Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.651
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131371, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580013

RESUMEN

Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade ß-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.


Asunto(s)
Proteínas Bacterianas , Proteínas de Choque Térmico , Leptospira , Multimerización de Proteína , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Leptospira/metabolismo , Leptospira/enzimología , Leptospira interrogans/enzimología , Leptospira interrogans/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Unión Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Proteolisis
2.
J Biol Chem ; 300(4): 107165, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484801

RESUMEN

ClpG is a novel autonomous disaggregase found in Pseudomonas aeruginosa that confers resistance to lethal heat stress. The mechanism by which ClpG specifically targets protein aggregates for disaggregation is unknown. In their recent work published in JBC, Katikaridis et al. (2023) identify an avidity-based mechanism by which four or more ClpG subunits, through specific N-terminal hydrophobic residues located on an exposed ß-sheet loop, interact with multiple hydrophobic patches on an aggregated protein substrate. This study establishes a model for substrate binding to a prokaryotic disaggregase that should inform further investigations into other autonomous disaggregases.


Asunto(s)
Proteínas Bacterianas , Unión Proteica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Agregado de Proteínas , Interacciones Hidrofóbicas e Hidrofílicas , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química
3.
J Am Chem Soc ; 146(12): 8242-8259, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477967

RESUMEN

The DegP protease-chaperone operates within the periplasm of Gram-negative bacteria, where it assists in the regulation of protein homeostasis, promotes virulence, and is essential to survival under stress. To carry out these tasks, DegP forms a network of preorganized apo oligomers that facilitate the capture of substrates within distributions of cage-like complexes which expand to encapsulate clients of various sizes. Although the architectures of DegP cage complexes are well understood, little is known about the structures, dynamics, and interactions of client proteins within DegP cages and the relationship between client structural dynamics and function. Here, we probe host-guest interactions within a 600 kDa DegP cage complex throughout the DegP activation cycle using a model α-helical client protein through a combination of hydrodynamics measurements, methyl-transverse relaxation optimized spectroscopy-based solution nuclear magnetic resonance studies, and proteolytic activity assays. We find that in the presence of the client, DegP cages assemble cooperatively with few intermediates. Our data further show that the N-terminal half of the bound client, which projects into the interior of the cages, is predominantly unfolded and flexible, and exchanges between multiple conformational states over a wide range of time scales. Finally, we show that a concerted structural transition of the protease domains of DegP occurs upon client engagement, leading to activation. Together, our findings support a model of DegP as a highly cooperative and dynamic molecular machine that stabilizes unfolded states of clients, primarily via interactions with their C-termini, giving rise to efficient cleavage.


Asunto(s)
Proteínas de Choque Térmico , Hidrodinámica , Proteínas Periplasmáticas , Serina Endopeptidasas , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Espectroscopía de Resonancia Magnética
4.
Naturwissenschaften ; 111(2): 16, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483597

RESUMEN

Heat shock proteins are constitutively expressed chaperones induced by cellular stress, such as changes in temperature, pH, and osmolarity. These proteins, present in all organisms, are highly conserved and are recruited for the assembly of protein complexes, transport, and compartmentalization of molecules. In fungi, these proteins are related to their adaptation to the environment, their evolutionary success in acquiring new hosts, and regulation of virulence and resistance factors. These characteristics are interesting for assessment of the host adaptability and ecological transitions, given the emergence of infections by these microorganisms. Based on phylogenetic inferences, we compared the sequences of HSP9, HSP12, HSP30, HSP40, HSP70, HSP90, and HSP110 to elucidate the evolutionary relationships of different fungal organisms to suggest evolutionary patterns employing the maximum likelihood method. By the different reconstructions, our inference supports the hypothesis that these classes of proteins are associated with pathogenic gains against endothermic hosts, as well as adaptations for phytopathogenic fungi.


Asunto(s)
Proteínas de Choque Térmico , Chaperonas Moleculares , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Filogenia , Secuencia de Aminoácidos , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo
5.
Protein Sci ; 33(2): e4895, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38284490

RESUMEN

Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc-based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat-denatured Nluc dyads and triads can be efficiently refolded by the E. coli Hsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co-chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Choque Térmico , Luciferasas , Proteínas de Choque Térmico/química , Escherichia coli/metabolismo , Pliegue de Proteína , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Escherichia coli/química , Proteínas Bacterianas/química , Proteínas HSP70 de Choque Térmico/química , Chaperonas Moleculares/química
6.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140970, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871810

RESUMEN

J-domain proteins (JDPs) form a very large molecular chaperone family involved in proteostasis processes, such as protein folding, trafficking through membranes and degradation/disaggregation. JDPs are Hsp70 co-chaperones capable of stimulating ATPase activity as well as selecting and presenting client proteins to Hsp70. In mitochondria, human DjC20/HscB (a type III JDP that possesses only the conserved J-domain in some region of the protein) is involved in [FeS] protein biogenesis and assists human mitochondrial Hsp70 (HSPA9). Human DjC20 possesses a zinc-finger domain in its N-terminus, which closely contacts the J-domain and appears to be essential for its function. Here, we investigated the hDjC20 structure in solution as well as the importance of Zn+2 for its stability. The recombinant hDjC20 was pure, folded and capable of stimulating HSPA9 ATPase activity. It behaved as a slightly elongated monomer, as attested by small-angle X-ray scattering and SEC-MALS. The presence of Zn2+ in the hDjC20 samples was verified, a stoichiometry of 1:1 was observed, and its removal by high concentrations of EDTA and DTPA was unfeasible. However, thermal and chemical denaturation in the presence of EDTA led to a reduction in protein stability, suggesting a synergistic action between the chelating agent and denaturators that facilitate protein unfolding depending on metal removal. These data suggest that the affinity of Zn+2 for the protein is very high, evidencing its importance for the hDjC20 structure.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico , Humanos , Adenosina Trifosfatasas/metabolismo , Ácido Edético , Proteínas de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/química , Chaperonas Moleculares/química
7.
J Biol Chem ; 300(1): 105574, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110031

RESUMEN

The 70 kDa heat shock proteins (Hsp70s) play a pivotal role in many cellular functions using allosteric communication between their nucleotide-binding domain (NBD) and substrate-binding domain, mediated by an interdomain linker, to modulate their affinity for protein clients. Critical to modulation of the Hsp70 allosteric cycle, nucleotide-exchange factors (NEFs) act by a conserved mechanism involving binding to the ADP-bound NBD and opening of the nucleotide-binding cleft to accelerate the release of ADP and binding of ATP. The crystal structure of the complex between the NBD of the Escherichia coli Hsp70, DnaK, and its NEF, GrpE, was reported previously, but the GrpE in the complex carried a point mutation (G122D). Both the functional impact of this mutation and its location on the NEF led us to revisit the DnaK NBD/GrpE complex structurally using AlphaFold modeling and validation by solution methods that report on protein conformation and mutagenesis. This work resulted in a new model for the DnaK NBD in complex with GrpE in which subdomain IIB of the NBD rotates more than in the crystal structure, resulting in an open conformation of the nucleotide-binding cleft, which now resembles more closely what is seen in other Hsp/NEF complexes. Moreover, the new model is consistent with the increased ADP off-rate accompanying GrpE binding. Excitingly, our findings point to an interdomain allosteric signal in DnaK triggered by GrpE binding.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mutagénesis , Mutación Puntual , Unión Proteica , Dominios Proteicos , Reproducibilidad de los Resultados , Rotación
8.
J R Soc Interface ; 20(207): 20230300, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37876273

RESUMEN

Cold atmospheric pressure plasmas are used for surface decontamination or disinfection, e.g. in clinical settings. Protein aggregation has been shown to significantly contribute to the antibacterial mechanisms of plasma. To investigate the potential role of the redox-activated zinc-binding chaperone Hsp33 in preventing protein aggregation and thus mediating plasma resistance, we compared the plasma sensitivity of wild-type E. coli to that of an hslO deletion mutant lacking Hsp33 as well as an over-producing strain. Over-production of Hsp33 increased plasma survival rates above wild-type levels. Hsp33 was previously shown to be activated by plasma in vitro. For the PlasmaDerm source applied in dermatology, reversible activation of Hsp33 was confirmed. Thiol oxidation and Hsp33 unfolding, both crucial for Hsp33 activation, occurred during plasma treatment. After prolonged plasma exposure, however, unspecific protein oxidation was detected, the ability of Hsp33 to bind zinc ions was decreased without direct modifications of the zinc-binding motif, and the protein was inactivated. To identify chemical species of potential relevance for plasma-induced Hsp33 activation, reactive oxygen species were tested for their ability to activate Hsp33 in vitro. Superoxide, singlet oxygen and potentially atomic oxygen activate Hsp33, while no evidence was found for activation by ozone, peroxynitrite or hydroxyl radicals.


