize that the role of ANN5 is to orchestrate the plastidial and nuclear genome activities via protein-protein interactions however not only in maturing pollen but also during the transition from the vegetative to the generative growth and seed development.


Asunto(s)
Anexina A5/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/farmacología , Plastidios/fisiología , Polen/crecimiento & desarrollo , Proteínas de Unión al GTP rab1/farmacología , Anexina A5/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Técnicas de Silenciamiento del Gen , Genes de Plantas , Homeostasis , Polen/anatomía & histología , Polen/genética , Tubo Polínico/crecimiento & desarrollo , Plantones/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Transcriptoma , Proteínas de Unión al GTP rab1/genética
13.
Biochim Biophys Acta Gen Subj ; 1862(12): 2545-2554, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30056100

RESUMEN

BACKGROUND: It remains an open question whether plant phloem sap proteins are functionally involved in plant defense mechanisms. METHODS: The antifungal effects of two profilin proteins from Arabidopsis thaliana, AtPFN1 and AtPFN2, were tested against 11 molds and 4 yeast fungal strains. Fluorescence profiling, biophysical, and biochemical analyses were employed to investigate their antifungal mechanism. RESULTS: Recombinant AtPFN1 and AtPFN2 proteins, expressed in Escherichia coli, inhibited the cell growth of various pathogenic fungal strains at concentrations ranging from 10 to 160 µg/mL. The proteins showed significant intracellular accumulation and cell-binding affinity for fungal cells. Interestingly, the AtPFN proteins could penetrate the fungal cell wall and membrane and act as inhibitors of fungal growth via generation of cellular reactive oxygen species and mitochondrial superoxide. This triggered the AtPFN variant-induced cell apoptosis, resulting in morphological changes in the cells. CONCLUSION: PFNs may play a critical role as antifungal proteins in the Arabidopsis defense system against fungal pathogen attacks. GENERAL SIGNIFICANCE: The present study indicates that two profilin proteins, AtPFN1 and AtPFN2, can act as natural antimicrobial agents in the plant defense system.


Asunto(s)
Antifúngicos/farmacología , Proteínas de Arabidopsis/farmacología , Arabidopsis/metabolismo , Profilinas/farmacología , Apoptosis , Especies Reactivas de Oxígeno/metabolismo
14.
Plant Cell Environ ; 41(10): 2328-2341, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29852518

RESUMEN

Environmental stresses are the major factors that limit productivity in plants. Here, we report on the function of an uncharacterized gene At1g07050, encoding a CCT domain-containing protein, from Arabidopsis thaliana. At1g07050 expression is highly repressed by oxidative stress. We used metabolomics, biochemical, and genomic approaches to analyse performance of transgenic lines with altered expression of At1g07050 under normal and oxidative stress conditions. At1g07050 overexpressing lines showed increased levels of reactive oxygen species (ROS), whereas knock-out mutants exhibited decreased levels of ROS and higher tolerance to oxidative stress generated in the chloroplast. Our results uncover a role for At1g07050 in cellular redox homeostasis controlling H2 O2 levels, due to changes in enzymes, metabolites, and transcripts related to ROS detoxification. Therefore, we call this gene FITNESS. Additionally, several genes such as ACD6, PCC1, and ICS1 related to salicylic acid signalling and defence were found differentially expressed among the lines. Notably, FITNESS absence significantly improved seed yield suggesting an effective fine-tuning trade-off between reproductive success and defence responses.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteínas Nucleares/farmacología , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , Clorofila/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Inmunidad de la Planta , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Prolina/metabolismo , Reproducción , Transducción de Señal
15.
J Proteomics ; 175: 114-126, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29325990

