Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
J Immunol ; 208(8): 1978-1988, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35379744

RESUMEN

The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.


Asunto(s)
Péptidos Antimicrobianos , Proteínas de Drosophila , Drosophila , ARN Largo no Codificante , Animales , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Drosophila/genética , Drosophila/inmunología , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo
2.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076390

RESUMEN

Expansion of the available repertoire of reagents for visualization and manipulation of proteins will help understand their function. Short epitope tags linked to proteins of interest and recognized by existing binders such as nanobodies facilitate protein studies by obviating the need to isolate new antibodies directed against them. Nanobodies have several advantages over conventional antibodies, as they can be expressed and used as tools for visualization and manipulation of proteins in vivo. Here, we characterize two short (<15aa) NanoTag epitopes, 127D01 and VHH05, and their corresponding high-affinity nanobodies. We demonstrate their use in Drosophila for in vivo protein detection and re-localization, direct and indirect immunofluorescence, immunoblotting, and immunoprecipitation. We further show that CRISPR-mediated gene targeting provides a straightforward approach to tagging endogenous proteins with the NanoTags. Single copies of the NanoTags, regardless of their location, suffice for detection. This versatile and validated toolbox of tags and nanobodies will serve as a resource for a wide array of applications, including functional studies in Drosophila and beyond.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Epítopos/inmunología , Anticuerpos de Dominio Único/metabolismo , Animales
3.
Cell Rep ; 38(4): 110286, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081354

RESUMEN

Selective autophagy is a catabolic route that turns over specific cellular material for degradation by lysosomes, and whose role in the regulation of innate immunity is largely unexplored. Here, we show that the apical kinase of the Drosophila immune deficiency (IMD) pathway Tak1, as well as its co-activator Tab2, are both selective autophagy substrates that interact with the autophagy protein Atg8a. We also present a role for the Atg8a-interacting protein Sh3px1 in the downregulation of the IMD pathway, by facilitating targeting of the Tak1/Tab2 complex to the autophagy platform through its interaction with Tab2. Our findings show the Tak1/Tab2/Sh3px1 interactions with Atg8a mediate the removal of the Tak1/Tab2 signaling complex by selective autophagy. This in turn prevents constitutive activation of the IMD pathway in Drosophila. This study provides mechanistic insight on the regulation of innate immune responses by selective autophagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Autofagia/inmunología , Proteínas de Drosophila/inmunología , Inmunidad Innata/fisiología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Transducción de Señal/inmunología
4.
PLoS Genet ; 17(8): e1009718, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370736

RESUMEN

Insects depend on the innate immune response for defense against a wide array of pathogens. Central to Drosophila immunity are antimicrobial peptides (AMPs), released into circulation when pathogens trigger either of the two widely studied signal pathways, Toll or IMD. The Toll pathway responds to infection by Gram-positive bacteria and fungi while the IMD pathway is activated by Gram-negative bacteria. During activation of the IMD pathway, the NF-κB-like transcription factor Relish is phosphorylated and then cleaved, which is crucial for IMD-dependent AMP gene induction. Here we show that loss-of-function mutants of the unconventional histone variant H2Av upregulate IMD-dependent AMP gene induction in germ-free Drosophila larvae and adults. After careful dissection of the IMD pathway, we found that Relish has an epistatic relationship with H2Av. In the H2Av mutant larvae, SUMOylation is down-regulated, suggesting a possible role of SUMOylation in the immune phenotype. Eventually we demonstrated that Relish is mostly SUMOylated on amino acid K823. Loss of the potential SUMOylation site leads to significant auto-activation of Relish in vivo. Further work indicated that H2Av regulates Relish SUMOylation after physically interacting with Su(var)2-10, the E3 component of the SUMOylation pathway. Biochemical analysis suggested that SUMOylation of Relish prevents its cleavage and activation. Our findings suggest a new mechanism by which H2Av can negatively regulate, and thus prevent spontaneous activation of IMD-dependent AMP production, through facilitating SUMOylation of the NF-κB like transcription factor Relish.


Asunto(s)
Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Inmunidad Innata/genética , Factores de Transcripción/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Histonas/fisiología , FN-kappa B/genética , Transducción de Señal/genética , Sumoilación/genética , Receptores Toll-Like , Factores de Transcripción/genética
5.
Viruses ; 13(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452330

RESUMEN

Eukaryotic nucleic acid methyltransferase (MTase) proteins are essential mediators of epigenetic and epitranscriptomic regulation. DNMT2 belongs to a large, conserved family of DNA MTases found in many organisms, including holometabolous insects such as fruit flies and mosquitoes, where it is the lone MTase. Interestingly, despite its nomenclature, DNMT2 is not a DNA MTase, but instead targets and methylates RNA species. A growing body of literature suggests that DNMT2 mediates the host immune response against a wide range of pathogens, including RNA viruses. Curiously, although DNMT2 is antiviral in Drosophila, its expression promotes virus replication in mosquito species. We, therefore, sought to understand the divergent regulation, function, and evolution of these orthologs. We describe the role of the Drosophila-specific host protein IPOD in regulating the expression and function of fruit fly DNMT2. Heterologous expression of these orthologs suggests that DNMT2's role as an antiviral is host-dependent, indicating a requirement for additional host-specific factors. Finally, we identify and describe potential evidence of positive selection at different times throughout DNMT2 evolution within dipteran insects. We identify specific codons within each ortholog that are under positive selection and find that they are restricted to four distinct protein domains, which likely influence substrate binding, target recognition, and adaptation of unique intermolecular interactions. Collectively, our findings highlight the evolution of DNMT2 in Dipteran insects and point to structural, regulatory, and functional differences between mosquito and fruit fly homologs.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Dípteros/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/microbiología , Interacciones Huésped-Patógeno , Wolbachia/fisiología , Adaptación Biológica , Aedes/enzimología , Aedes/genética , Aedes/inmunología , Aedes/microbiología , Secuencia de Aminoácidos , Animales , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/inmunología , Dípteros/clasificación , Dípteros/enzimología , Dípteros/inmunología , Proteínas de Drosophila/química , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Evolución Molecular , Filogenia , Conformación Proteica , Alineación de Secuencia , Wolbachia/genética
6.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341118

RESUMEN

Male and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is the sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune- versus microbe-induced pathology and whether these may differ for the sexes. Here, by measuring metabolic and physiological outputs in Drosophila melanogaster with wild-type and mutant immune responses, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the immune deficiency (IMD) pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant to infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.


Asunto(s)
Proteínas Portadoras/inmunología , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Animales , Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/veterinaria , Femenino , Regulación de la Expresión Génica , Inmunidad Innata/fisiología , Masculino , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Factores Sexuales , Transducción de Señal/fisiología , Triglicéridos/metabolismo
7.
Dev Comp Immunol ; 124: 104183, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34174242

RESUMEN

The Toll signaling pathway is highly conserved from insects to mammals. Drosophila is a model species that is commonly used to study innate immunity. Although many studies have assessed protein-coding genes that regulate the Toll pathway, it is unclear whether long noncoding RNAs (lncRNAs) play regulatory roles in the Toll pathway. Here, we evaluated the expression of the lncRNA CR46018 in Drosophila. Our results showed that this lncRNA was significantly overexpressed after infection of Drosophila with Micrococcus luteus. A CR46018-overexpressing Drosophila strain was then constructed; we expected that CR46018 overexpression would enhance the expression of various antimicrobial peptides downstream of the Toll pathway, regardless of infection with M. luteus. RNA-seq analysis of CR46018-overexpressing Drosophila after infection with M. luteus showed that upregulated genes were mainly enriched in Toll and Imd signaling pathways. Moreover, bioinformatics predictions and RNA-immunoprecipitation experiments showed that CR46018 interacted with the transcription factors Dif and Dorsal to enhance the Toll pathway. During gram-positive bacterial infection, flies overexpressing CR46018 showed favorable survival compared with flies in the control group. Overall, our current work not only reveals a new immune regulatory factor, lncRNA-CR46018, and explores its potential regulatory model, but also provides a new perspective for the effect of immune disorders on the survival of Drosophila melanogaster.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/inmunología , Proteínas Nucleares/genética , Fosfoproteínas/genética , ARN Largo no Codificante/genética , Receptores Toll-Like/inmunología , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Inmunidad Innata , Micrococcus luteus/fisiología , ARN Largo no Codificante/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptores Toll-Like/genética
8.
Dev Comp Immunol ; 117: 103985, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33358662