Asunto(s)
Proteínas de Escherichia coli , Gases em Plasma , Proteínas de Choque Térmico/química , Escherichia coli/metabolismo , Oxígeno Singlete/metabolismo , Superóxidos/metabolismo , Oxígeno/metabolismo , Proteínas de Escherichia coli/metabolismo , Gases em Plasma/farmacología , Agregado de Proteínas , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Zinc/metabolismo , Oxidación-Reducción
9.
Biomol NMR Assign ; 17(2): 239-242, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37589820

RESUMEN

Molecular chaperones aid proteins to fold and assemble without modifying their final structure, requiring, in several folding processes, the interplay between members of the Hsp70 and Hsp40 families. Here, we report the NMR chemical shift assignments for 1 H, 15 N, and 13 C nuclei of the backbone and side chains of the J-domain of the class B Hsp40 from Saccharomyces cerevisiae, Sis1, complexed with the C-terminal EEVD motif of Hsp70. The data revealed information on the structure and backbone dynamics that add significantly to the understanding of the J-domain-Hsp70-EEVD mechanism of interaction.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Unión Proteica , Resonancia Magnética Nuclear Biomolecular , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/química
10.
Protein Sci ; 32(9): e4737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37497650

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening human infections. Bacteriophage-encoded endolysins degrade the cell walls of Gram-positive bacteria by selectively hydrolyzing the peptidoglycan layer and thus are promising candidates to combat bacterial infections. PlyGRCS, the S. aureus-specific bacteriophage endolysin, contains a catalytic CHAP domain and a cell-wall binding SH3_5 domain connected by a linker. Here, we show the crystal structure of full-length PlyGRCS refined to 2.1 Å resolution. In addition, a serendipitous finding revealed that PlyGRCS binds to cold-shock protein C (CspC) by interacting with its CHAP and SH3_5 domains. CspC is an RNA chaperone that plays regulatory roles by conferring bacterial adaptability to various stress conditions. PlyGRCS has substantial lytic activity against S. aureus and showed only minimal change in its lytic activity in the presence of CspC. Whereas the PlyGRCS-CspC complex greatly reduced CspC-nucleic acid binding, the aforesaid complex may downregulate the CspC function during bacterial infection. Overall, the crystal structure and biochemical results of PlyGRCS provide a molecular basis for the bacteriolytic activity of PlyGRCS against S. aureus.


Asunto(s)
Proteínas Bacterianas , Proteínas y Péptidos de Choque por Frío , Endopeptidasas , Proteínas de Choque Térmico , Staphylococcus aureus Resistente a Meticilina , Fagos de Staphylococcus , Humanos , Proteínas y Péptidos de Choque por Frío/química , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/virología , Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Fagos de Staphylococcus/enzimología
11.
World J Microbiol Biotechnol ; 39(9): 248, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436487

RESUMEN

The present study reports the recognition and characterization of the gene encoding the co-chaperone DnaJ in the halophilic strain Mesobacillus persicus B48. The new extracted gene was sequenced and cloned in E. coli, followed by protein purification using a C-terminal His-tag. The stability and function of the recombinant DnaJ protein under salt and pH stress conditions were evaluated. SDS-PAGE revealed a band on nearly 40-kDa region. The homology model structure of new DnaJ demonstrated 56% similarity to the same protein from Streptococcus pneumonia. Fluorescence spectra indicated several hydrophobic residues located on the protein surface, which is consistent with the misfolded polypeptide recognition function of DnaJ. Spectroscopic results showed 56% higher carbonic anhydrase activity in the presence of the recombinant DnaJ homolog compared to its absence. In addition, salt resistance experiments showed that the survival of recombinant E. coli+DnaJ was 2.1 times more than control cells in 0.5 M NaCl. Furthermore, the number of recombinant E. coli BL21+DnaJ colonies was 7.7 times that of the control colonies in pH 8.5. Based on the results, DnaJ from the M. persicus can potentially be employed for improving the functional features of enzymes and other proteins in various applications.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Choque Térmico , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Escherichia coli/genética , Proteínas del Choque Térmico HSP40/genética , Clonación Molecular , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/metabolismo
12.
J Am Chem Soc ; 145(24): 13015-13026, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37282495

RESUMEN

The periplasmic protein DegP, which is implicated in virulence factor transport leading to pathogenicity, is a bi-functional protease and chaperone that helps to maintain protein homeostasis in Gram-negative bacteria and is essential to bacterial survival under stress conditions. To perform these functions, DegP captures clients inside cage-like structures, which we have recently shown to form through the reorganization of high-order preformed apo oligomers, consisting of trimeric building blocks, that are structurally distinct from client-bound cages. Our previous studies suggested that these apo oligomers may allow DegP to encapsulate clients of various sizes under protein folding stresses by forming ensembles that can include extremely large cage particles, but how this occurs remains an open question. To explore the relation between cage and substrate sizes, we engineered a series of DegP clients of increasing hydrodynamic radii and analyzed their influence on DegP cage formation. We used dynamic light scattering and cryogenic electron microscopy to characterize the hydrodynamic properties and structures of the DegP cages that are adopted in response to each client. We present a series of density maps and structural models that include those for novel particles of approximately 30 and 60 monomers. Key interactions between DegP trimers and the bound clients that stabilize the cage assemblies and prime the clients for catalysis are revealed. We also provide evidence that DegP can form cages which approach subcellular organelles in terms of size.


Asunto(s)
Proteínas de Choque Térmico , Proteínas Periplasmáticas , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Péptido Hidrolasas/metabolismo , Escherichia coli/metabolismo , Serina Endopeptidasas/química , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Chaperonas Moleculares/metabolismo
13.
Protein Sci ; 32(7): e4706, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37323096

RESUMEN

BiP (immunoglobulin heavy-chain binding protein) is a Hsp70 monomeric ATPase motor that plays broad and crucial roles in maintaining proteostasis inside the cell. Structurally, BiP is formed by two domains, a nucleotide-binding domain (NBD) with ATPase activity connected by a flexible hydrophobic linker to the substrate-binding domain. While the ATPase and substrate binding activities of BiP are allosterically coupled, the latter is also dependent on nucleotide binding. Recent structural studies have provided new insights into BiP's allostery; however, the influence of temperature on the coupling between substrate and nucleotide binding to BiP remains unexplored. Here, we study BiP's binding to its substrate at the single molecule level using thermo-regulated optical tweezers which allows us to mechanically unfold the client protein and explore the effect of temperature and different nucleotides on BiP binding. Our results confirm that the affinity of BiP for its protein substrate relies on nucleotide binding, by mainly regulating the binding kinetics between BiP and its substrate. Interestingly, our findings also showed that the apparent affinity of BiP for its protein substrate in the presence of nucleotides remains invariable over a wide range of temperatures, suggesting that BiP may interact with its client proteins with similar affinities even when the temperature is not optimal. Thus, BiP could play a role as a "thermal buffer" in proteostasis.


Asunto(s)
Proteínas de Choque Térmico , Nucleótidos , Humanos , Nucleótidos/metabolismo , Temperatura , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/química , Adenosina Trifosfatasas/química , Unión Proteica
14.
Genes Immun ; 24(3): 124-129, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37156995

RESUMEN

Heat shock protein family A (Hsp70) member 5 (HSPA5) is an endoplasmic reticulum chaperone, which regulates cell metabolism, particularly lipid metabolism. While HSPA5's role in regulating cell function is well described, HSPA5 binding to RNA and its biological function in nonalcoholic fatty liver disease (NAFLD) is still lacking. In the present study, the ability of HSPA5 to modulate alternative splicing (AS) of cellular genes was assessed using Real-Time PCR on 89 NAFLD-associated genes. RNA immunoprecipitation coupled to RNA sequencing (RIP-Seq) assays were also performed to identify cellular mRNAs bound by HSPA5. We obtained the HSPA5-bound RNA profile in HeLa cells and peak calling analysis revealed that HSPA5 binds to coding genes and lncRNAs. Moreover, RIP-Seq assays demonstrated that HSPA5 immunoprecipitates specific cellular mRNAs such as EGFR, NEAT1, LRP1 and TGFß1, which are important in the pathology of NAFLD. Finally, HSPA5 binding sites may be associated with splicing sites. We used the HOMER algorithm to search for motifs enriched in coding sequence (CDs) peaks, which identified over-representation of the AGAG motif in both sets of immunoprecipitated peaks. HSPA5 regulated genes at the 5'UTR alternative splicing and introns and in an AG-rich sequence-dependent manner. We propose that the HSPA5-AGAG interaction might play an important role in regulating alternative splicing of NAFLD-related genes. This report is the first to demonstrate that HSPA5 regulated pre-RNA alternative splicing, stability, or translation and affected target protein(s) via binding to lncRNA and mRNA linked to NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Células HeLa , Chaperón BiP del Retículo Endoplásmico , ARN Mensajero/genética
15.
Protein Sci ; 32(7): e4687, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37243950