RESUMEN

Jasmonate ZIM-domain (JAZ) proteins are key transcriptional repressors regulating various biological processes. Although many studies have studied JAZ proteins by genetic and biochemical analyses, little is known about JAZ7-associated global protein networks and how JAZ7 contributes to bacterial pathogen defense. In this study, we aim to fill this knowledge gap by conducting unbiased large-scale quantitative proteomics using tandem mass tags (TMT). We compared the proteomes of a JAZ7 knock-out line, a JAZ7 overexpression line, as well as the wild type Arabidopsis plants in the presence and absence of Pseudomonas syringae DC3000 infection. Both pairwise comparison and multi-factor analysis of variance reveal that differential proteins are enriched in biological processes such as primary and secondary metabolism, redox regulation, and response to stress. The differential regulation in these pathways may account for the alterations in plant size, redox homeostasis and accumulation of glucosinolates. In addition, possible interplay between genotype and environment is suggested as the abundance of seven proteins is influenced by the interaction of the two factors. Collectively, we demonstrate a role of JAZ7 in pathogen defense and provide a list of proteins that are uniquely responsive to genetic disruption, pathogen infection, or the interaction between genotypes and environmental factors. SIGNIFICANCE: We report proteomic changes as a result of genetic perturbation of JAZ7, and the contribution of JAZ7 in plant immunity. Specifically, the similarity between the proteomes of a JAZ7 knockout mutant and the wild type plants confirmed the functional redundancy of JAZs. In contrast, JAZ7 overexpression plants were much different, and proteomic analysis of the JAZ7 overexpression plants under Pst DC3000 infection revealed that JAZ7 may regulate plant immunity via ROS modulation, energy balance and glucosinolate biosynthesis. Multiple variate analysis for this two-factor proteomics experiment suggests that protein abundance is determined by genotype, environment and the interaction between them.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Proteómica/métodos , Pseudomonas syringae/patogenicidad , Proteínas Represoras/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/farmacología , Proteínas Bacterianas/efectos de los fármacos , Glucosinolatos/biosíntesis , Inmunidad de la Planta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/farmacología
16.
Microb Pathog ; 114: 420-430, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29191709

RESUMEN

Strigolactones (SLs) play an important role in controlling root growth, shoot branching, and plant-symbionts interaction. Despite the importance, the components of SL biosynthesis and signaling have not been unequivocally explored in soybean. Here we identified the putative components of SL synthesis enzymes GmMAX1a and GmMAX4a with tissue expression patterns and were apparently regulated by rhizobia infection and changed during nodule development. GmMAX1a and GmMAX4a were further characterized in soybean nodulation with knockdown transgenic hairy roots. GmMAX1a and GmMAX4a knockdown lines exhibit decreased nodule number and expression levels of several nodulation genes required for nodule development. Hormone analysis showed that GmMAX1a and GmMAX4a knockdown hairy roots had increased physiological level of ABA and JA but significantly decreased auxin content. This study not only revealed the conservation of SL biosynthesis but also showed close interactions between SL and other hormone signaling in controlling plant development and legume-rhizobia interaction.


Asunto(s)
Glycine max/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Nodulación de la Raíz de la Planta/efectos de los fármacos , Rhizobium/efectos de los fármacos , Simbiosis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes de Plantas , Vectores Genéticos , Oxigenasas/genética , Oxigenasas/farmacología , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Transducción de Señal , Glycine max/genética , Glycine max/crecimiento & desarrollo , Glycine max/microbiología
17.
J Agric Food Chem ; 65(38): 8340-8347, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28871788

RESUMEN

The highly conserved SGT1 (suppressor of the G2 alleles of skp1) proteins from Arabidopsis are known to contribute to plant resistance to pathogens. While SGT1 proteins respond to fungal pathogens, their antifungal activity is not reported and the mechanism for this inhibition is not well understood. Therefore, recombinant Arabidopsis SGT1 proteins were cloned, expressed, and purified to evaluate their antifungal activity, resulting in their potent inhibition of pathogen growth. Dye-labeled proteins are localized to the cytosol of Candida albicans cells without the disruption of the cell membrane. Moreover, we showed that entry of the proteins into C. albicans cells resulted in the accumulation of reactive oxygen species (ROS) and cell death via altered mitochondrial potential. Morphological changes of C. albicans cells in the presence of proteins were visualized by scanning electron microscopy. Our data suggest that AtSGT1 proteins play a critical role in plant resistance to pathogenic fungal infection and they can be classified to a new plant antifungal protein.


Asunto(s)
Antifúngicos/farmacología , Proteínas de Arabidopsis/farmacología , Arabidopsis/enzimología , Candida albicans/efectos de los fármacos , Glucosiltransferasas/farmacología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antifúngicos/inmunología , Antifúngicos/aislamiento & purificación , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/aislamiento & purificación , Candida albicans/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/inmunología , Glucosiltransferasas/aislamiento & purificación , Mitocondrias/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología
18.
Mech Ageing Dev ; 161(Pt B): 247-254, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491841

RESUMEN

The plant-derived decapeptide OSIP108 increases tolerance of yeast and human cells to apoptosis-inducing agents, such as copper and cisplatin. We performed a whole amino acid scan of OSIP108 and conducted structure-activity relationship studies on the induction of cisplatin tolerance (CT) in yeast. The use of cisplatin as apoptosis-inducing trigger in this study should be considered as a tool to better understand the survival-promoting nature of OSIP108 and not for purposes related to anti-cancer treatment. We found that charged residues (Arg, His, Lys, Glu or Asp) or a Pro on positions 4-7 improved OSIP108 activity by 10% or more. The variant OSIP108[G7P] induced the most pronounced tolerance to toxic concentrations of copper and cisplatin in yeast and/or HepG2 cells. Both OSIP108 and OSIP108[G7P] were shown to internalize equally into HeLa cells, but at a higher rate than the inactive OSIP108[E10A], suggesting that the peptides can internalize into cells and that OSIP108 activity is dependent on subsequent intracellular interactions. In conclusion, our studies demonstrated that tolerance/survival-promoting properties of OSIP108 can be significantly improved by single amino acid substitutions, and that these properties are dependent on (an) intracellular target(s), yet to be determined.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Proteínas de Arabidopsis/farmacocinética , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacocinética , Cisplatino/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , Saccharomyces cerevisiae/metabolismo
19.
Sci Rep ; 6: 32121, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27573545

RESUMEN

Scorpion toxins that block potassium channels and antimicrobial plant defensins share a common structural CSαß-motif. These toxins contain a toxin signature (K-C4-X-N) in their amino acid sequence, and based on in silico analysis of 18 plant defensin sequences, we noted the presence of a toxin signature (K-C5-R-G) in the amino acid sequence of the Arabidopsis thaliana defensin AtPDF2.3. We found that recombinant (r)AtPDF2.3 blocks Kv1.2 and Kv1.6 potassium channels, akin to the interaction between scorpion toxins and potassium channels. Moreover, rAtPDF2.3[G36N], a variant with a KCXN toxin signature (K-C5-R-N), is more potent in blocking Kv1.2 and Kv1.6 channels than rAtPDF2.3, whereas rAtPDF2.3[K33A], devoid of the toxin signature, is characterized by reduced Kv channel blocking activity. These findings highlight the importance of the KCXN scorpion toxin signature in the plant defensin sequence for blocking potassium channels. In addition, we found that rAtPDF2.3 inhibits the growth of Saccharomyces cerevisiae and that pathways regulating potassium transport and/or homeostasis confer tolerance of this yeast to rAtPDF2.3, indicating a role for potassium homeostasis in the fungal defence response towards rAtPDF2.3. Nevertheless, no differences in antifungal potency were observed between the rAtPDF2.3 variants, suggesting that antifungal activity and Kv channel inhibitory function are not linked.


Asunto(s)
Antifúngicos/farmacología , Proteínas de Arabidopsis/farmacología , Proteínas de Homeodominio/farmacología , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Antifúngicos/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv1.6 , Bloqueadores de los Canales de Potasio/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo
20.
Mol Plant ; 9(10): 1353-1365, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27435853

RESUMEN

ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, inhibits hypocotyl growth and lateral root development, and promotes pigment accumulation in a light-dependent manner in Arabidopsis. Recent research on its role in different processes such as hormone, nutrient, abiotic stress (abscisic acid, salt, cold), and reactive oxygen species signaling pathways clearly places HY5 at the center of a transcriptional network hub. HY5 regulates the transcription of a large number of genes by directly binding to cis-regulatory elements. Recently, HY5 has also been shown to activate its own expression under both visible and UV-B light. Moreover, HY5 acts as a signal that moves from shoot to root to promote nitrate uptake and root growth. Here, we review recent advances on HY5 research in diverse aspects of plant development and highlight still open questions that need to be addressed in the near future for a complete understanding of its function in plant signaling and beyond.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Nucleares/metabolismo , Ácido Abscísico , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Proteínas de Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/farmacología , Frío , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas Nucleares/genética , Proteínas Nucleares/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...