Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78.380
Filtrar
1.
J Biochem Mol Toxicol ; 38(6): e23733, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38770938

RESUMEN

The aim of this investigation was to evaluate the differential expression of the sterol O-acyltransferase 1 (SOAT1) protein in gallbladder cancer tissues and cells, investigate the impact of Avastin on the proliferation, migration, invasion capabilities of gallbladder cancer cells, and its potential to induce cell apoptosis. Immunohistochemical analysis of samples from 145 gallbladder cancer patients was conducted, along with analysis of SOAT1 protein, mRNA expression levels, and cholesterol content in gallbladder cancer cell lines SGC-996, NOZ, and gallbladder cancer (GBC)-SD using Western blot and q-PCR techniques. Furthermore, the effects of Avastin on the proliferation, migration, and invasion capabilities of these gallbladder cancer cell lines were studied, and its ability to induce cell apoptosis was evaluated using flow cytometry, Western blot, and immunohistochemical methods. Additionally, gene expression and pathway analysis were performed, and the synergistic therapeutic effects of Avastin combined with gemcitabine were tested in a gallbladder cancer xenograft model. The study found that SOAT1 expression was significantly upregulated in GBC tissues and positively correlated with lymph node metastasis and TNM staging. In vitro experiments demonstrated that Avastin significantly inhibited the proliferation, migration, and invasion capabilities of SGC-996 and GBC-SD cell lines and induced apoptosis. RNA sequencing analysis revealed multiple differentially expressed genes in cells treated with Avastin, primarily enriched in biological pathways such as signaling transduction, malignant tumors, and the immune system. In vivo, experiments confirmed that Avastin could effectively suppress tumor growth in a gallbladder cancer xenograft model and enhanced the treatment efficacy when used in combination with gemcitabine. Overall, these findings provide new insights and strategies for targeted therapy in gallbladder cancer.


Asunto(s)
Neoplasias de la Vesícula Biliar , Esterol O-Aciltransferasa , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias de la Vesícula Biliar/genética , Humanos , Femenino , Masculino , Línea Celular Tumoral , Animales , Persona de Mediana Edad , Esterol O-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/genética , Ratones , Gemcitabina , Proliferación Celular/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Ratones Desnudos , Apoptosis/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Anciano , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
2.
BMC Cancer ; 24(1): 567, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711020

RESUMEN

BACKGROUND: Pyroptosis is a type of programmed cell death mediated by the gasdermin family. Gasdermin B (GSDMB), as a member of gasdermin family, can promote the occurrence of cell pyroptosis. However, the correlations of the GSDMB expression in colorectal cancer with clinicopathological predictors, immune microenvironment, and prognosis are unclear. METHODS: Specimens from 267 colorectal cancer cases were analyzed by immunohistochemistry to determine GSDMB expression, CD3+, CD4+, and CD8+ T lymphocytes, CD20+ B lymphocytes, CD68+ macrophages, and S100A8+ immune cells. GSDMB expression in cancer cells was scored in the membrane, cytoplasm, and nucleus respectively. GSDMB+ immune cell density was calculated. Univariate and multivariate survival analyses were performed. The association of GSDMB expression with other clinicopathological variables and immune cells were also analyzed. Double immunofluorescence was used to identify the nature of GSDMB+ immune cells. Cytotoxicity assays and sensitivity assays were performed to detect the sensitivity of cells to 5-fluorouracil. RESULTS: Multivariate survival analysis showed that cytoplasmic GSDMB expression was an independent favorable prognostic indicator. Patients with positive cytoplasmic or nuclear GSDMB expression would benefit from 5-fluorouracil based chemotherapy. The assays in vitro showed that high GSDMB expression enhanced the sensitivity of colorectal cancer cells to 5-fluorouracil. Patients with positive membranous or nuclear GSDMB expression had more abundant S100A8+ immune cells in the tumor invasive front. Positive nuclear GSDMB expression indicated more CD68+ macrophages in the tumor microenvironment. Moreover, GSDMB+ immune cell density in the stroma was associated with a higher neutrophil percentage but a lower lymphocyte counts and monocyte percentage in peripheral blood. Furthermore, the results of double immunofluorescence showed that GSDMB co-expressed with CD68 or S100A8 in stroma cells. CONCLUSION: The GSDMB staining patterns are linked to its role in cancer progression, the immune microenvironment, systemic inflammatory response, chemotherapeutic efficacy, and prognosis. Colorectal cancer cells with high GSDMB expression are more sensitive to 5-fluorouracil. However, GSDMB expression in immune cells has different effects on cancer progression from that in cancer cells.


Asunto(s)
Neoplasias Colorrectales , Progresión de la Enfermedad , Gasderminas , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Masculino , Pronóstico , Femenino , Persona de Mediana Edad , Microambiente Tumoral/inmunología , Anciano , Biomarcadores de Tumor/metabolismo , Fluorouracilo/uso terapéutico , Fluorouracilo/farmacología , Proteínas de Neoplasias/metabolismo , Inmunohistoquímica , Adulto , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Piroptosis
3.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732233

RESUMEN

Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer's disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, the choroid plexus (CP) forms an interface between the cerebrospinal fluid (CSF) and the bloodstream, known as the blood-CSF barrier (BCSFB). Historically, the BCSFB has received little attention as a potential pathway for drug delivery to the central nervous system (CNS). Nonetheless, this barrier is presently viewed as a dynamic transport interface that limits the traffic of molecules into and out of the CNS through the presence of membrane transporters, with parallel activity with the BBB. The localization and expression of drug transporters in brain barriers represent a huge obstacle for drug delivery to the brain and a major challenge for the development of therapeutic approaches to CNS disorders. The widespread interest in understanding how circadian clocks modulate many processes that define drug delivery in order to predict the variability in drug safety and efficacy is the next bridge to improve effective treatment. In this context, this study aims at characterizing the circadian expression of ABCG2 and DNPZ circadian transport profile using an in vitro model of the BCSFB. We found that ABCG2 displays a circadian pattern and DNPZ is transported in a circadian way across this barrier. This study will strongly impact on the capacity to modulate the BCSFB in order to control the penetration of DNPZ into the brain and improve therapeutic strategies for the treatment of AD according to the time of the day.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Barrera Hematoencefálica , Donepezilo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Barrera Hematoencefálica/metabolismo , Animales , Humanos , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/farmacología , Transporte Biológico , Plexo Coroideo/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Ritmo Circadiano , Proteínas de Neoplasias
4.
Mol Cancer ; 23(1): 94, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720298

RESUMEN

BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.


Asunto(s)
Proteínas Portadoras , Ácidos Grasos , Proteínas de la Membrana , Proteínas de Neoplasias , Neoplasias Ováricas , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas , Microambiente Tumoral , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Animales , Hormonas Tiroideas/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ácidos Grasos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Efecto Warburg en Oncología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Regulación Neoplásica de la Expresión Génica , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , Proteoglicanos
5.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38724194

RESUMEN

NUT carcinoma (NC) is an aggressive cancer with no effective treatment. About 70% of NUT carcinoma is associated with chromosome translocation events that lead to the formation of a BRD4::NUTM1 fusion gene. Because the BRD4::NUTM1 gene is unequivocally cytotoxic when ectopically expressed in cell lines, questions remain on whether the fusion gene can initiate NC. Here, we report the first genetically engineered mouse model for NUT carcinoma that recapitulates the human t(15;19) chromosome translocation in mice. We demonstrated that the mouse t(2;17) syntenic chromosome translocation, forming the Brd4::Nutm1 fusion gene, could induce aggressive carcinomas in mice. The tumors present histopathological and molecular features similar to human NC, with enrichment of undifferentiated cells. Similar to the reports of human NC incidence, Brd4::Nutm1 can induce NC from a broad range of tissues with a strong phenotypical variability. The consistent induction of poorly differentiated carcinoma demonstrated a strong reprogramming activity of BRD4::NUTM1. The new mouse model provided a critical preclinical model for NC that will lead to better understanding and therapy development for NC.


Asunto(s)
Proteínas Nucleares , Proteínas de Fusión Oncogénica , Factores de Transcripción , Animales , Ratones , Proteínas de Fusión Oncogénica/genética , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Modelos Animales de Enfermedad , Carcinoma/genética , Carcinoma/metabolismo , Translocación Genética/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas que Contienen Bromodominio
6.
Sci Rep ; 14(1): 11595, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773164

RESUMEN

Despite growing evidence implicating the calcium-activated chloride channel anoctamin1 (ANO1) in cancer metastasis, its direct impact on the metastatic potential of prostate cancer and the possible significance of epigenetic alteration in this process are not fully understood. Here, we show that ANO1 is minimally expressed in LNCap and DU145 prostate cancer cell lines with low metastatic potential but overexpressed in high metastatic PC3 prostate cancer cell line. The treatment of LNCap and DU145 cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) potentiates ANO1 expression, suggesting that DNA methylation is one of the mechanisms controlling ANO1 expression. Consistent with this notion, hypermethylation was detected at the CpG island of ANO1 promoter region in LNCap and DU145 cells, and 5-Aza-CdR treatment resulted in a drastic demethylation at promoter CpG methylation sites. Upon 5-Aza-CdR treatment, metastatic indexes, such as cell motility, invasion, and metastasis-related gene expression, were significantly altered in LNCap and DU145 cells. These 5-Aza-CdR-induced metastatic hallmarks were, however, almost completely ablated by stable knockdown of ANO1. These in vitro discoveries were further supported by our in vivo observation that ANO1 expression in xenograft mouse models enhances the metastatic dissemination of prostate cancer cells into tibial bone and the development of osteolytic lesions. Collectively, our results help elucidate the critical role of ANO1 expression in prostate cancer bone metastases, which is epigenetically modulated by promoter CpG methylation.


Asunto(s)
Anoctamina-1 , Neoplasias Óseas , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias , Regiones Promotoras Genéticas , Neoplasias de la Próstata , Masculino , Anoctamina-1/metabolismo , Anoctamina-1/genética , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Neoplasias Óseas/secundario , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ratones , Islas de CpG , Decitabina/farmacología , Movimiento Celular/genética , Epigénesis Genética , Azacitidina/farmacología
7.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38760939

RESUMEN

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Asunto(s)
Inhibidores Enzimáticos , Fibroblastos , Glicosaminoglicanos , Mucopolisacaridosis I , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/antagonistas & inhibidores , Carbohidrato Epimerasas/genética , Simulación del Acoplamiento Molecular , Antígenos de Neoplasias , Proteínas de Unión al ADN , Proteínas de Neoplasias
8.
Front Immunol ; 15: 1341745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765012

RESUMEN

Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.


Asunto(s)
Integrinas , Activación de Linfocitos , Animales , Ratones , Integrinas/metabolismo , Integrinas/genética , Activación de Linfocitos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones Noqueados , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/inmunología , Enfermedades Vestibulares/metabolismo , Cara/anomalías , Humanos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones Endogámicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Regulación de la Expresión Génica , Anomalías Múltiples , Enfermedades Hematológicas , Proteína de la Leucemia Mieloide-Linfoide
9.
Med Oncol ; 41(6): 137, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705933

RESUMEN

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas Asociadas a Microtúbulos , Proteínas de Neoplasias , Transducción de Señal , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Factor de Crecimiento Transformador beta , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Movimiento Celular , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/genética , Factor de Crecimiento Transformador beta/metabolismo
10.
Hum Genet ; 143(5): 721-734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691166

RESUMEN

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Asunto(s)
Estudios de Asociación Genética , Pérdida Auditiva , Proteínas de la Membrana , Serina Endopeptidasas , Humanos , Femenino , Masculino , Serina Endopeptidasas/genética , Adulto , Proteínas de la Membrana/genética , Pérdida Auditiva/genética , Niño , Persona de Mediana Edad , Adolescente , Preescolar , Genotipo , Estudios de Cohortes , Fenotipo , Mutación Missense , Estudios Transversales , Adulto Joven , Estudios Retrospectivos , Anciano , Proteínas de Neoplasias
11.
J Clin Invest ; 134(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747288

RESUMEN

Triple-negative breast cancer (TNBC) presents a formidable challenge in oncology due to its aggressive phenotype and the immunosuppressive nature of its tumor microenvironment (TME). In this issue of the JCI, Zhu, Banerjee, and colleagues investigated the potential of targeting the OTU domain-containing protein 4 (OTUD4)/CD73 axis to mitigate immunosuppression in TNBC. They identified elevated CD73 expression as a hallmark of immunosuppression in TNBC. Notably, the CD73 expression was regulated by OTUD4-mediated posttranslational modifications. Using ST80, a pharmacologic inhibitor of OTUD4, the authors demonstrated the restoration of cytotoxic T cell function and enhanced efficacy of anti-PD-L1 therapy in preclinical models. These findings underscore the therapeutic potential of targeting the OTUD4/CD73 axis in TNBC.


Asunto(s)
5'-Nucleotidasa , Procesamiento Proteico-Postraduccional , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Humanos , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , 5'-Nucleotidasa/inmunología , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Microambiente Tumoral/inmunología , Femenino , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Animales
12.
Biochem Biophys Res Commun ; 717: 150029, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38714015

RESUMEN

The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.


Asunto(s)
Proteína 10 de la LLC-Linfoma de Células B , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Dominios Proteicos , Multimerización de Proteína , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/química , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Proteína 10 de la LLC-Linfoma de Células B/química , Proteína 10 de la LLC-Linfoma de Células B/genética , Humanos , Cristalografía por Rayos X , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Caspasas/metabolismo , Caspasas/química
13.
Sci Rep ; 14(1): 11243, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755179

RESUMEN

Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , Púrpura Trombocitopénica Idiopática , Molécula de Interacción Estromal 1 , Linfocitos T Reguladores , Células Th17 , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Humanos , Animales , Ratones , Púrpura Trombocitopénica Idiopática/inmunología , Púrpura Trombocitopénica Idiopática/genética , Púrpura Trombocitopénica Idiopática/metabolismo , Femenino , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Adulto , Persona de Mediana Edad , Regulación de la Expresión Génica , Modelos Animales de Enfermedad
14.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753510

RESUMEN

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Asunto(s)
Calcio , Retículo Endoplásmico , Simulación de Dinámica Molecular , Proteínas de Neoplasias , Proteína ORAI1 , Multimerización de Proteína , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/química , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Retículo Endoplásmico/metabolismo , Calcio/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Dominios Proteicos , Células HEK293 , Sitios de Unión , Unión Proteica
15.
BMC Cardiovasc Disord ; 24(1): 202, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589776

RESUMEN

BACKGROUND: The latest evidence indicates that ATP-binding cassette superfamily G member 2 (ABCG2) is critical in regulating lipid metabolism and mediating statin or cholesterol efflux. This study investigates whether the function variant loss within ABCG2 (rs2231142) impacts lipid levels and statin efficiency. METHODS: PubMed, Cochrane Library, Central, CINAHL, and ClinicalTrials.gov were searched until November 18, 2023. RESULTS: Fifteen studies (34,150 individuals) were included in the analysis. The A allele [Glu141Lys amino acid substitution was formed by a transversion from cytosine (C) to adenine (A)] of rs2231142 was linked to lower levels of high-density lipoprotein cholesterol (HDL-C), and higher levels of low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). In addition, the A allele of rs2231142 substantially increased the lipid-lowering efficiency of rosuvastatin in Asian individuals with dyslipidemia. Subgroup analysis indicated that the impacts of rs2231142 on lipid levels and statin response were primarily in Asian individuals. CONCLUSIONS: The ABCG2 rs2231142 loss of function variant significantly impacts lipid levels and statin efficiency. Preventive use of rosuvastatin may prevent the onset of coronary artery disease (CAD) in Asian individuals with dyslipidemia.


Asunto(s)
Dislipidemias , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Rosuvastatina Cálcica , Predisposición Genética a la Enfermedad , LDL-Colesterol/metabolismo , Dislipidemias/diagnóstico , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
16.
PLoS One ; 19(4): e0298631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626010

RESUMEN

OBJECTIVE: Endothelial specific molecule-1 (ESM1) is implicated as an oncogene in multiple human cancers. However, the function of ESM1 in papillary thyroid cancer (PTC) is not well understood. The current study aimed to investigate the effect of ESM1 on the growth, migration, and invasion of PTC to provide a novel perspective for PTC treatment. METHODS: The expression levels of ESM1 in PTC tissues form 53 tumor tissue samples and 59 matching adjacent normal tissue samples were detected by immunohistochemical analysis. Knockdown of ESM1 expression in TPC-1 and SW579 cell lines was established to investigate its role in PTC. Moreover, cell proliferation, apoptosis, wound healing, and transwell assays were conducted in vitro to assess cell proliferation, migration and invasion. RESULTS: The findings revealed that ESM1 expression was significantly higher in PTC tissues than that found in paraneoplastic tissues (P<0.0001). Knockdown of ESM1 expression inhibited the proliferation, migration, and invasion of TPC-1 and SW579 cells in vitro. Compared with the control group, the mRNA and protein levels of ESM1 in PTC cells were significantly reduced following knockdown of its expression (P<0.01). In addition, ESM1-knockdown cells indicated decreased proliferation and decreased migratory and invasive activities (P<0.01, P<0.01, P<0.001, respectively). CONCLUSIONS: ESM1 was identified as a major gene in the occurrence and progression of PTC, which could increase the proliferation, migration, and invasion of PTC cells. It may be a promising diagnostic and therapeutic target gene.


Asunto(s)
Carcinoma Papilar , MicroARNs , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , ARN Interferente Pequeño/genética , Neoplasias de la Tiroides/patología , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteoglicanos/metabolismo
17.
PLoS One ; 19(4): e0294227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564630

RESUMEN

Current evidence suggests that DEP domain containing 1 (DEPDC1) has an important effect on non-small-cell lung cancer (NSCLC). However, the diagnostic value and the regulatory function within NSCLC are largely unclear. This work utilized publicly available databases and in vitro experiments for exploring, DEPDC1 expression, clinical features, diagnostic significance and latent molecular mechanism within NSCLC. According to our results, DEPDC1 was remarkably upregulated in the tissues of NSCLC patients compared with non-carcinoma tissues, linked with gender, stage, T classification and N classification based on TCGA data and associated with smoking status and stage according to GEO datasets. Meanwhile, the summary receiver operating characteristic (sROC) curve analysis result showed that DEPDC1 had a high diagnostic value in NSCLC (AUC = 0.96, 95% CI: 0.94-0.98; diagnostic odds ratio = 99.08, 95%CI: 31.91-307.65; sensitivity = 0.89, 95%CI: 0.81-0.94; specificity = 0.92, 95%CI: 0.86-0.96; positive predictive value = 0.94, 95%CI: 0.89-0.98; negative predictive value = 0.78, 95%CI: 0.67-0.90; positive likelihood ratio = 11.77, 95%CI: 6.11-22.68; and negative likelihood ratio = 0.12, 95%CI: 0.06-0.22). Subsequently, quantitative real-time PCR (qRT-PCR) and western blotting indicated that DEPDC1 was high expressed in NSCLC cells. According to the in vitro MTS and apoptotic assays, downregulated DEPDC1 expression targeting P53 signaling pathway inhibited the proliferation of NSCLC cells while promoting apoptosis of NSCLC cells. Moreover, DEPDC1 was significantly correlated with immune cell infiltrating levels in NSCLC based on TCGA data, which were primarily associated with T cells CD4 memory activated, macrophages M1, B cells memory, mast cells resting, T cells regulatory, monocytes, and T cells CD4 memory resting. Compared with the group with high expression of DEPDC1, the group with low expression level had higher scores for immune checkpoint inhibitors (ICIs) treatment. GSEA confirmed that DEPDC1 was involved in gene expression and tumor-related signaling pathways. Finally, DEPDC1 and its associated immune-related genes were shown to be enriched in 'receptor ligand activity', 'external side of plasma membrane', 'regulation of innate immune response', and 'Epstein-Barr virus infection' pathways. The present study demonstrates that DEPDC1 may contribute to NSCLC tumorigenesis and can be applied as the biomarker for diagnosis and immunology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Infecciones por Virus de Epstein-Barr , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Herpesvirus Humano 4/metabolismo , Transducción de Señal , Proteínas de Neoplasias/genética , Proteínas Activadoras de GTPasa/metabolismo
18.
J Clin Immunol ; 44(4): 94, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578569

RESUMEN

PURPOSE: Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS: Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS: A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS: This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.


Asunto(s)
Enfermedades Musculares , Sirolimus , Femenino , Humanos , Preescolar , Molécula de Interacción Estromal 1/genética , Subgrupos de Linfocitos T , Inmunoglobulina E , Proteínas de Neoplasias
19.
Signal Transduct Target Ther ; 9(1): 87, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584157

RESUMEN

The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Sepsis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Gasderminas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Piroptosis
20.
J Physiol Sci ; 74(1): 23, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561668

RESUMEN

Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhibited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.


Asunto(s)
Glicósidos Cardíacos , Neoplasias de la Tiroides , Humanos , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/metabolismo , Glicósidos/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ouabaína/farmacología , Proteínas de Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...