RESUMEN

The HspB8-BAG3 complex plays an important role in the protein quality control acting alone or within multi-components complexes. To clarify the mechanism underlying its activity, in this work we used biochemical and biophysical approaches to study the tendency of both proteins to auto-assemble and to form the complex. Solubility and Thioflavin T assays, Fourier transform infrared spectroscopy and atomic force microscopy analyses clearly showed the tendency of HspB8 to self-assemble at high concentration and to form oligomers in a "native-like" conformation; otherwise, BAG3 aggregates poorly. Noteworthy, also HspB8 and BAG3 associate in a "native-like" conformation, forming a stable complex. Furthermore, the high difference between dissociation constant values of HspB8-HspB8 interaction with respect to the binding to BAG3 obtained by surface plasmon resonance confirms that HspB8 is an obligated partner of BAG3 in vivo. Lastly, both proteins alone or in the complex are able to bind and affect the aggregation of the Josephin domain, the structured domain that triggers the ataxin-3 fibrillation. In particular, the complex displayed higher activity than HspB8 alone. All this considered, we can assert that the two proteins form a stable assembly with chaperone-like activity that could contribute to the physiological role of the complex in vivo.


Asunto(s)
Proteínas de Choque Térmico , Proteínas Serina-Treonina Quinasas , Proteínas Adaptadoras Transductoras de Señales/química , Autofagia , Proteínas de Choque Térmico/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Humanos , Animales
16.
Plant Cell ; 35(2): 924-941, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36472129

RESUMEN

Heat shock protein 101 (HSP101) in plants, and bacterial and yeast orthologs, is essential for thermotolerance. To investigate thermotolerance mechanisms involving HSP101, we performed a suppressor screen in Arabidopsis thaliana of a missense HSP101 allele (hot1-4). hot1-4 plants are sensitive to acclimation heat treatments that are otherwise permissive for HSP101 null mutants, indicating that the hot1-4 protein is toxic. We report one suppressor (shot2, suppressor of hot1-4 2) has a missense mutation of a conserved residue in CLEAVAGE STIMULATION FACTOR77 (CstF77), a subunit of the polyadenylation complex critical for mRNA 3' end maturation. We performed ribosomal RNA depletion RNA-Seq and captured transcriptional readthrough with a custom bioinformatics pipeline. Acclimation heat treatment caused transcriptional readthrough in hot1-4 shot2, with more readthrough in heat-induced genes, reducing the levels of toxic hot1-4 protein and suppressing hot1-4 heat sensitivity. Although shot2 mutants develop like the wild type in the absence of stress and survive mild heat stress, reduction of heat-induced genes and decreased HSP accumulation makes shot2 in HSP101 null and wild-type backgrounds sensitive to severe heat stress. Our study reveals the critical function of CstF77 for 3' end formation of mRNA and the dominant role of HSP101 in dictating the outcome of severe heat stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Poliadenilación/genética , Calor , Respuesta al Choque Térmico/genética , Mutación/genética , Arabidopsis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor de Estimulación del Desdoblamiento/genética , Factor de Estimulación del Desdoblamiento/metabolismo
17.
J Med Chem ; 66(1): 677-694, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36516003

RESUMEN

A recent study illustrated that a fluorescence polarization assay can be used to identify substrate-competitive Hsp70 inhibitors that can be isoform-selective. Herein, we use that assay in a moderate-throughput screen and report the discovery of a druglike amino-acid-based inhibitor with reasonable specificity for the endoplasmic reticular Hsp70, Grp78. Using traditional medicinal chemistry approaches, the potency and selectivity were further optimized through structure-activity relationship (SAR) studies in parallel assays for six of the human Hsp70 isoforms. The top compounds were all tested against a panel of cancer cell lines and disappointingly showed little effect. The top-performing compound, 8, was retested using a series of endoplasmic reticulum (ER) stress-inducing agents and found to synergize with these agents. Finally, 8 was tested in a spheroid tumor model and found to be more potent than in two-dimensional models. The optimized Grp78 inhibitors are the first reported isoform-selective small-molecule-competitive inhibitors of an Hsp70-substrate interaction.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacología , Chaperonas Moleculares/química , Proteínas HSP70 de Choque Térmico , Estrés del Retículo Endoplásmico , Isoformas de Proteínas
18.
Proteins ; 91(1): 108-120, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988048

RESUMEN

Aromatic clusters in the core of proteins are often involved in imparting structural stability to proteins. However, their functional importance is not always clear. In this study, we investigate the thermosensing role of a phenylalanine cluster present in the GrpE homodimer. GrpE, which acts as a nucleotide exchange factor for the molecular chaperone DnaK, is well known for its thermosensing activity resulting from temperature-dependent structural changes that allow control of chaperone function. Using mutational analysis, we show that an interchain phenylalanine cluster in a four-helix bundle of the GrpE homodimer assists in the thermosensing ability of the co-chaperone. Substitution of aromatic residues with hydrophobic ones in the core of the four-helix bundle reduces the thermal stability of the bundle and that of a connected coiled-coil domain, which impacts thermosensing. Cell growth assays and SEM images of the mutants show filamentous growth of Escherichia coli cells at 42°C, which corroborates with the defect in thermosensing. Our work suggests that the interchain edge-to-face aromatic cluster is important for the propagation of the structural signal from the coiled-coil domain to the four-helical bundle of GrpE, thus facilitating GrpE-mediated thermosensing in bacteria.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Unión Proteica , Chaperonas Moleculares/química , Fenilalanina/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas Bacterianas/química
19.
Nucleic Acids Res ; 50(21): 12515-12526, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36370110

RESUMEN

In Escherichia coli, the heat shock protein 15 (Hsp15) is part of the cellular response to elevated temperature. Hsp15 interacts with peptidyl-tRNA-50S complexes that arise upon dissociation of translating 70S ribosomes, and is proposed to facilitate their rescue and recycling. A previous structure of E. coli Hsp15 in complex with peptidyl-tRNA-50S complex reported a binding site located at the central protuberance of the 50S subunit. By contrast, recent structures of RqcP, the Hsp15 homolog in Bacillus subtilis, in complex with peptidyl-tRNA-50S complexes have revealed a distinct site positioned between the anticodon-stem-loop (ASL) of the P-site tRNA and H69 of the 23S rRNA. Here we demonstrate that exposure of E. coli cells to heat shock leads to a decrease in 70S ribosomes and accumulation of 50S subunits, thus identifying a natural substrate for Hsp15 binding. Additionally, we have determined a cryo-EM reconstruction of the Hsp15-50S-peptidyl-tRNA complex isolated from heat shocked E. coli cells, revealing that Hsp15 binds to the 50S-peptidyl-tRNA complex analogously to its B. subtilis homolog RqcP. Collectively, our findings support a model where Hsp15 stabilizes the peptidyl-tRNA in the P-site and thereby promotes access to the A-site for putative rescue factors to release the aberrant nascent polypeptide chain.


Asunto(s)
Escherichia coli , Proteínas de Choque Térmico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Ribosomas/metabolismo , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo
20.
Nat Cell Biol ; 24(9): 1378-1393, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36075972

RESUMEN

While acetylated, RNA-binding-deficient TDP-43 reversibly phase separates within nuclei into complex droplets (anisosomes) comprised of TDP-43-containing liquid outer shells and liquid centres of HSP70-family chaperones, cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we show that transient oxidative stress, proteasome inhibition or inhibition of the ATP-dependent chaperone activity of HSP70 provokes reversible cytoplasmic TDP-43 de-mixing and transition from liquid to gel/solid, independently of RNA binding or stress granules. Isotope labelling mass spectrometry was used to identify that phase-separated cytoplasmic TDP-43 is bound by the small heat-shock protein HSPB1. Binding is direct, mediated through TDP-43's RNA binding and low-complexity domains. HSPB1 partitions into TDP-43 droplets, inhibits TDP-43 assembly into fibrils, and is essential for disassembly of stress-induced TDP-43 droplets. A decrease in HSPB1 promotes cytoplasmic TDP-43 de-mixing and mislocalization. HSPB1 depletion was identified in spinal motor neurons of patients with ALS containing aggregated TDP-43. These findings identify HSPB1 to be a regulator of cytoplasmic TDP-43 phase separation and aggregation.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Choque Térmico Pequeñas , Proteínas de Choque Térmico , Transición de Fase , Adenosina Trifosfato , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Complejo de la Endopetidasa Proteasomal , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...