Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.688
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716192

RESUMEN

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Nigeria , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mutación , Proteínas Protozoarias/genética , Combinación Arteméter y Lumefantrina/uso terapéutico , Masculino , Proteínas de Microfilamentos/genética , Femenino , Combinación de Medicamentos , Repeticiones de Microsatélite/genética , Genotipo , Análisis de Secuencia de ADN , Recurrencia , Polimorfismo Genético , Adulto
2.
Int J Biol Sci ; 20(7): 2356-2369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725858

RESUMEN

Dysregulation of cancer cell motility is a key driver of invasion and metastasis. High dysadherin expression in cancer cells is correlated with invasion and metastasis. Here, we found the molecular mechanism by which dysadherin regulates the migration and invasion of colon cancer (CC). Comprehensive analysis using single-cell RNA sequencing data from CC patients revealed that high dysadherin expression in cells is linked to cell migration-related gene signatures. We confirmed that the deletion of dysadherin in tumor cells hindered local invasion and distant migration using in vivo tumor models. In this context, by performing cell morphological analysis, we found that aberrant cell migration resulted from impaired actin dynamics, focal adhesion turnover and protrusive structure formation upon dysadherin expression. Mechanistically, the activation of focal adhesion kinase (FAK) was observed in dysadherin-enriched cells. The dysadherin/FAK axis enhanced cell migration and invasion by activating the FAK downstream cascade, which includes the Rho family of small GTPases. Overall, this study illuminates the role of dysadherin in modulating cancer cell migration by forcing actin dynamics and protrusive structure formation via FAK signaling, indicating that targeting dysadherin may be a potential therapeutic strategy for CC patients.


Asunto(s)
Movimiento Celular , Neoplasias del Colon , Humanos , Movimiento Celular/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Línea Celular Tumoral , Animales , Ratones , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Canales Iónicos/metabolismo , Canales Iónicos/genética , Transducción de Señal
3.
PLoS One ; 19(5): e0303758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768136

RESUMEN

Nitric oxide (NO) promotes angiogenesis via various mechanisms; however, the effective transmission of NO in ischemic diseases is unclear. Herein, we tested whether NO-releasing nanofibers modulate therapeutic angiogenesis in an animal hindlimb ischemia model. Male wild-type C57BL/6 mice with surgically-induced hindlimb ischemia were treated with NO-releasing 3-methylaminopropyltrimethoxysilane (MAP3)-derived or control (i.e., non-NO-releasing) nanofibers, by applying them to the wound for 20 min, three times every two days. The amount of NO from the nanofiber into tissues was assessed by NO fluorometric assay. The activity of cGMP-dependent protein kinase (PKG) was determined by western blot analysis. Perfusion ratios were measured 2, 4, and 14 days after inducing ischemia using laser doppler imaging. On day 4, Immunohistochemistry (IHC) with F4/80 and gelatin zymography were performed. IHC with CD31 was performed on day 14. To determine the angiogenic potential of NO-releasing nanofibers, aorta-ring explants were treated with MAP3 or control fiber for 20 min, and the sprout lengths were examined after 6 days. As per either LDPI (Laser doppler perfusion image) ratio or CD31 capillary density measurement, angiogenesis in the ischemic hindlimb was improved in the MAP3 nanofiber group; further, the total nitrate/nitrite concentration in the adduct muscle increased. The number of macrophage infiltrations and matrix metalloproteinase-9 (MMP-9) activity decreased. Vasodilator-stimulated phosphoprotein (VASP), one of the major substrates for PKG, increased phosphorylation in the MAP3 group. MAP3 nanofiber or NO donor SNAP (s-nitroso-n-acetyl penicillamine)-treated aortic explants showed enhanced sprouting in an ex vivo aortic ring assay, which was partially abrogated by KT5823, a potent inhibitor of PKG. These findings suggest that the novel NO-releasing nanofiber, MAP3 activates PKG and promotes therapeutic angiogenesis in response to hindlimb ischemia.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Miembro Posterior , Isquemia , Ratones Endogámicos C57BL , Nanofibras , Neovascularización Fisiológica , Óxido Nítrico , Animales , Nanofibras/química , Masculino , Óxido Nítrico/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Ratones , Miembro Posterior/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Microfilamentos/metabolismo , Moléculas de Adhesión Celular
4.
BMC Musculoskelet Disord ; 25(1): 331, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725009

RESUMEN

BACKGROUND: The development of neuropathic pain (NP) is one of the reasons why the pain is difficult to treat, and microglial activation plays an important role in NP. Recently, platelet-rich plasma (PRP) has emerged as a novel therapeutic method for knee osteoarthritis (KOA). However, it's unclarified whether PRP has analgesic effects on NP induced by KOA and the underlying mechanisms unknown. PURPOSE: To observe the analgesic effects of PRP on NP induced by KOA and explore the potential mechanisms of PRP in alleviating NP. METHODS: KOA was induced in male rats with intra-articular injections of monosodium iodoacetate (MIA) on day 0. The rats received PRP or NS (normal saline) treatment at days 15, 17, and 19 after modeling. The Von Frey and Hargreaves tests were applied to assess the pain-related behaviors at different time points. After euthanizing the rats with deep anesthesia at days 28 and 42, the corresponding tissues were taken for subsequent experiments. The expression of activating transcription factor 3 (ATF3) in dorsal root ganglia (DRG) and ionized-calcium-binding adapter molecule-1(Iba-1) in the spinal dorsal horn (SDH) was detected by immunohistochemical staining. In addition, the knee histological assessment was performed by hematoxylin-eosin (HE) staining. RESULTS: The results indicated that injection of MIA induced mechanical allodynia and thermal hyperalgesia, which could be reversed by PRP treatment. PRP downregulated the expression of ATF3 within the DRG and Iba-1 within the SDH. Furthermore, an inhibitory effect on cartilage degeneration was observed in the MIA + PRP group only on day 28. CONCLUSION: These results indicate that PRP intra-articular injection therapy may be a potential therapeutic agent for relieving NP induced by KOA. This effect could be attributed to downregulation of microglial activation and reduction in nerve injury.


Asunto(s)
Regulación hacia Abajo , Microglía , Neuralgia , Osteoartritis de la Rodilla , Plasma Rico en Plaquetas , Ratas Sprague-Dawley , Animales , Masculino , Neuralgia/terapia , Neuralgia/metabolismo , Microglía/metabolismo , Ratas , Osteoartritis de la Rodilla/terapia , Factor de Transcripción Activador 3/metabolismo , Ganglios Espinales/metabolismo , Modelos Animales de Enfermedad , Inyecciones Intraarticulares , Proteínas de Unión al Calcio/metabolismo , Ácido Yodoacético/toxicidad , Proteínas de Microfilamentos
5.
Sci Rep ; 14(1): 11591, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773220

RESUMEN

Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.


Asunto(s)
Diferenciación Celular , Podocitos , Animales , Podocitos/metabolismo , Podocitos/citología , Ratones , Proteínas WT1/metabolismo , Proteínas WT1/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Línea Celular , Técnicas de Cultivo de Célula/métodos , Línea Celular Transformada , Proliferación Celular
6.
Sci Rep ; 14(1): 10049, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698008

RESUMEN

Although some studies have reported on the expression and clinical significance of Fascin-1 (FSCN1) in liver cancer, the clinical application and differential diagnosis value of FSCN1 in liver cancer are still unclear. The aim of this study was to analyze the expression level of FSCN1 protein in liver cancer tissues and explore its diagnostic and application value in differentiating between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The immunehistochemical analysis was used to detect the expression of FSCN1 in 108 cases of HCC, 26 cases of ICC, 23 cases of liver cirrhosis, and 11 cases of normal liver tissues. The differences in the positive expression rate and strong positive expression rate of FSCN1 among different groups were analyzed. The positive rate of FSCN1 in normal liver tissues, liver cirrhosis, HCC, and ICC tissues was 0.0% (0/11), 0.0% (0/23), 13.9% (15/108), and 92.3% (24/26), respectively, while the strong positive rate was 0.0% (0/11), 0.0% (0/23), 0.9% (1/108), and 69.2% (18/26), respectively. Both the positive rate and strong positive rate of FSCN1 in ICC tissues were significantly higher than those in HCC, liver cirrhosis, and normal liver tissues. Additionally, the positive rate of FSCN1 in moderately to poorly differentiated HCC tissues was 18.8% (15/80), significantly higher than in well-differentiated HCC (0.0%, 0/28) (P = 0.031). In liver cancer, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FSCN1 positive prediction for ICC were 92.3%, 86.1%, 61.5%, and 97.9%, respectively, whereas the sensitivity, specificity, PPV, and NPV of FSCN1 strong positive prediction for ICC were 69.2%, 99.1%, 94.7%, and 93.0%, respectively. These results suggest that FSCN1 may play an important role in the occurrence and progression of liver cancer, and it can be used as a novel diagnostic marker for ICC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Proteínas Portadoras , Colangiocarcinoma , Neoplasias Hepáticas , Proteínas de Microfilamentos , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Portadoras/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Biomarcadores de Tumor/metabolismo , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/metabolismo , Anciano , Adulto , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/metabolismo , Diagnóstico Diferencial , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Sensibilidad y Especificidad
7.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754047

RESUMEN

OBJECTIVES: To assess whether the rate of change in synaptic proteins isolated from neuronally enriched extracellular vesicles (NEVs) is associated with brain and retinal atrophy in people with multiple sclerosis (MS). METHODS: People with MS were followed with serial blood draws, MRI (MRI), and optical coherence tomography (OCT) scans. NEVs were immunocaptured from plasma, and synaptopodin and synaptophysin proteins were measured using ELISA. Subject-specific rates of change in synaptic proteins, as well as brain and retinal atrophy, were determined and correlated. RESULTS: A total of 50 people with MS were included, 46 of whom had MRI and 45 had OCT serially. The rate of change in NEV synaptopodin was associated with whole brain (rho = 0.31; p = 0.04), cortical gray matter (rho = 0.34; p = 0.03), peripapillary retinal nerve fiber layer (rho = 0.37; p = 0.01), and ganglion cell/inner plexiform layer (rho = 0.41; p = 0.006) atrophy. The rate of change in NEV synaptophysin was also correlated with whole brain (rho = 0.31; p = 0.04) and cortical gray matter (rho = 0.31; p = 0.049) atrophy. DISCUSSION: NEV-derived synaptic proteins likely reflect neurodegeneration and may provide additional circulating biomarkers for disease progression in MS.


Asunto(s)
Atrofia , Encéfalo , Vesículas Extracelulares , Esclerosis Múltiple , Retina , Sinaptofisina , Humanos , Masculino , Femenino , Persona de Mediana Edad , Vesículas Extracelulares/metabolismo , Adulto , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Retina/patología , Retina/diagnóstico por imagen , Retina/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Sinaptofisina/metabolismo , Tomografía de Coherencia Óptica , Imagen por Resonancia Magnética , Proteínas de Microfilamentos/metabolismo
8.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38748453

RESUMEN

There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.


Asunto(s)
Citoesqueleto de Actina , Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Actinas/metabolismo , Seudópodos/metabolismo , Humanos , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
9.
Nat Commun ; 15(1): 4095, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750021

RESUMEN

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Núcleo Celular , Cromatina , Células Madre Mesenquimatosas , Actinas/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular , Citocalasina D/farmacología , Histonas/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Ratones , Ensamble y Desensamble de Cromatina
10.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38760173

RESUMEN

Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis. Orthotopic, ectopic, and short-term tail vein injection mouse breast and lung cancer models revealed a strong positive dependence of lung and bone metastasis on SWAP-70. Breast cancer cell growth, migration, adhesion, and invasion assays revealed SWAP-70's key role in these metastasis-related cell features and the requirement for SWAP-70 to bind F-actin. Biophysical experiments showed that tumor cell stiffness and deformability are negatively modulated by SWAP-70. Together, we present a hitherto undescribed, unique F-actin modulator as an important contributor to tumor metastasis.


Asunto(s)
Actinas , Neoplasias de la Mama , Neoplasias Pulmonares , Proteínas de Microfilamentos , Metástasis de la Neoplasia , Animales , Actinas/metabolismo , Ratones , Humanos , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Movimiento Celular/genética , Citoesqueleto de Actina/metabolismo , Proliferación Celular/genética , Adhesión Celular/genética , Unión Proteica
11.
Sci Signal ; 17(835): eadj0032, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713765

RESUMEN

Serum response factor (SRF) is an essential transcription factor for brain development and function. Here, we explored how an SRF cofactor, the actin monomer-sensing myocardin-related transcription factor MRTF, is regulated in mouse cortical neurons. We found that MRTF-dependent SRF activity in vitro and in vivo was repressed by cyclase-associated protein CAP1. Inactivation of the actin-binding protein CAP1 reduced the amount of actin monomers in the cytoplasm, which promoted nuclear MRTF translocation and MRTF-SRF activation. This function was independent of cofilin1 and actin-depolymerizing factor, and CAP1 loss of function in cortical neurons was not compensated by endogenous CAP2. Transcriptomic and proteomic analyses of cerebral cortex lysates from wild-type and Cap1 knockout mice supported the role of CAP1 in repressing MRTF-SRF-dependent signaling in vivo. Bioinformatic analysis identified likely MRTF-SRF target genes, which aligned with the transcriptomic and proteomic results. Together with our previous studies that implicated CAP1 in axonal growth cone function as well as the morphology and plasticity of excitatory synapses, our findings establish CAP1 as a crucial actin regulator in the brain relevant for formation of neuronal networks.


Asunto(s)
Actinas , Proteínas Portadoras , Corteza Cerebral , Ratones Noqueados , Factor de Respuesta Sérica , Transactivadores , Animales , Corteza Cerebral/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Factor de Respuesta Sérica/metabolismo , Factor de Respuesta Sérica/genética , Ratones , Actinas/metabolismo , Actinas/genética , Neuronas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Regulación de la Expresión Génica , Transducción de Señal
12.
Sci Rep ; 14(1): 11250, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755233

RESUMEN

The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.


Asunto(s)
Dictyostelium , Proteínas de Microfilamentos , Microtúbulos , Mitosis , Microtúbulos/metabolismo , Dictyostelium/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Transporte de Proteínas , Citocinesis , Actinas/metabolismo
13.
Commun Biol ; 7(1): 543, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714795

RESUMEN

The Wnt-planar cell polarity (Wnt-PCP) pathway is crucial in establishing cell polarity during development and tissue homoeostasis. This pathway is found to be dysregulated in many pathological conditions, including cancer and autoimmune disorders. The central event in Wnt-PCP pathway is the activation of Weak-similarity guanine nucleotide exchange factor (WGEF) by the adapter protein Dishevelled (Dvl). The PDZ domain of Dishevelled2 (Dvl2PDZ) binds and activates WGEF by releasing it from its autoinhibitory state. However, the actual Dvl2PDZ binding site of WGEF and the consequent activation mechanism of the GEF have remained elusive. Using biochemical and molecular dynamics studies, we show that a unique "internal-PDZ binding motif" (IPM) of WGEF mediates the WGEF-Dvl2PDZ interaction to activate the GEF. The residues at P2, P0, P-2 and P-3 positions of IPM play an important role in stabilizing the WGEFpep-Dvl2PDZ interaction. Furthermore, MD simulations of modelled Dvl2PDZ-WGEFIPM peptide complexes suggest that WGEF-Dvl2PDZ interaction may differ from the reported Dvl2PDZ-IPM interactions. Additionally, the apo structure of human Dvl2PDZ shows conformational dynamics different from its IPM peptide bound state, suggesting an induced fit mechanism for the Dvl2PDZ-peptide interaction. The current study provides a model for Dvl2 induced activation of WGEF.


Asunto(s)
Proteínas Dishevelled , Factores de Intercambio de Guanina Nucleótido , Simulación de Dinámica Molecular , Unión Proteica , Proteínas Dishevelled/metabolismo , Proteínas Dishevelled/química , Proteínas Dishevelled/genética , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Dominios PDZ , Secuencias de Aminoácidos , Vía de Señalización Wnt , Péptidos/metabolismo , Péptidos/química , Sitios de Unión , Proteínas de Microfilamentos , Péptidos y Proteínas de Señalización Intracelular
14.
Methods Mol Biol ; 2794: 95-104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630223

RESUMEN

Proteins often exist and function as part of higher-order complexes or networks. A challenge is to identify the universe of proximal and interacting partners for a given protein. We describe how the high-activity promiscuous biotin ligase called TurboID is fused to the actin-binding peptide LifeAct to label by biotinylation proteins that bind, or are in close proximity, to actin. The rapid enzyme kinetics of TurboID allows the profiles of actin-binding proteins to be compared under different conditions, such as acute disruption of filamentous actin structures with cytochalasin D.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Citoesqueleto de Actina , Biotinilación , Física
15.
Nat Commun ; 15(1): 3139, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605007

RESUMEN

Several actin-binding proteins (ABPs) phase separate to form condensates capable of curating the actin network shapes. Here, we use computational modeling to understand the principles of actin network organization within VASP condensate droplets. Our simulations reveal that the different actin shapes, namely shells, rings, and mixture states are highly dependent on the kinetics of VASP-actin interactions, suggesting that they arise from kinetic trapping. Specifically, we show that reducing the residence time of VASP on actin filaments reduces degree of bundling, thereby promoting assembly of shells rather than rings. We validate the model predictions experimentally using a VASP-mutant with decreased bundling capability. Finally, we investigate the ring opening within deformed droplets and found that the sphere-to-ellipsoid transition is favored under a wide range of filament lengths while the ellipsoid-to-rod transition is only permitted when filaments have a specific range of lengths. Our findings highlight key mechanisms of actin organization within phase-separated ABPs.


Asunto(s)
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Citoesqueleto/metabolismo
16.
J Med Virol ; 96(4): e29590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619024

RESUMEN

Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , Enfermedad de Alzheimer/genética , Encéfalo , Análisis por Conglomerados , COVID-19/genética , Endocannabinoides , Proteínas de Microfilamentos , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito
17.
Clin Exp Pharmacol Physiol ; 51(6): e13864, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679464

RESUMEN

Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.


Asunto(s)
Carcinoma de Células Escamosas , Papillomavirus Humano 16 , Metiltransferasas , Proteínas de Microfilamentos , Infecciones por Papillomavirus , Proteínas de Unión al ARN , Neoplasias del Cuello Uterino , Femenino , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinoma de Células Escamosas/virología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Proteínas Represoras , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo
18.
Mol Biol Cell ; 35(6): mr3, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630519

RESUMEN

Dendritic spines, the mushroom-shaped extensions along dendritic shafts of excitatory neurons, are critical for synaptic function and are one of the first neuronal structures disrupted in neurodevelopmental and neurodegenerative diseases. Microtubule (MT) polymerization into dendritic spines is an activity-dependent process capable of affecting spine shape and function. Studies have shown that MT polymerization into spines occurs specifically in spines undergoing plastic changes. However, discerning the function of MT invasion of dendritic spines requires the specific inhibition of MT polymerization into spines, while leaving MT dynamics in the dendritic shaft, synaptically connected axons and associated glial cells intact. This is not possible with the unrestricted, bath application of pharmacological compounds. To specifically disrupt MT entry into spines we coupled a MT elimination domain (MTED) from the Efa6 protein to the actin filament-binding peptide LifeAct. LifeAct was chosen because actin filaments are highly concentrated in spines and are necessary for MT invasions. Temporally controlled expression of this LifeAct-MTED construct inhibits MT entry into dendritic spines, while preserving typical MT dynamics in the dendrite shaft. Expression of this construct will allow for the determination of the function of MT invasion of spines and more broadly, to discern how MT-actin interactions affect cellular processes.


Asunto(s)
Espinas Dendríticas , Microtúbulos , Polimerizacion , Microtúbulos/metabolismo , Espinas Dendríticas/metabolismo , Animales , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Neuronas/metabolismo , Ratas , Proteínas de Microfilamentos/metabolismo
19.
Sci Rep ; 14(1): 9321, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653789

RESUMEN

ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.


Asunto(s)
Alopecia , Anodoncia , Senescencia Celular , Fibroblastos , Trastornos del Crecimiento , Proteínas de Microfilamentos , Humanos , Fibroblastos/metabolismo , Senescencia Celular/genética , Alopecia/metabolismo , Alopecia/patología , Alopecia/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/deficiencia , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/metabolismo , Actinas/metabolismo , Progeria/genética , Progeria/patología , Progeria/metabolismo
20.
Mol Biol Cell ; 35(6): ar85, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656798

RESUMEN

In response to pheromone Saccharomyces cerevisiae extend a mating projection. This process depends on the formation of polarized actin cables which direct secretion to the mating tip and translocate the nucleus for karyogamy. Here, we demonstrate that proper mating projection formation requires the formin Bni1, as well as the actin nucleation promoting activities of Bud6, but not the formin Bnr1. Further, Bni1 is required for pheromone gradient tracking. Our work also reveals unexpected new functions for Bil2 in the pheromone response. Previously we identified Bil2 as a direct inhibitor of Bnr1 during vegetative cell growth. Here, we show that Bil2 has Bnr1-independent functions in spatially focusing Bni1-GFP at mating projection tips, and in vitro Bil2 and its binding partner Bud6 organize Bni1 into clusters that nucleate actin assembly. bil2∆ cells also display entangled Bni1-generated actin cable arrays and defects in secretory vesicle transport and nuclear positioning. At low pheromone concentrations, bil2∆ cells are delayed in establishing a polarity axis, and at high concentrations they prematurely form a second and a third mating projection. Together, these results suggest that Bil2 promotes the proper formation and timing of mating projections by organizing Bni1 and maintaining a persistent axis of polarized growth.


Asunto(s)
Actinas , Feromonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Feromonas/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Polaridad Celular/fisiología , Proteínas del Citoesqueleto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...