Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 19(10): 1202-1213, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846094

RESUMEN

Protein aggregation is mostly viewed as deleterious and irreversible causing several pathologies. However, reversible protein aggregation has recently emerged as a novel concept for cellular regulation. Here, we characterize stress-induced, reversible aggregation of yeast pyruvate kinase, Cdc19. Aggregation of Cdc19 is regulated by oligomerization and binding to allosteric regulators. We identify a region of low compositional complexity (LCR) within Cdc19 as necessary and sufficient for reversible aggregation. During exponential growth, shielding the LCR within tetrameric Cdc19 or phosphorylation of the LCR prevents unscheduled aggregation, while its dephosphorylation is necessary for reversible aggregation during stress. Cdc19 aggregation triggers its localization to stress granules and modulates their formation and dissolution. Reversible aggregation protects Cdc19 from stress-induced degradation, thereby allowing cell cycle restart after stress. Several other enzymes necessary for G1 progression also contain LCRs and aggregate reversibly during stress, implying that reversible aggregation represents a conserved mechanism regulating cell growth and survival.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proliferación Celular , Agregado de Proteínas , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico , Proteínas de Ciclo Celular/síntesis química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Mutación , Fosforilación , Conformación Proteica , Proteolisis , Piruvato Quinasa/síntesis química , Piruvato Quinasa/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Relación Estructura-Actividad , Factores de Tiempo
2.
Biochemistry ; 52(43): 7542-50, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24083359

RESUMEN

FtsB and FtsL are two essential integral membrane proteins of the bacterial division complex or "divisome", both characterized by a single transmembrane helix and a juxtamembrane coiled coil domain. The two domains are important for the association of FtsB and FtsL, a key event for their recruitment to the divisome, which in turn allows the recruitment of the late divisomal components to the Z-ring and subsequent completion of the division process. Here we present a biophysical analysis performed in vitro that shows that the transmembrane domains of FtsB and FtsL associate strongly in isolation. Using Förster resonance energy transfer, we have measured the oligomerization of fluorophore-labeled transmembrane domains of FtsB and FtsL in both detergent and lipid. The data indicate that the transmembrane helices are likely a major contributor to the stability of the FtsB-FtsL complex. Our analyses show that FtsB and FtsL form a 1:1 higher-order oligomeric complex, possibly a tetramer. This finding suggests that the FtsB-FtsL complex is capable of multivalent binding to FtsQ and other divisome components, a hypothesis that is consistent with the possibility that the FtsB-FtsL complex has a structural role in the stabilization of the Z-ring.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Fragmentos de Péptidos/metabolismo , Proteínas de Ciclo Celular/síntesis química , Proteínas de Ciclo Celular/química , División Celular , Membrana Celular/química , Detergentes/química , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/síntesis química , Proteínas de Escherichia coli/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/síntesis química , Proteínas de la Membrana/química , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína
3.
J Org Chem ; 76(21): 8885-90, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21950469

RESUMEN

We had previously reported that Mitsunobu-based introduction of alkyl substituents onto the imidazole N(π)-position of a key histidine residue in phosphothreonine-containing peptides can impart high binding affinity against the polo-box domain of polo-like kinase 1. Our current paper investigates the mechanism leading to this N(π)-alkylation and provides synthetic methodologies that permit the facile synthesis of histidine N(π)-modified peptides. These agents represent new and potentially important tools for biological studies.


Asunto(s)
Proteínas de Ciclo Celular/síntesis química , Histidina/química , Histidina/síntesis química , Imidazoles/química , Péptidos/química , Péptidos/síntesis química , Fosfotreonina/química , Fosfotreonina/síntesis química , Proteínas Serina-Treonina Quinasas/síntesis química , Proteínas Proto-Oncogénicas/síntesis química , Alquilación , Proteínas de Ciclo Celular/química , Electrones , Histidina/análogos & derivados , Estructura Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/química , Quinasa Tipo Polo 1
5.
J Control Release ; 91(1-2): 45-51, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12932636

RESUMEN

Significant scientific effort focused on understanding the molecular basis of oncogenesis has identified multiple tumor suppressor genes and their corresponding functions. The ultimate goal of this work is to use this knowledge to devise anti-cancer strategies that specifically kill tumor cells in vivo, while leaving normal cells unharmed. Unfortunately, tumor suppressor proteins, while maintaining specificity for their intracellular targets, are often in excess of 20,000 Da and hence, undeliverable in vivo. To address the delivery problem, we previously further developed a protein transduction strategy that allows for the rapid delivery of large, biologically active proteins in excess of 100,000 Da into approximately 100% of cells in culture and most, if not all, cells/tissues in mouse models. The strategy involves the generation of an N-terminal fusion protein that contains the TAT protein transduction domain. Here the ability to manipulate tumor biology in several mouse tumor models in vivo is demonstrated by using protein transduction to delivery the p27(Kip) tumor suppressor protein. These observations serve as a starting point to further develop the delivery of peptide and proteins to specifically treat malignancies in vivo.


Asunto(s)
Proteínas de Ciclo Celular/síntesis química , Proteínas de Neoplasias/biosíntesis , Transducción Genética , Proteínas Supresoras de Tumor/síntesis química , Adenocarcinoma/tratamiento farmacológico , Animales , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Genes Reporteros/genética , Genes tat/genética , Ratones , Ratones Desnudos , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Proteínas Virales de Fusión/química , beta-Galactosidasa/metabolismo
6.
J Pept Sci ; 5(6): 263-71, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10463781

RESUMEN

We have designed, synthesized and purified a 51 amino acid peptide derived from an essential domain of human cdc25C phosphatase. In vivo, differential phosphorylation of this domain regulates either the induction of mitotic processes, or the checkpoint arrest of eukaryotic cells in response to DNA damage. Peptide synthesis was achieved using the stepwise Fmoc strategy and resulted in an important yield of highly pure peptide. The final peptide was identified by amino acid analysis, electrospray mass spectrometry and nuclear magnetic resonance, which revealed that one of the two methionines within the peptide was oxidized into its sulphoxide derivative We investigated whether this 51 amino acid peptide folded into secondary structures in solution by circular dichroism and observed the formation of alpha helices in TFE. Finally, we verified that this peptide could bind to its biologically relevant 14-3-3 partner in vitro by fluorescence spectroscopy.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/síntesis química , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/síntesis química , Fosfatasas cdc25 , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA