Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 321(3): C519-C534, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34319827

RESUMEN

Mitochondria are recognized as signaling organelles, because under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased posttranslational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel cross talk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


Asunto(s)
Cardiomiopatías/genética , Proteínas de Transporte de Catión/genética , Isocitrato Deshidrogenasa/genética , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Miocitos Cardíacos/metabolismo , Proteínas de Transporte de Fosfato/genética , Procesamiento Proteico-Postraduccional , Proteínas Transportadoras de Solutos/genética , Acetilación , Animales , Transporte Biológico , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proteínas de Transporte de Catión/deficiencia , Metabolismo Energético , Femenino , Redes Reguladoras de Genes , Isocitrato Deshidrogenasa/metabolismo , Masculino , Malonatos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/deficiencia , Modelos Moleculares , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Proteínas de Transporte de Fosfato/deficiencia , Fosfatos , Conformación Proteica , Mapeo de Interacción de Proteínas , Transducción de Señal , Sirtuinas/genética , Sirtuinas/metabolismo , Proteínas Transportadoras de Solutos/deficiencia
2.
PLoS One ; 7(6): e38393, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675556

RESUMEN

BACKGROUND: Inorganic pyrophosphate (PP(i)) is a physiologic inhibitor of hydroxyapatite mineral precipitation involved in regulating mineralized tissue development and pathologic calcification. Local levels of PP(i) are controlled by antagonistic functions of factors that decrease PP(i) and promote mineralization (tissue-nonspecific alkaline phosphatase, Alpl/TNAP), and those that increase local PP(i) and restrict mineralization (progressive ankylosis protein, ANK; ectonucleotide pyrophosphatase phosphodiesterase-1, NPP1). The cementum enveloping the tooth root is essential for tooth function by providing attachment to the surrounding bone via the nonmineralized periodontal ligament. At present, the developmental regulation of cementum remains poorly understood, hampering efforts for regeneration. To elucidate the role of PP(i) in cementum formation, we analyzed root development in knock-out ((-/-)) mice featuring PP(i) dysregulation. RESULTS: Excess PP(i) in the Alpl(-/-) mouse inhibited cementum formation, causing root detachment consistent with premature tooth loss in the human condition hypophosphatasia, though cementoblast phenotype was unperturbed. Deficient PP(i) in both Ank and Enpp1(-/-) mice significantly increased cementum apposition and overall thickness more than 12-fold vs. controls, while dentin and cellular cementum were unaltered. Though PP(i) regulators are widely expressed, cementoblasts selectively expressed greater ANK and NPP1 along the root surface, and dramatically increased ANK or NPP1 in models of reduced PP(i) output, in compensatory fashion. In vitro mechanistic studies confirmed that under low PP(i) mineralizing conditions, cementoblasts increased Ank (5-fold) and Enpp1 (20-fold), while increasing PP(i) inhibited mineralization and associated increases in Ank and Enpp1 mRNA. CONCLUSIONS: Results from these studies demonstrate a novel developmental regulation of acellular cementum, wherein cementoblasts tune cementogenesis by modulating local levels of PP(i), directing and regulating mineral apposition. These findings underscore developmental differences in acellular versus cellular cementum, and suggest new approaches for cementum regeneration.


Asunto(s)
Cementogénesis , Cemento Dental/metabolismo , Cemento Dental/patología , Difosfatos/metabolismo , Fosfatasa Alcalina/deficiencia , Fosfatasa Alcalina/metabolismo , Animales , Calcificación Fisiológica , Proliferación Celular , Células Cultivadas , Colágeno/biosíntesis , Cemento Dental/ultraestructura , Espacio Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Humanos , Mandíbula/patología , Mandíbula/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Diente Molar/metabolismo , Diente Molar/patología , Diente Molar/ultraestructura , Proteínas de Transporte de Fosfato/deficiencia , Proteínas de Transporte de Fosfato/metabolismo , Hidrolasas Diéster Fosfóricas/deficiencia , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/deficiencia , Pirofosfatasas/metabolismo , Factores de Tiempo , Raíz del Diente/metabolismo , Raíz del Diente/ultraestructura
3.
Neuromuscul Disord ; 21(11): 803-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21763135

RESUMEN

In a family three children presented with severe neonatal lactic acidosis, hypertrophic cardiomyopathy and generalised muscular hypotonia. One child died in infancy, two survived a clinically severe neonatal period. At an age of 9 and 17years, respectively, they present with exercise intolerance, proximal muscle weakness, non-progressive hypertrophic cardiomyopathy and normal mental development. In a muscle biopsy normal activity of respiratory chain enzymes was found; however the amount of the mitochondrial phosphate carrier was decreased. This protein is expressed in two tissue-specific isoforms generated by mutually exclusive alternative splicing of the SLC25A3 gene transcript. We identified a homozygous mutation c.158-9A>G located in the 5'-intron next to exon 3A specific for heart and skeletal muscle. This creates a novel splice site resulting in a more than 95% decrease of the wild type allele.


