Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Handb Exp Pharmacol ; 283: 319-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37947907

RESUMEN

Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.


Asunto(s)
Proteínas de Transporte de Anión , Humanos , Transportadores de Sulfato/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Aniones/metabolismo , Transporte Biológico
3.
BMC Genomics ; 24(1): 633, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872493

RESUMEN

Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.


Asunto(s)
Nitratos , Proteínas de Plantas , Nitratos/farmacología , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ginkgo biloba/genética , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Transportadores de Nitrato , Nitrógeno/metabolismo , Ácidos Indolacéticos , Regulación de la Expresión Génica de las Plantas , Filogenia
4.
Gene ; 888: 147797, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37708922

RESUMEN

NITRATE TRANSPORTER 1 (NRT1)/PEPTIDETRANSPORTER (PTR) family (NPF) plays a significant role in nitrate transport. However, little is known about the NPF genes in sweet cherry. In this study, a total of 60 PaNPF genes in sweet cherry were identified by bioinformatics, which were divided into 8 families. Transcriptomic analysis showed that most PaNPF genes responded to both low and high nitrate conditions, especially PaNPF5.5, which was highly up-regulated under high nitrate condition. Molecular analysis showed that PaNPF5.5 was a transporter localized to the cell membrane. Further functional studies found that PaNPF5.5 overexpression promoted the growth of sweet cherry rootstock Gisela 6 by accelerating the nitrogen absorption process under high nitrate environment. Taken together, we believe that PaNPF5.5 plays an important role in regulating the transport of nitrate at high nitrate conditions, and provides a promising method for improving nitrate absorption efficiency at nitrogen excess environment.


Asunto(s)
Transportadores de Nitrato , Prunus avium , Nitratos/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
J Chem Inf Model ; 63(16): 5142-5152, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37585651

RESUMEN

NarK nitrate/nitrite antiporter imports nitrate (a mineral form of the essential element nitrogen) into the cell and exports nitrite (a metabolite that can be toxic in high concentrations) out of the cell. However, many details about its operational mechanism remain poorly understood. In this work, we performed steered molecular dynamics simulations of anion translocations and quantum-chemistry model calculations of the binding sites to study the wild-type NarK protein and its R89K mutant. Our results shed light on the importance of the two strictly conserved binding-site arginine residues (R89 and R305) and two glycine-rich signature motifs (G164-M176 and G408-F419) in anion movement through the pore. We also observe conformational changes of the protein during anion migration. For the R89K mutant, our quantum calculations reveal a competition for a proton between the anion (especially nitrite) and lysine, which can potentially slow down or even trap the anion in the pore. Our findings provide a possible explanation for the striking experimental finding that the arginine-to-lysine mutation, despite preserving the charge, impedes or abolishes anion transport in such mutants of NarK and other similar nitrate/nitrite exchangers.


Asunto(s)
Proteínas de Transporte de Anión , Nitritos/metabolismo , Nitratos/metabolismo , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Mutación
6.
World J Microbiol Biotechnol ; 39(5): 120, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918441

RESUMEN

nirC gene coding for the nitrite channel of E. coli K12 was cloned into the pET28a vector and expressed in E. coli BL21 cells. 28.5 kDa NirC monomer was purified from membrane components of E. coli. Selectivity of NirC for different ions including nitrite, nitrate, sulfate, formate, and acetate anions, and a divalent cation, magnesium, was compared with that of bacterial aquaporin from Halomonas elongata. Water and ion permeability values were determined by measuring the light scattering rates of proteoliposomes containing NirC and aquaporins during their water loss and gain. NirC shows a selective permeability to nitrite and is more resistant to the entry of other anions as compared to aquaporin. The single channel permeability of NirC for nitrite is about 10-fold that of a single aquaporin channel. Both aquaporin and NirC channel proteins were impermeable to MgCl2 and (NH4)2SO4 and their permeability to other tested ions was remarkably lower as compared to nitrite ions. The study also presents the 3D model and channel characteristics of NirC. The translocation channel of E. coli NirC is determined to be larger, and its length is shorter than aquaporin channels. Although the NirC channel throat is more hydrophobic than aquaporin, its water permeability is almost equal to that of aquaporin. The hydrophobic nature of the NirC channel might play an important role in the selective permeability of the channel for nitrite ions.


Asunto(s)
Acuaporinas , Proteínas de Escherichia coli , Nitritos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Acuaporinas/genética , Aniones/metabolismo , Agua/metabolismo , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
7.
Chem Commun (Camb) ; 58(7): 965-968, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34937073

RESUMEN

Nitrate and nitrite are key components of the global nitrogen cycle. As such, Nature has evolved proteins as biological supramolecular hosts for the recognition, translocation, and transformation of both nitrate and nitrite. To understand the supramolecular principles that govern these anion-protein interactions, here, we employ a hybrid biophysical and in silico approach to characterize the thermodynamic properties and protein dynamics of NrtA from the cyanobacterium Synechocystis sp. PCC 6803 for the recognition of nitrate and nitrite.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas Bacterianas/metabolismo , Nitratos/análisis , Nitritos/análisis , Proteínas de Transporte de Anión/química , Proteínas Bacterianas/química , Sitios de Unión , Cinética , Simulación de Dinámica Molecular , Nitratos/metabolismo , Nitritos/metabolismo , Synechocystis/metabolismo , Termodinámica
8.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361083

RESUMEN

The mammalian protein prestin is expressed in the lateral membrane wall of the cochlear hair outer cells and is responsible for the electromotile response of the basolateral membrane, following hyperpolarisation or depolarisation of the cells. Its impairment marks the onset of severe diseases, like non-syndromic deafness. Several studies have pointed out possible key roles of residues located in the Transmembrane Domain (TMD) that differentiate mammalian prestins as incomplete transporters from the other proteins belonging to the same solute-carrier (SLC) superfamily, which are classified as complete transporters. Here, we exploit the homology of a prototypical incomplete transporter (rat prestin, rPres) and a complete transporter (zebrafish prestin, zPres) with target structures in the outward open and inward open conformations. The resulting models are then embedded in a model membrane and investigated via a rigorous molecular dynamics simulation protocol. The resulting trajectories are analyzed to obtain quantitative descriptors of the equilibration phase and to assess a structural comparison between proteins in different states, and between different proteins in the same state. Our study clearly identifies a network of key residues at the interface between the gate and the core domains of prestin that might be responsible for the conformational change observed in complete transporters and hindered in incomplete transporters. In addition, we study the pathway of Cl- ions in the presence of an applied electric field towards their putative binding site in the gate domain. Based on our simulations, we propose a tilt and shift mechanism of the helices surrounding the ion binding cavity as the working principle of the reported conformational changes in complete transporters.


Asunto(s)
Proteínas de Transporte de Anión/química , Membrana Celular/metabolismo , Simulación de Dinámica Molecular , Transportadores de Sulfato/química , Proteínas de Pez Cebra/química , Secuencia de Aminoácidos , Animales , Proteínas de Transporte de Anión/metabolismo , Sitios de Unión , Estructura Secundaria de Proteína , Ratas , Homología de Secuencia , Transportadores de Sulfato/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
9.
Nat Commun ; 12(1): 4455, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294705

RESUMEN

Plant sulfate transporters (SULTR) mediate absorption and distribution of sulfate (SO42-) and are essential for plant growth; however, our understanding of their structures and functions remains inadequate. Here we present the structure of a SULTR from Arabidopsis thaliana, AtSULTR4;1, in complex with SO42- at an overall resolution of 2.8 Å. AtSULTR4;1 forms a homodimer and has a structural fold typical of the SLC26 family of anion transporters. The bound SO42- is coordinated by side-chain hydroxyls and backbone amides, and further stabilized electrostatically by the conserved Arg393 and two helix dipoles. Proton and SO42- are co-transported by AtSULTR4;1 and a proton gradient significantly enhances SO42- transport. Glu347, which is ~7 Å from the bound SO42-, is required for H+-driven transport. The cytosolic STAS domain interacts with transmembrane domains, and deletion of the STAS domain or mutations to the interface compromises dimer formation and reduces SO42- transport, suggesting a regulatory function of the STAS domain.


Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Microscopía por Crioelectrón , Ácido Glutámico/química , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Transportadores de Sulfato/genética , Sulfatos/metabolismo
10.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066572

RESUMEN

The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) genes, initially characterized as nitrate or peptide transporters in plants, are involved in the transport of a large variety of substrates, including amino acids, nitrate, auxin (IAA), jasmonates (JAs), abscisic acid (ABA) and gibberellins (GAs) and glucosinolates. A total of 169 potential functional NPF genes were excavated in Brassica napus, and they showed diversified expression patterns in 90 different organs or tissues based on transcriptome profile data. The complex time-serial expression changes were found for most functional NPF genes in the development process of leaves, silique walls and seeds, which indicated that the expression of Brassica napus NPF (BnaNPF) genes may respond to altered phytohormone and secondary metabolite content through combining with promoter element enrichment analysis. Furthermore, many BnaNPF genes were detected to respond to vernalization with two different patterns, and 20 BnaNPF genes responded to nitrate deficiency. These results will provide useful information for further investigation of the biological function of BnaNPF genes for growth and development in rapeseed.


Asunto(s)
Proteínas de Transporte de Anión/genética , Brassica napus/genética , Brassica napus/fisiología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Nitrógeno/deficiencia , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Brassica napus/efectos de los fármacos , Variaciones en el Número de Copia de ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transportadores de Nitrato , Nitratos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Especificidad de la Especie , Sintenía/genética
11.
J Hum Genet ; 66(2): 193-203, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32884076

RESUMEN

Harboyan syndrome or corneal dystrophy and progressive deafness (MIM #217400) is characterized by congenital hereditary endothelial dystrophy (CHED) and progressive, sensorineural hearing loss. Mutations in SLC4A11 are responsible for this rare genetic syndrome. Eight patients from seven unrelated families affected with Harboyan Syndrome with mean follow-up of 12.0 ± 0.9 years were thoroughly investigated for the ocular, hearing, and kidney function abnormalities and the outcome of penetrating keratoplasty (PK). Mutation analysis of SLC4A11 was performed. All patients presented with bilateral cloudy corneas since birth. Sensorineural hearing loss was detected in all patients. Seven patients (11 eyes) underwent PK with the median age at surgery of 10.1 years (7.1-22.9). The overall corneal graft survival rate after primary PK was 72.7% (8/11 eyes). The mean graft survival time was 94.6 months (95% CI 83.1-126.0). All patients had unremarkable kidney function. The c.2264G>A (p.Arg755Gln) mutation in SCL4A11 was detected in most patients (87.5%). All unrelated Karen tribe patients had p.Arg755Gln mutation, suggestive of founder effect. We found the allele frequency of this variant in the Karen population to be 0.01. The c.2263C>T (p.Arg755Trp) mutation was found in one patient with mild phenotype and the novel truncating protein mutation c.2127delG (p.Gly710fsx*25) in SCL4A11 was identified in two Thai sisters. Visual outcome and graft survival after PK were satisfactory. Our study shows that all studied patients with SLC4A11 mutations had CHED and sensorineural hearing loss, and SLC4A11 mutations were not related to the onset and severity of hearing loss or outcome of keratoplasty.


Asunto(s)
Proteínas de Transporte de Anión/genética , Antiportadores/genética , Distrofias Hereditarias de la Córnea/genética , Distrofias Hereditarias de la Córnea/patología , Trasplante de Córnea/métodos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Mutación , Fenotipo , Adolescente , Adulto , Proteínas de Transporte de Anión/química , Antiportadores/química , Niño , Preescolar , Distrofias Hereditarias de la Córnea/cirugía , Femenino , Efecto Fundador , Pérdida Auditiva Sensorineural/cirugía , Humanos , Lactante , Masculino , Linaje , Conformación Proteica , Adulto Joven
12.
Molecules ; 25(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172141

RESUMEN

Synthetic anion transporters that facilitate chloride transport are promising candidates for channelopathy treatments. However, most anion transporters exhibit an undesired side effect of facilitating proton transport via interacting with fatty acids present in the membrane. To address the limitation, we here report the use of a new tetrapodal scaffold to maximize the selective interaction with spherical chloride over binding the carboxylate headgroup of fatty acids. One of the new transporters demonstrated a high selectivity for chloride uniport over fatty acid-induced proton transport while being >10 times more active in chloride uniport than strapped calixpyrroles that were previously the only class of compounds known to possess similar selectivity properties.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Transporte de Anión/química , Aniones/química , Aniones/metabolismo , Cloruros/química , Cloruros/metabolismo , Cromatografía en Capa Delgada , Cristalografía por Rayos X , Ácidos Grasos/química , Transporte Iónico , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Nitratos/metabolismo , Pirenos/química , Pirenos/metabolismo , Ácidos Sulfónicos/química , Ácidos Sulfónicos/metabolismo
13.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 438-443, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32880592

RESUMEN

The PII-like protein SbtB has been identified as a regulator of SbtA, which is one of the key bicarbonate transporters in cyanobacteria. While SbtB from Synechocystis sp. PCC 6803 has previously been shown to be a trimer, a new crystal form is reported here which crystallizes in what is thought to be a non-native tetramer in the crystal, with the C-terminus in an extended conformation. The crystal structure shows the formation of an intermolecular disulfide bond at Cys94 between SbtB monomers, which may stabilize this conformation in the crystal. This motivates the need for future studies to investigate the potential role that the oxidation and reduction of these cysteines may play in the activation and/or function of SbtB.


Asunto(s)
Proteínas Bacterianas/química , Bicarbonatos/química , Synechocystis/química , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bicarbonatos/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechocystis/metabolismo
14.
Plant Signal Behav ; 15(12): 1815980, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32867594

RESUMEN

Nitrate transporter 2.5 (NRT2.5) was originally characterized as the transporter for nitrogen (N) limitation. In Arabidopsis, NRT2.5 is expressed mainly under extremely low NO3- and N starvation conditions, and this must work in conjunction with NAR2.1. NRT2.5 is expressed both in the roots and leaves in Arabidopsis, poplars, tea trees and cassava. This is also expressed in the seeds of Arabidopsis and wheat. In wheat, NRT2.5 is expressed in the embryo and shell and plays a role in the accumulation of NO3- in the seeds. In maize, this is also expressed in silk, cobs and tassel husk leaves. In rice, OsNRT2.5 (also known as OsNRT2.3a) may help the species to remove NO3- from the roots to shoots. In addition, NRT2.5 may interact with TGA3, MYC1, LBD37, LBD38, TaNAC2 and other transcription factors and participate in the transmission of NO3- signals. The present review summarizes the functions of NRT2.5 in different plant species, which may help plant breeders and molecular biologists to improve crop yield. Abbreviations: NRT, Nitrate transporter; NUE, nitrogen use efficiency; PTR, peptide transporter; NPF, nitrate peptide transporter family; CLC, chloride channel; LAC1/SLAH, slow anion channel-associated 1 homolog 3; LATS, low-affinity transporter systems; HATS, high-affinity transport systems; NNP, nitrate-nitrite-porter; MFS, major facilitator superfamily.


Asunto(s)
Proteínas de Transporte de Anión/genética , Regulación de la Expresión Génica de las Plantas , Plantas/genética , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Filogenia , Salinidad
15.
Eur J Pharmacol ; 889: 173592, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979354

RESUMEN

Prodiginines and tambjamines are anion-selective ionophores capable of facilitating the transport of anions across the plasma membrane in mammalian cells. One of the potential applications of these anionophores is the possibility of employing them as a substitutive therapy for pathologies involving anion channels, as in cystic fibrosis. We have studied the interaction of a large anion as gluconate with three prodiginine- and two tambjamine-like compounds. Apparent dissociation constants for the chloride, iodide and gluconate complexes were estimated from iodide influx experiments in mammalian cells exposed to different extracellular anion combinations. Our experiments indicate that gluconate is not transported by the prodiginines, leaving the anionophores free to transport chloride and iodide. Conversely, gluconate would be transported to some extent by the tambjamines, competing with halides for the anionophores, and consequently reducing their flux. This might be related to the different structural features of both families of compounds. These data have important implications for the selection of impermeable anions in the analysis of the anionophore mechanism.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Prodigiosina/análogos & derivados , Pirroles/metabolismo , Animales , Proteínas de Transporte de Anión/química , Gluconatos/metabolismo , Transporte Iónico/fisiología , Prodigiosina/química , Prodigiosina/metabolismo , Pirroles/química , Ratas , Ratas Endogámicas F344
16.
J Mol Biol ; 432(19): 5273-5286, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32721401

RESUMEN

Understanding the structure and functional mechanisms of cyanobacterial halorhodopsin has become increasingly important, given the report that Synechocystis halorhodopsin (SyHR), a homolog of the cyanobacterial halorhodopsin from Mastigocladopsis repens (MrHR), can take up divalent ions, such as SO42-, as well as chloride ions. Here, the crystal structure of MrHR, containing a unique "TSD" chloride ion conduction motif, was determined as a homotrimer at a resolution of 1.9 Å. The detailed structure of MrHR revealed a unique trimeric topology of the light-driven chloride pump, with peculiar coordination of two water molecules and hydrogen-mediated bonds near the TSD motif, as well as a short B-C loop. Structural and functional analyses of MrHR revealed key residues responsible for the anion selectivity of cyanobacterial halorhodopsin and the involvement of two chloride ion-binding sites in the ion conduction pathway. Alanine mutant of Asn63, Pro118, and Glu182 locating in the anion inlet induce multifunctional uptake of chloride, nitrate, and sulfate ions. Moreover, the structure of N63A/P118A provides information on how SyHR promotes divalent ion transport. Our findings significantly advance the structural understanding of microbial rhodopsins with different motifs. They also provide insight into the general structural framework underlying the molecular mechanisms of the cyanobacterial chloride pump containing SyHR, the only molecule known to transport both sulfate and chloride ions.


Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas Bacterianas/química , Cianobacterias/química , Proteínas de Transporte de Anión/metabolismo , Aniones/metabolismo , Proteínas Bacterianas/metabolismo , Cloruros/metabolismo , Cristalografía por Rayos X , Cianobacterias/metabolismo , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Transporte Iónico , Modelos Moleculares , Conformación Proteica
17.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512879

RESUMEN

Nitrogen (N) is an essential macronutrient for plant growth. Plants absorb and utilize N mainly in the form of nitrate (NO3-) or ammonium (NH4+). In this study, the nitrate transporter DsNRT3.1 (also known as the nitrate assimilation-related protein DsNAR2.1) was characterized from Dianthus spiculifolius. A quantitative PCR (qPCR) analysis showed that the DsNRT3.1 expression was induced by NO3-. Under N-starvation conditions, the transformed Arabidopsis seedlings expressing DsNRT3.1 had longer roots and a greater fresh weight than the wild type. Subcellular localization showed that DsNRT3.1 was mainly localized to the plasma membrane in Arabidopsis root hair cells. Non-invasive micro-test (NMT) monitoring showed that the root hairs of N-starved transformed Arabidopsis seedlings had a stronger NO3- and NH4+ influx than the wild-type seedlings, using with NO3- or NH4+ as the sole N source; contrastingly, transformed seedlings only had a stronger NO3- influx when NO3- and NH4+ were present simultaneously. In addition, the qPCR analysis showed that the expression of AtNRT2 genes (AtNRT2.1-2.6), and particularly of AtNRT2.5, in the transformed Arabidopsis differed from that in the wild type. Overall, our results suggest that the heterologous expression of DsNRT3.1 affects seedlings' growth by enhancing the NO3- and NH4+ uptake in N-starved Arabidopsis. This may be related to the differential expression of AtNRT2 genes.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Nitratos/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/química , Arabidopsis/clasificación , Proteínas de Arabidopsis/química , Transporte Biológico , Expresión Génica , Transportadores de Nitrato , Filogenia , Plantones/genética , Plantones/metabolismo
18.
Mol Genet Genomics ; 295(5): 1269-1279, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32561986

RESUMEN

Aspergillus nidulans nrtA encodes a nitrate transporter that plays an important role in the [Formula: see text] assimilatory process. Many studies have focused on protein functions rather than gene regulation. The knowledge of nrtA[Formula: see text] uptake process, particularly in the regulation mechanism of transcription factors AreA and NirA on nrtA transcription, is very limited. Herein, we investigated the transcriptional regulation of nrtA in response to various N-sources in detail and characterized the promoter activity of nrtA. We confirmed that nrtA was induced by [Formula: see text] and repressed by preferred N-sources. Additionally, for the first time, we found that the transcription of nrtA increased under N-starvation conditions. AreA mediates nrtA transcription under both [Formula: see text] and N-starvation conditions, while NirA is effective only under [Formula: see text] conditions. All of the proposed AreA and NirA binding sites in the promoter region were capable of binding to their corresponding transcription factors in vitro. In vivo, all of the NirA binding sites showed regulation activities, but to AreA, only several of the initiation-codon-proximal binding sites participated in nrtA transcription. Moreover, the active binding sites contributed in different degrees of regulation strength to nrtA transcription, which is unrelated to the distance between the binding sites and initiation codon. These results provided an extensive map of nrtA promoter, defining the functional regulatory elements of A. nidulans nrtA.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nitratos/metabolismo , Proteínas de Transporte de Anión/química , Aspergillus nidulans/genética , Sitios de Unión , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
19.
Int J Biol Macromol ; 159: 570-576, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32442571

RESUMEN

Volume-regulated anion channel (VRAC) is ubiquitously expressed in vertebrate cells and in various types of cancer cells. Leucine-rich repeat containing 8A (LRRC8A) and its four homologous family members (LRRC8B-E) assemble into heterogeneous VRAC complexes of ~800 kDa. The main components of VRAC, LRRC8A and LRRC8D have been implicated in the proliferation, migration, death, and multidrug resistance of cancer cells through their involvement in various signal pathways. This review summarizes recent findings concerning the involvement of VRAC in cancer development and progression, including the molecular structure, function, and regulation of VRAC and its roles in various cancers, and highlights the remaining challenges in the field. Our aim is to evaluate the potential of VRAC as a therapeutic target for cancer therapies and to discuss the major problems to be solved.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Biomarcadores de Tumor , Neoplasias/etiología , Neoplasias/metabolismo , Animales , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Unión Proteica , Multimerización de Proteína , Transducción de Señal/efectos de los fármacos
20.
Acta Crystallogr D Struct Biol ; 76(Pt 4): 375-384, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32254062

RESUMEN

Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Š(spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC.


Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas Bacterianas/química , Hemo/análogos & derivados , Pseudomonas aeruginosa/enzimología , Proteínas de Transporte de Anión/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Hemo/química , Modelos Moleculares , Operón , Multimerización de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...