RESUMEN

The fruitfly Drosophila melanogaster is a valuable model to unravel mechanisms of innate immunity, in particular in the context of viral infections. RNA interference, and more specifically the small interfering RNA pathway, is a major component of antiviral immunity in drosophila. In addition, the contribution of inducible transcriptional responses to the control of viruses in drosophila and other invertebrates is increasingly recognized. In particular, the recent discovery of a STING-IKKß-Relish signalling cassette in drosophila has confirmed that NF-κB transcription factors play an important role in the control of viral infections, in addition to bacterial and fungal infections. Here, we review recent developments in the field, which begin to shed light on the mechanisms involved in sensing of viral infections and in signalling leading to production of antiviral effectors.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Inmunidad Innata/inmunología , Interferencia de ARN/inmunología , Transducción de Señal/inmunología , Virus/inmunología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/virología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Inmunidad Innata/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , ARN Viral/genética , ARN Viral/inmunología , ARN Viral/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Virus/genética
9.
Elife ; 92020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33372660

RESUMEN

Studies in different animal model systems have revealed the impact of odors on immune cells; however, any understanding on why and how odors control cellular immunity remained unclear. We find that Drosophila employ an olfactory-immune cross-talk to tune a specific cell type, the lamellocytes, from hematopoietic-progenitor cells. We show that neuronally released GABA derived upon olfactory stimulation is utilized by blood-progenitor cells as a metabolite and through its catabolism, these cells stabilize Sima/HIFα protein. Sima capacitates blood-progenitor cells with the ability to initiate lamellocyte differentiation. This systemic axis becomes relevant for larvae dwelling in wasp-infested environments where chances of infection are high. By co-opting the olfactory route, the preconditioned animals elevate their systemic GABA levels leading to the upregulation of blood-progenitor cell Sima expression. This elevates their immune-potential and primes them to respond rapidly when infected with parasitic wasps. The present work highlights the importance of the olfaction in immunity and shows how odor detection during animal development is utilized to establish a long-range axis in the control of blood-progenitor competency and immune-priming.


Asunto(s)
Fenómenos Bioquímicos/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Madre Hematopoyéticas/citología , Hemocitos/citología , Animales , Drosophila/inmunología , Drosophila/metabolismo , Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Hematopoyesis/inmunología , Larva/metabolismo , Avispas/inmunología
10.
Sheng Wu Gong Cheng Xue Bao ; 36(6): 1198-1208, 2020 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-32597069

RESUMEN

In this research, we studied the formation of Drosophila melanogaster FADD (Fas-associated death domain-containing protein) amyloid fiber and its influence on signal transduction in IMD (Immune deficiency) signaling pathway to better understand the regulation mechanism of Drosophila innate immune signaling pathway, which will provide reference for the immune regulation in other species. First, we purified dFADD protein expressed in Escherichia coli and performed Sulfur flavin T binding and transmission electron microscopy to identify the dFADD amyloid fibers formed in vitro. Then we investigated the formation of dFADD polymers in S2 cells using SDD-AGE and confocal microscope. We also constructed dFADD mutants to find out which domain is essential to fiber formation and its effect on IMD signal transduction. Our results revealed that dFADD could be polymerized to form amyloid fiber polymers in vitro and inside the cells. Formation of fibers relies on DED (Death-effector domain) domain of dFADD, since DED domain-deleted mutant existed as a monomer. Dual luciferase reporter assay showed that intact DED domain was required for the induction of downstream antimicrobial peptides, indicating that fiber formation was the key to IMD signal transduction. Our study revealed the role of dFADD in mediating the cascade between IMD and Dredd in the IMD signaling pathway by forming amyloid fibers, suggesting an evolutionarily conserved regulatory mechanism of innate immune signaling pathway.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Inmunidad Innata , Transducción de Señal , Animales , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Proteína de Dominio de Muerte Asociada a Fas/biosíntesis , Proteína de Dominio de Muerte Asociada a Fas/inmunología , Inmunidad Innata/inmunología
11.
PLoS Genet ; 16(6): e1008861, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32525870

RESUMEN

In metazoan germlines, the piRNA pathway acts as a genomic immune system, employing small RNA-mediated silencing to defend host DNA from the harmful effects of transposable elements (TEs). Expression of genomic TEs is proposed to initiate self regulation by increasing the production of repressive piRNAs, thereby "adapting" piRNA-mediated control to the most active TE families. Surprisingly, however, piRNA pathway proteins, which execute piRNA biogenesis and enforce silencing of targeted sequences, evolve rapidly and adaptively in animals. If TE silencing is ensured through piRNA biogenesis, what necessitates changes in piRNA pathway proteins? Here we used interspecific complementation to test for functional differences between Drosophila melanogaster and D. simulans alleles of three adaptively evolving piRNA pathway proteins: Armitage, Aubergine and Spindle-E. In contrast to piRNA-mediated transcriptional regulators examined in previous studies, these three proteins have cytoplasmic functions in piRNA maturation and post-transcriptional silencing. Across all three proteins we observed interspecific divergence in the regulation of only a handful of TE families, which were more robustly silenced by the heterospecific piRNA pathway protein. This unexpected result suggests that unlike transcriptional regulators, positive selection has not acted on cytoplasmic piRNA effector proteins to enhance their function in TE repression. Rather, TEs may evolve to "escape" silencing by host proteins. We further discovered that D. simulans alleles of aub and armi exhibit enhanced off-target effects on host transcripts in a D. melanogaster background, as well as modest reductions in the efficiency of piRNA biogenesis, suggesting that promiscuous binding of D. simulans Aub and Armi proteins to host transcripts reduces their participation in piRNA production. Avoidance of genomic auto-immunity may therefore be a critical target of selection. Our observations suggest that piRNA effector proteins are subject to an evolutionary trade-off between defending the host genome from the harmful effect of TEs while also minimizing collateral damage to host genes.


Asunto(s)
Autoinmunidad/genética , Elementos Transponibles de ADN/inmunología , Drosophila simulans/genética , Evolución Molecular , Genoma de los Insectos/inmunología , ARN Interferente Pequeño/biosíntesis , Alelos , Animales , Animales Modificados Genéticamente , Citoplasma/genética , Citoplasma/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Drosophila simulans/metabolismo , Femenino , Regulación de la Expresión Génica/inmunología , Genoma de los Insectos/genética , Masculino , Mutación , Interferencia de ARN/inmunología
13.
PLoS Pathog ; 16(4): e1008458, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32339205

RESUMEN

The Immune Deficiency (IMD) pathway in Drosophila melanogaster is activated upon microbial challenge with Gram-negative bacteria to trigger the innate immune response. In order to decipher this nuclear factor κB (NF-κB) signaling pathway, we undertook an in vitro RNAi screen targeting E3 ubiquitin ligases specifically and identified the HECT-type E3 ubiquitin ligase Hyperplastic discs (Hyd) as a new actor in the IMD pathway. Hyd mediated Lys63 (K63)-linked polyubiquitination of the NF-κB cofactor Akirin was required for efficient binding of Akirin to the NF-κB transcription factor Relish. We showed that this Hyd-dependent interaction was required for the transcription of immunity-related genes that are activated by both Relish and Akirin but was dispensable for the transcription of genes that depend solely on Relish. Therefore Hyd is key in NF-κB transcriptional selectivity downstream of the IMD pathway. Drosophila depleted of Akirin or Hyd failed to express the full set of genes encoding immune-induced anti-microbial peptides and succumbed to immune challenges. We showed further that UBR5, the mammalian homolog of Hyd, was also required downstream of the NF-κB pathway for the activation of Interleukin 6 (IL6) transcription by LPS or IL-1ß in cultured human cells. Our findings link the action of an E3 ubiquitin ligase to the activation of immune effector genes, deepening our understanding of the involvement of ubiquitination in inflammation and identifying a potential target for the control of inflammatory diseases.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Proteínas Nucleares/inmunología , Factores de Transcripción/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Bacterias Gramnegativas/fisiología , Células HeLa , Humanos , Inmunidad Innata , Proteínas Nucleares/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Infect Genet Evol ; 82: 104308, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32240802

RESUMEN

Aspergilloses are opportunistic infections in animals and humans caused by several Aspergillus species, including Aspergillus flavus. Although the immune system of Drosophila melanogaster is extensively studied, little is known about the fly's specific responses to infection by A. flavus. We compared gene expression levels during induced infections in D. melanogaster by a virulent A. flavus isolate and a less virulent isolate, as well as from uninfected flies as a control. We found that 1081 of the 14,554 gene regions detected were significantly differentially expressed among treatments. Some of these up- and down- regulated genes were previously shown to be involved in defense responses against pathogens. Some are known to be involved in vitelline membrane formation in flies. Other up- and down-regulated genes are of unknown function. Understanding expression of these genes during the process of infection in flies should improve our knowledge of innate immunity in invertebrates, and by extension, in vertebrates as well.


Asunto(s)
Aspergillus flavus/patogenicidad , Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Interacciones Huésped-Patógeno/inmunología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/genética , Inmunidad Innata/genética
15.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244587

RESUMEN

Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Bees possess fewer PGRPs than Drosophila melanogaster and Anopheles gambiae but retain two important immune pathways, the Toll pathway and the Imd pathway, which can be triggered by the recognition of Dap-type PGN by PGRP-LCx with the assistance of PGRP-LCa in Drosophila. There are three isoforms of PGRP-LC including PGRP-LCx, PGRP-LCa and PGRP-LCy in Drosophila. Our previous study showed that a single PGRP-LC exists in bumblebees. In this present study, we prove that the bumblebee Bombus lantschouensis PGRP-LC (Bl-PGRP-LC) can respond to an infection with Gram-negative bacterium Escherichia coli through binding to the Dap-type PGNs directly, and that E. coli infection induces the quick and strong upregulation of PGRP-LC, abaecin and defensin. Moreover, the Bl-PGRP-LC exhibits a very strong affinity for the Dap-type PGN, much stronger than the affinity exhibited by the PGRP-LC from the more eusocial honeybee Apis mellifera (Am-PGRP-LC). In addition, mutagenesis experiments showed that the residue His390 is the anchor residue for the binding to the Dap-type PGN and forms a hydrogen bond with MurNAc rather than meso-Dap, which interacts with the anchor residue Arg413 of PGRP-LCx in Drosophila. Therefore, bumblebee PGRP-LC possesses exclusive characteristics for the immune response among insect PGRPs.


Asunto(s)
Abejas/inmunología , Proteínas Portadoras/inmunología , Escherichia coli/inmunología , Peptidoglicano/inmunología , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/metabolismo , Abejas/química , Abejas/microbiología , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Defensinas/genética , Defensinas/inmunología , Defensinas/metabolismo , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Escherichia coli/fisiología , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Unión Proteica , Conformación Proteica , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Homología de Secuencia de Aminoácido
16.
Proc Natl Acad Sci U S A ; 117(13): 7317-7325, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32188787

RESUMEN

Iron sequestration is a recognized innate immune mechanism against invading pathogens mediated by iron-binding proteins called transferrins. Despite many studies on antimicrobial activity of transferrins in vitro, their specific in vivo functions are poorly understood. Here we use Drosophila melanogaster as an in vivo model to investigate the role of transferrins in host defense. We find that systemic infections with a variety of pathogens trigger a hypoferremic response in flies, namely, iron withdrawal from the hemolymph and accumulation in the fat body. Notably, this hypoferremia to infection requires Drosophila nuclear factor κB (NF-κB) immune pathways, Toll and Imd, revealing that these pathways also mediate nutritional immunity in flies. Next, we show that the iron transporter Tsf1 is induced by infections downstream of the Toll and Imd pathways and is necessary for iron relocation from the hemolymph to the fat body. Consistent with elevated iron levels in the hemolymph, Tsf1 mutants exhibited increased susceptibility to Pseudomonas bacteria and Mucorales fungi, which could be rescued by chemical chelation of iron. Furthermore, using siderophore-deficient Pseudomonas aeruginosa, we discover that the siderophore pyoverdine is necessary for pathogenesis in wild-type flies, but it becomes dispensable in Tsf1 mutants due to excessive iron present in the hemolymph of these flies. As such, our study reveals that, similar to mammals, Drosophila uses iron limitation as an immune defense mechanism mediated by conserved iron-transporting proteins transferrins. Our in vivo work, together with accumulating in vitro studies, supports the immune role of insect transferrins against infections via an iron withholding strategy.


Asunto(s)
Proteínas de Drosophila/metabolismo , Hierro/metabolismo , Transferrina/metabolismo , Animales , Proteínas de Drosophila/inmunología , Drosophila melanogaster , Hemolinfa/inmunología , Hemolinfa/metabolismo , Inmunidad Innata , Hierro/inmunología , FN-kappa B/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo , Transferrina/inmunología
17.
EMBO J ; 39(12): e104486, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32162708

RESUMEN

Immune cells provide defense against non-self and have recently been shown to also play key roles in diverse processes such as development, metabolism, and tumor progression. The heterogeneity of Drosophila immune cells (hemocytes) remains an open question. Using bulk RNA sequencing, we find that the hemocytes display distinct features in the embryo, a closed and rapidly developing system, compared to the larva, which is exposed to environmental and metabolic challenges. Through single-cell RNA sequencing, we identify fourteen hemocyte clusters present in unchallenged larvae and associated with distinct processes, e.g., proliferation, phagocytosis, metabolic homeostasis, and humoral response. Finally, we characterize the changes occurring in the hemocyte clusters upon wasp infestation, which triggers the differentiation of a novel hemocyte type, the lamellocyte. This first molecular atlas of hemocytes provides insights and paves the way to study the biology of the Drosophila immune cells in physiological and pathological conditions.


Asunto(s)
Proteínas de Drosophila/inmunología , Hemocitos/inmunología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Larva/genética , Larva/inmunología
18.
J Immunol ; 204(8): 2143-2155, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32198143

RESUMEN

Negative regulation of innate immunity is essential to avoid autoinflammation. In Drosophila melanogaster, NF-κB signaling-mediated immune responses are negatively regulated at multiple levels. Using a Drosophila RNA interference in vitro screen, we identified a set of genes inhibiting immune activation. Four of these genes encode members of the chromatin remodeling Osa-containing Brahma (BAP) complex. Silencing additional two genes of the BAP complex was shown to have the same phenotype, confirming its role in immune regulation in vitro. In vivo, the knockdown of osa and brahma was shown to enhance the expression of the Toll pathway-mediated antimicrobial peptides when the flies were challenged with Gram-positive bacteria Micrococcus luteus In this setting, osa knockdown had a particularly strong effect on immune effectors that are predominantly activated by the Imd pathway. Accordingly, Drosophila NF-κB Relish expression was increased by osa silencing. These transcriptional changes were associated with enhanced survival from M. luteus + E. faecalis infection. Besides regulating the expression of immune effector genes, osa RNA interference decreased the expression of a large group of genes involved in metabolism, particularly proteolysis. Of note, the expression of the recently characterized, immune-inducible gene Induced by Infection (IBIN) was diminished in osa knockdown flies. Although IBIN has been shown to modulate metabolism upon infection, the expression of selected Osa-regulated metabolism genes was not rescued by overexpressing IBIN. We conclude that the BAP complex regulates expression of genes involved in metabolism at least partially independent or downstream of IBIN Moreover, Osa affects the NF-κB-mediated immune response by regulating Drosophila NF-κB factor Relish expression.


Asunto(s)
Proteínas de Ciclo Celular/inmunología , Proteínas de Unión al ADN/inmunología , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Inmunidad Innata/inmunología , Transactivadores/inmunología , Factores de Transcripción/inmunología , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , FN-kappa B/inmunología , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Front Immunol ; 11: 35, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32063902

RESUMEN

Innate immunity is an evolutionarily conserved host defense system against infections. The fruit fly Drosophila relies solely on innate immunity for infection defense, and the conservation of innate immunity makes Drosophila an ideal model for understanding the principles of innate immunity, which comprises both humoral and cellular responses. The mechanisms underlying the coordination of humoral and cellular responses, however, has remained unclear. Previously, we identified Gyc76C, a receptor-type guanylate cyclase that produces cyclic guanosine monophosphate (cGMP), as an immune receptor in Drosophila. Gyc76C mediates the induction of antimicrobial peptides for humoral responses by a novel cGMP pathway including a membrane-localized cGMP-dependent protein kinase, DG2, through downstream components of the Toll receptor such as dMyD88. Here we show that Gyc76C is also required for the proliferation of blood cells (hemocytes) for cellular responses to bacterial infections. In contrast to Gyc76C-dependent antimicrobial peptide induction, Gyc76C-dependent hemocyte proliferation is meditated by a small GTPase, Ras85D, and not by DG2 or dMyD88, indicating that Gyc76C mediates the cellular and humoral immune responses in distinct ways.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/inmunología , Guanilato Ciclasa/metabolismo , Inmunidad Celular , Inmunidad Humoral , Receptores de Superficie Celular/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular/genética , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , GTP Fosfohidrolasas/metabolismo , Bacterias Grampositivas , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Guanilato Ciclasa/genética , Guanilato Ciclasa/inmunología , Hemocitos/metabolismo , Hemocitos/microbiología , Inmunidad Innata , Interferencia de ARN , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Proteínas ras/metabolismo
20.
Genes (Basel) ; 11(2)2020 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098395

RESUMEN

Dissecting the genetic basis of natural variation in disease response in hosts provides insights into the coevolutionary dynamics of host-pathogen interactions. Here, a genome-wide association study of Drosophila melanogaster survival after infection with the Gram-positive entomopathogenic bacterium Enterococcus faecalis is reported. There was considerable variation in defense against E. faecalis infection among inbred lines of the Drosophila Genetics Reference Panel. We identified single nucleotide polymorphisms associated with six genes with a significant (p < 10-08, corresponding to a false discovery rate of 2.4%) association with survival, none of which were canonical immune genes. To validate the role of these genes in immune defense, their expression was knocked-down using RNAi and survival of infected hosts was followed, which confirmed a role for the genes krishah and S6k in immune defense. We further identified a putative role for the Bomanin gene BomBc1 (also known as IM23), in E. faecalis infection response. This study adds to the growing set of association studies for infection in Drosophila melanogaster and suggests that the genetic causes of variation in immune defense differ for different pathogens.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Variación Genética/genética , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiología , Enterococcus faecalis/genética , Enterococcus faecalis/inmunología , Enterococcus faecalis/patogenicidad , Estudio de Asociación del Genoma Completo , Bacterias Grampositivas/genética , Bacterias Grampositivas/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Selección Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...