Asunto(s)
Cardiomiopatías/patología , Salud de la Familia , Mitocondrias/metabolismo , Enfermedades Musculares/patología , Proteínas de Transporte de Fosfato/deficiencia , Adolescente , Empalme Alternativo/genética , Niño , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Intrones/genética , Masculino , Proteínas Mitocondriales/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Proteínas de Transporte de Fosfato/genética
4.
Am J Hum Genet ; 80(3): 478-84, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17273968

RESUMEN

The mitochondrial phosphate carrier SLC25A3 transports inorganic phosphate into the mitochondrial matrix, which is essential for the aerobic synthesis of adenosine triphosphate (ATP). We identified a homozygous mutation--c.215G-->A (p.Gly72Glu)--in the alternatively spliced exon 3A of this enzyme in two siblings with lactic acidosis, hypertrophic cardiomyopathy, and muscular hypotonia who died within the 1st year of life. Functional investigation of intact mitochondria showed a deficiency of ATP synthesis in muscle but not in fibroblasts, which correlated with the tissue-specific expression of exon 3A in muscle versus exon 3B in fibroblasts. The enzyme defect was confirmed by complementation analysis in yeast. This is the first report of patients with mitochondrial phosphate-carrier deficiency.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/deficiencia , Mutación/genética , Fosforilación Oxidativa , Proteínas de Transporte de Fosfato/deficiencia , Fosfatos/metabolismo , Acidosis Láctica/complicaciones , Acidosis Láctica/metabolismo , Adenosina Trifosfato/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/metabolismo , Células Cultivadas , Metabolismo Energético , Exones/genética , Femenino , Fibroblastos/metabolismo , Prueba de Complementación Genética , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Hipotonía Muscular/complicaciones , Hipotonía Muscular/metabolismo , Linaje , Proteínas de Transporte de Fosfato/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Hermanos
5.
Biochemistry ; 44(2): 598-608, 2005 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-15641785

RESUMEN

Treponema pallidum and Treponema denticola encode within their genomes homologues of energy coupling and regulatory proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) but no recognizable homologues of PTS permeases. These homologues include (1) Enzyme I, (2) HPr, (3) two IIA(Ntr)-like proteins, and (4) HPr(Ser) kinase/phosphorylase (HprK). Because the Enzyme I-encoding gene in T. pallidum is an inactive pseudogene and because all other pts genes in both T. pallidum and T. denticola are actively expressed, the primary sensory transduction mechanism for signal detection and transmission appears to involve HprK rather than EI. We have overexpressed and purified to near homogeneity four of the five PTS proteins from T. denticola. Purified HprK phosphorylates HPr with ATP, probably on serine, while Enzyme I phosphorylates HPr with PEP, probably on histidine. Furthermore, HPr(His)-P can transfer its phosphoryl group to IIA(Ntr)-1. Factors and conditions regulating phosphoryl transfer prove to differ from those described previously for Bacillus subtilis, but cross-enzymatic activities between the Treponema, Salmonella, and Bacillus phosphoryl-transfer systems could be demonstrated. Kinetic analyses revealed that the allosterically regulated HPr kinase/phosphorylase differs from its homologues in Bacillus subtilis and other low G+C Gram-positive bacteria in being primed for kinase activity rather than phosphorylase activity in the absence of allosteric effectors. The characteristics of this enzyme and the Treponema phosphoryl-transfer chain imply unique modes of signal detection and sensory transmission. This paper provides the first biochemical description of PTS phosphoryl-transfer chains in an organism that lacks PTS permeases.


Asunto(s)
Proteínas de Transporte de Fosfato/deficiencia , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Treponema denticola/enzimología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Prueba de Complementación Genética , Datos de Secuencia Molecular , Proteínas de Transporte de Fosfato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/aislamiento & purificación , Radioisótopos de Fósforo/metabolismo , Fosforilación , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/genética , Proteínas Serina-Treonina Quinasas/genética , Alineación de Secuencia , Treponema denticola/genética , Treponema pallidum/enzimología , Treponema pallidum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA