Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA ; 24(12): 1625-1633, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30254138

RESUMEN

Structural biology studies of archaeal and yeast box C/D ribonucleoprotein particles (RNPs) reveal a surprisingly wide range of forms. If form ever follows function, the different structures of box C/D small ribonucleoprotein particles (snoRNPs) may reflect their versatile functional roles beyond what has been recognized. A large majority of box C/D RNPs serve to site-specifically methylate the ribosomal RNA, typically as independent complexes. Select members of the box C/D snoRNPs also are essential components of the megadalton RNP enzyme, the small subunit processome that is responsible for processing ribosomal RNA. Other box C/D RNPs continue to be uncovered with either unexpected or unknown functions. We summarize currently known box C/D RNP structures in this review and identify the Nop56/58 and box C/D RNA subunits as the key elements underlying the observed structural diversity, and likely, the diverse functional roles of box C/D RNPs.


Asunto(s)
ARN de Archaea/química , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas/química , Saccharomyces cerevisiae/genética , Archaea/genética , Proteínas Nucleares/síntesis química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , ARN de Archaea/genética , ARN Ribosómico/química , ARN Ribosómico/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
J Am Chem Soc ; 140(7): 2493-2503, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29357227

RESUMEN

The self-assembly of polypeptides into amyloid structures is associated with a range of increasingly prevalent neurodegenerative diseases as well as with a select set of functional processes in biology. The phenomenon of self-assembly results in species with dramatically different sizes, from small oligomers to large fibrils; however, the kinetic relationship between these species is challenging to characterize. In the case of prion aggregates, these structures can self-replicate and act as infectious agents. Here we use single molecule spectroscopy to obtain quantitative information on the oligomer populations formed during aggregation of the yeast prion protein Ure2. Global analysis of the aggregation kinetics reveals the molecular mechanism underlying oligomer formation and depletion. Quantitative characterization indicates that the majority of Ure2 oligomers are relatively short-lived, and their rate of dissociation is much higher than their rate of conversion into growing fibrils. We identify an initial metastable oligomer, which can subsequently convert into a structurally distinct oligomer, which in turn converts into growing fibrils. We also show that fragmentation is responsible for the autocatalytic self-replication of Ure2 fibrils, but that preformed fibrils do not promote oligomer formation, indicating that secondary nucleation of the type observed for peptides and proteins associated with neurodegenerative disease does not occur at a significant rate for Ure2. These results establish a framework for elucidating the temporal and causal relationship between oligomers and larger fibrillar species in amyloid forming systems, and provide insights into why functional amyloid systems are not toxic to their host organisms.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Glutatión Peroxidasa/química , Priones/química , Proteínas de Saccharomyces cerevisiae/química , Glutatión Peroxidasa/síntesis química , Cinética , Priones/síntesis química , Agregado de Proteínas , Proteínas de Saccharomyces cerevisiae/síntesis química
3.
Bioconjug Chem ; 29(2): 316-323, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29188996

RESUMEN

Protein prenylation is a post-translational modification that involves the addition of one or two isoprenoid groups to the C-terminus of selected proteins using either farnesyl diphosphate or geranylgeranyl diphosphate. Three crucial enzymatic steps are involved in the processing of prenylated proteins to yield the final mature product. The farnesylated dodecapeptide, a-factor, is particularly useful for studies of protein prenylation because it requires the identical three-step process to generate the same C-terminal farnesylated cysteine methyl ester substructure present in larger farnesylated proteins. Recently, several groups have developed isoprenoid analogs bearing azide and alkyne groups that can be used in metabolic labeling experiments. Those compounds have proven useful for profiling prenylated proteins and also show great promise as tools to study how the levels of prenylated proteins vary in different disease models. Herein, we describe the preparation and use of prenylated a-factor analogs, and precursor peptides, to investigate two key questions. First, a-factor analogues containing modified isoprenoids were prepared to evaluate whether the non-natural lipid group interferes with the biological activity of the a-factor. Second, a-factor-derived precursor peptides were synthesized to evaluate whether they can be efficiently processed by the yeast proteases Rce1 and Ste24 as well as the yeast methyltransferase Ste14 to yield mature a-factor analogues. Taken together, the results reported here indicate that metabolic labeling experiments with azide- and alkyne-functionalized isoprenoids can yield prenylated products that are fully processed and biologically functional. Overall, these observations suggest that the isoprenoids studied here that incorporate bio-orthogonal functionality can be used in metabolic labeling experiments without concern that they will induce undesired physiological changes that may complicate data interpretation.


Asunto(s)
Alquinos/química , Azidas/química , Factor de Apareamiento/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Terpenos/química , Alquinos/síntesis química , Alquinos/metabolismo , Azidas/síntesis química , Azidas/metabolismo , Línea Celular , Factor de Apareamiento/síntesis química , Factor de Apareamiento/metabolismo , Prenilación de Proteína , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/metabolismo , Terpenos/síntesis química , Terpenos/metabolismo
4.
Nat Cell Biol ; 19(10): 1202-1213, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846094

RESUMEN

Protein aggregation is mostly viewed as deleterious and irreversible causing several pathologies. However, reversible protein aggregation has recently emerged as a novel concept for cellular regulation. Here, we characterize stress-induced, reversible aggregation of yeast pyruvate kinase, Cdc19. Aggregation of Cdc19 is regulated by oligomerization and binding to allosteric regulators. We identify a region of low compositional complexity (LCR) within Cdc19 as necessary and sufficient for reversible aggregation. During exponential growth, shielding the LCR within tetrameric Cdc19 or phosphorylation of the LCR prevents unscheduled aggregation, while its dephosphorylation is necessary for reversible aggregation during stress. Cdc19 aggregation triggers its localization to stress granules and modulates their formation and dissolution. Reversible aggregation protects Cdc19 from stress-induced degradation, thereby allowing cell cycle restart after stress. Several other enzymes necessary for G1 progression also contain LCRs and aggregate reversibly during stress, implying that reversible aggregation represents a conserved mechanism regulating cell growth and survival.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proliferación Celular , Agregado de Proteínas , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico , Proteínas de Ciclo Celular/síntesis química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Mutación , Fosforilación , Conformación Proteica , Proteolisis , Piruvato Quinasa/síntesis química , Piruvato Quinasa/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Relación Estructura-Actividad , Factores de Tiempo
5.
Chem Biol ; 22(8): 1074-86, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26256479

RESUMEN

Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104(A503V), directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility.


Asunto(s)
Amiloide/antagonistas & inhibidores , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1 , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/farmacología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/farmacología , Amiloide/química , Proteínas Amiloidogénicas/metabolismo , Fármacos Anti-VIH/síntesis química , Línea Celular , Proteínas de Choque Térmico/síntesis química , Humanos , Masculino , Fragmentos de Péptidos/síntesis química , Proteolisis , Proteínas de Saccharomyces cerevisiae/síntesis química , Semen/química , Semen/efectos de los fármacos
6.
Dev Cell ; 23(6): 1255-62, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23177648

RESUMEN

COPI mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) and within the Golgi stack, sorting transmembrane proteins bearing C-terminal KKxx or KxKxx motifs. The structure of KxKxx motifs bound to the N-terminal WD-repeat domain of ß'-COP identifies electrostatic contacts between the motif and complementary patches at the center of the ß'-COP propeller. An absolute requirement of a two-residue spacing between the terminal carboxylate group and first lysine residue results from interactions of carbonyl groups in the motif backbone with basic side chains of ß'-COP. Similar interactions are proposed to mediate binding of KKxx motifs by the homologous α-COP domain. Mutation of key interacting residues in either domain or in their cognate motifs abolishes in vitro binding and results in mistrafficking of dilysine-containing cargo in yeast without compromising cell viability. Flexibility between ß'-COP WD-repeat domains and the location of cargo binding have implications for COPI coat assembly.


Asunto(s)
Proteína Coat de Complejo I/metabolismo , Proteína Coatómero/metabolismo , Dipéptidos/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Proteína Coat de Complejo I/química , Proteína Coat de Complejo I/genética , Proteína Coatómero/química , Proteína Coatómero/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Modelos Moleculares , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Biochim Biophys Acta ; 1804(9): 1841-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20601218

RESUMEN

Ethyl (S)-4-chloro-3-hydroxy butanoate (ECHB) is a building block for the synthesis of hypercholesterolemia drugs. In this study, various microbial reductases have been cloned and expressed in Escherichia coli. Their reductase activities toward ethyl-4-chloro oxobutanoate (ECOB) have been assayed. Amidst them, Baker's yeast YDL124W, YOR120W, and YOL151W reductases showed high activities. YDL124W produced (S)-ECHB exclusively, whereas YOR120W and YOL151W made (R)-form alcohol. The homology models and docking models with ECOB and NADPH elucidated their substrate specificities and enantioselectivities. A glucose dehydrogenase-coupling reaction was used as NADPH recycling system to perform continuously the reduction reaction. Recombinant E. coli cell co-expressing YDL124W and Bacillus subtilis glucose dehydrogenase produced (S)-ECHB exclusively.


Asunto(s)
Butiratos/síntesis química , Butiratos/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Bacillus subtilis/metabolismo , Butiratos/química , Escherichia coli/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , Modelos Químicos , NADP/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estereoisomerismo , Especificidad por Sustrato
8.
Chem Biol ; 14(5): 589-99, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17524989

RESUMEN

Chitinases hydrolyse the beta(1,4)-glycosidic bonds of chitin, an essential fungal cell wall component. Genetic data on a subclass of fungal family 18 chitinases have suggested a role in cell wall morphology. Specific inhibitors of these enzymes would be useful as tools to study their role in cell wall morphogenesis and could possess antifungal properties. Here, we describe the crystallographic structure of a fungal "plant-type" family 18 chitinase, that of Saccharomyces cerevisiae CTS1. The enzyme is active against 4-methylumbelliferyl chitooligosaccharides and displays an unusually low pH optimum for activity. A library screen against ScCTS1 yielded hits with Ki 's as low as 3.2 microM. Crystal structures of ScCTS1 in complex with inhibitors from three series reveal striking mimicry of carbohydrate substrate by small aromatic moieties and a pocket that could be further exploited in optimization of these inhibitors.


Asunto(s)
Quitinasas/síntesis química , Quitinasas/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/farmacología , Saccharomyces cerevisiae/enzimología , Acetazolamida/farmacología , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Quitinasas/química , Clonación Molecular , Secuencia Conservada , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Colorantes Fluorescentes , Glicósidos/química , Concentración de Iones de Hidrógeno , Himecromona/análogos & derivados , Himecromona/química , Cinetina/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Plantas/química , Purinas/farmacología , Proteínas Recombinantes/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Trisacáridos/química , Trisacáridos/farmacología
9.
Methods Mol Biol ; 386: 95-121, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18604944

RESUMEN

Peptide fragments have been widely used in biophysical studies on specific regions of integral membrane proteins. Because of their inherent insoluble nature and tendency to aggregate the preparation of such model peptides is challenging. We have developed synthetic and biosynthetic approaches to prepare peptides containing single and multiple domains of a G protein-coupled receptor. Both the synthetic and biosynthetic products can be isolated by reversed-phase high-performance liquid chromatography to near homogeneity. The biosynthetic product, a fusion protein, is processed by CNBr cleavage to yield the target peptide in various isotopic forms. The final peptides are studied by circular dichroism spectroscopy to determine their secondary structure under a variety of conditions.


Asunto(s)
Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión/métodos , Dicroismo Circular , Bromuro de Cianógeno , Diseño de Fármacos , Electroforesis en Gel de Poliacrilamida/métodos , Escherichia coli/genética , Modelos Moleculares , Biología Molecular/métodos , Datos de Secuencia Molecular , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Plásmidos/genética , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Receptores del Factor de Conjugación/biosíntesis , Receptores del Factor de Conjugación/química , Receptores del Factor de Conjugación/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Biochemistry ; 43(41): 13193-203, 2004 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-15476413

RESUMEN

Analogues of alpha-factor, Saccharomyces cerevisiae tridecapeptide mating pheromone (H-Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr-OH), containing p-benzoylphenylalanine (Bpa), a photoactivatable group, and biotin as a tag, were synthesized using solid-phase methodologies on a p-benzyloxybenzyl alcohol polystyrene resin. Bpa was inserted at positions 1, 3, 5, 8, and 13 of alpha-factor to generate a set of cross-linkable analogues spanning the pheromone. The biological activity (growth arrest assay) and binding affinities of all analogues for the alpha-factor receptor (Ste2p) were determined. Two of the analogues that were tested, Bpa(1) and Bpa(5), showed 3-4-fold lower affinity than the alpha-factor, whereas Bpa(3) and Bpa(13) had 7-12-fold lower affinities. Bpa(8) competed poorly with [(3)H]-alpha-factor for Ste2p. All of the analogues tested except Bpa(8) had detectable halos in the growth arrest assay, indicating that these analogues are alpha-factor agonists. Cross-linking studies demonstrated that [Bpa(1)]-alpha-factor, [Bpa(3)]-alpha-factor, [Bpa(5)]-alpha-factor, and [Bpa(13)]-alpha-factor were cross-linked to Ste2p; the biotin tag on the pheromone was detected by a NeutrAvidin-HRP conjugate on Western blots. Digestion of Bpa(1), Bpa(3), and Bpa(13) cross-linked receptors with chemical and enzymatic reagents suggested that the N-terminus of the pheromone interacts with a binding domain consisting of residues from the extracellular ends of TM5-TM7 and portions of EL2 and EL3 close to these TMs and that there is a direct interaction between the position 13 side chain and a region of Ste2p (F55-R58) at the extracellular end of TM1. The results further define the sites of interaction between Ste2p and the alpha-factor, allowing refinement of a model for the pheromone bound to its receptor.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Péptidos/metabolismo , Fenilalanina/análogos & derivados , Feromonas/metabolismo , Etiquetas de Fotoafinidad/metabolismo , Receptores de Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Unión Competitiva , Biotina/metabolismo , Hidrólisis , Ligandos , Factor de Apareamiento , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Péptidos/síntesis química , Fenilalanina/metabolismo , Feromonas/síntesis química , Unión Proteica , Estructura Terciaria de Proteína , Receptores del Factor de Conjugación , Receptores de Péptidos/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/síntesis química , Factores de Transcripción/química , Tripsina/metabolismo , Rayos Ultravioleta
11.
Biochemistry ; 42(50): 14903-12, 2003 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-14674766

RESUMEN

Ras1p and Ras2p, from Saccharomyces cerevisiae, are GTP-binding proteins that are essential elements in the signaling cascade leading to the activation of adenylyl cyclase. To overcome proteolytic activities that have hampered biochemical studies of Ras1p so far, its gene was genetically modified after which full-length Ras1p could be obtained. The interaction of farnesylated and unprenylated Ras1p with guanine nucleotides, guanine nucleotide exchange factors, GTPase activating proteins, and adenylyl cyclase was compared to Ras2p and human Ha-Ras interactions. Farnesylation of Ras proteins was demonstrated to be a prerequisite for membrane-bound guanine nucleotide exchange factor dependent formation of Ras-GTP complexes, and for efficient Ras-mediated adenylyl cyclase activation. To relate observed functional deviations with sequence differences between Ras1p and Ras2p, which reside almost exclusively within the hypervariable region, truncated versions and chimaeras of the Ras proteins were made. The characteristics of these constructs point to the presence of the hypervariable region of yeast Ras proteins for an efficient activation of adenylyl cyclase. The importance of the latter was confirmed as inhibition of the activation of adenylyl cyclase by an isolated farnesylated hypervariable region of Ras2p could be shown. This strongly suggests that the hypervariable region of Ras proteins can interact directly with adenylyl cyclase.


Asunto(s)
Adenilil Ciclasas/fisiología , Variación Genética , Proteínas Recombinantes de Fusión/síntesis química , Proteínas de Saccharomyces cerevisiae/síntesis química , Transducción de Señal/genética , Proteínas ras/síntesis química , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Membrana Celular/metabolismo , Activación Enzimática/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Genes ras , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Proteína Oncogénica p21(ras)/química , Proteína Oncogénica p21(ras)/genética , Unión Proteica/genética , Prenilación de Proteína/genética , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Activadoras de ras GTPasa/fisiología , Factores de Intercambio de Guanina Nucleótido ras/fisiología , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/aislamiento & purificación , Proteínas ras/metabolismo , ras-GRF1/metabolismo , ras-GRF1/fisiología
12.
Chem Biol ; 10(8): 713-22, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12954330

RESUMEN

Attachment of a slightly modified basic region of a bZIP protein (GCN4) to a distamycin-related tripyrrole provides a bivalent system capable of binding with high affinity to specific DNA sequences. Appropriate adjustment of the linker between the two units has led to a hybrid that binds a 9 base-pair-long DNA site (TTTTATGAC) with low nanomolar affinity at 4 degrees C. Circular dichroism and gel retardation studies indicate that the binding occurs by simultaneous insertion of the bZIP basic region into the DNA major groove and the tripyrrole moiety into the minor groove of the flanking sequence. Analysis of hybrids bearing alternative linkers revealed that tight, specific binding is strongly dependent on the length and nature of the connecting unit.


Asunto(s)
Proteínas de Unión al ADN/síntesis química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Quinasas/síntesis química , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , ADN/química , Proteínas de Unión al ADN/química , Distamicinas/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Quinasas/química , Pirroles/química , Pirroles/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad
14.
Biochemistry ; 42(10): 2816-24, 2003 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-12627947

RESUMEN

A new ruthenium-cytochrome c derivative was designed to study electron transfer from cytochrome bc1 to cytochrome c (Cc). The single sulfhydryl on yeast H39C;C102T iso-1-Cc was labeled with Ru(2,2'-bipyrazine)2(4-bromomethyl-4'-methyl-2,2'-bipyridine) to form Ru(z)-39-Cc. The Ru(z)-39-Cc derivative has the same steady-state activity with yeast cytochrome bc1 as wild-type yeast iso-1-Cc, indicating that the ruthenium complex does not interfere in the binding interaction. Laser excitation of reduced Ru(z)-39-Cc results in electron transfer from heme c to the excited state of ruthenium with a rate constant of 1.5 x 10(6) x s(-1). The resulting Ru(I) is rapidly oxidized by atmospheric oxygen in the buffer. The yield of photooxidized heme c is 20% in a single flash. Flash photolysis of a 1:1 complex between reduced yeast cytochrome bc1 and Ru(z)-39-Cc at low ionic strength leads to rapid photooxidation of heme c, followed by intracomplex electron transfer from cytochrome c1 to heme c with a rate constant of 1.4 x 10(4) x s(-1). As the ionic strength is raised above 100 mM, the intracomplex phase disappears, and a new phase appears due to the bimolecular reaction between solution Ru-39-Cc and cytochrome bc1. The interaction of yeast Ru-39-Cc with yeast cytochrome bc1 is stronger than that of horse Ru-39-Cc with bovine cytochrome bc1, suggesting that nonpolar interactions are stronger in the yeast system.


Asunto(s)
Grupo Citocromo c/síntesis química , Complejo III de Transporte de Electrones/química , Hemo/análogos & derivados , Rutenio/química , Proteínas de Saccharomyces cerevisiae/síntesis química , Cristalografía por Rayos X , Transporte de Electrón , Hemo/química , Cinética , Modelos Químicos , Compuestos Organometálicos/síntesis química , Concentración Osmolar , Fotólisis , Proteínas de Saccharomyces cerevisiae/química
15.
Biochemistry ; 41(52): 15676-84, 2002 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-12501196

RESUMEN

Backbone amide hydrogen bonds play a central role in protein secondary and tertiary structure. Previous studies have shown that substitution of a backbone ester (-COO-) in place of a backbone amide (-CONH-) can selectively destabilize backbone hydrogen bonds in a protein while maintaining a similar conformation to the native backbone structure. The majority of these studies have focused on backbone substitutions that were accessible to solvent. The GCN4 coiled coil domain is an example of a stable alpha-helical dimer that possesses a well-packed hydrophobic core. Amino acids in the a and d positions of the GCN4 helix, which pack the hydrophobic core, were replaced with the corresponding alpha-hydroxy acids in the context of a chemoselectively ligated heterodimer. While the overall structure and oligomerization state of the heterodimer were maintained, the overall destabilization of the ester analogues was greater (average DeltaDeltaG of 3+ kcal mol(-1)) and more variable than previous studies. Since burial of the more hydrophobic ester should stabilize the backbone and reduce the DeltaDeltaG, the increased destabilization must come from another source. However, the observed destabilization is correlated with the protection factors for individual amide hydrogens from previous hydrogen exchange experiments. Therefore, our results suggest that backbone engineering through ester substitution is a useful approach for probing the relative strength of backbone hydrogen bonds.


Asunto(s)
Proteínas de Unión al ADN/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Quinasas/química , Proteínas de Saccharomyces cerevisiae/química , Naftalenosulfonatos de Anilina/química , Sitios de Unión , Dicroismo Circular , Proteínas de Unión al ADN/síntesis química , Proteínas de Unión al ADN/aislamiento & purificación , Dimerización , Colorantes Fluorescentes/química , Guanidina/química , Calor , Enlace de Hidrógeno , Ligandos , Biosíntesis de Péptidos , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Proteínas Quinasas/síntesis química , Proteínas Quinasas/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/síntesis química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Sulfuros/química , Termodinámica , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA