Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34135124

RESUMEN

Phosphate is an indispensable metabolite in a wide variety of cells and is involved in nucleotide and lipid synthesis, signaling, and chemical energy storage. Proton-coupled phosphate transporters within the major facilitator family are crucial for phosphate uptake in plants and fungi. Similar proton-coupled phosphate transporters have been found in different protozoan parasites that cause human diseases, in breast cancer cells with elevated phosphate demand, in osteoclast-like cells during bone reabsorption, and in human intestinal Caco2BBE cells for phosphate homeostasis. However, the mechanism of proton-driven phosphate transport remains unclear. Here, we demonstrate in a eukaryotic, high-affinity phosphate transporter from Piriformospora indica (PiPT) that deprotonation of aspartate 324 (D324) triggers phosphate release. Quantum mechanics/molecular mechanics molecular dynamics simulations combined with free energy sampling have been employed here to identify the proton transport pathways from D324 upon the transition from the occluded structure to the inward open structure and phosphate release. The computational insights so gained are then corroborated by studies of D45N and D45E amino acid substitutions via mutagenesis experiments. Our findings confirm the function of the structurally predicted cytosolic proton exit tunnel and suggest insights into the role of the titratable phosphate substrate.


Asunto(s)
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Protones , Cristalografía por Rayos X , Citosol/metabolismo , Proteínas Fúngicas/química , Simulación de Dinámica Molecular , Mutagénesis , Proteínas de Transporte de Fosfato/química , Fosfatos/metabolismo , Conformación Proteica , Fuerza Protón-Motriz
2.
BMC Plant Biol ; 20(1): 124, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197586

RESUMEN

BACKGROUND: Panax notoginseng is a medicinally important Chinese herb with a long history of cultivation and clinical application. The planting area is mainly distributed in Wenshan Prefecture, where the quality and safety of P. notoginseng have been threatened by high concentration of arsenic (As) from the soil. The roles of phosphate (Pi) transporters involved in Pi acquisition and arsenate (AsV) tolerance were still unclear in this species. RESULTS: In this study, two open reading frames (ORFs) of PnPht1;1 and PnPht1;2 separated from P. notoginseng were cloned based on RNA-seq, which encoded 527 and 541 amino acids, respectively. The results of relative expression levels showed that both genes responded to the Pi deficiency or As exposure, and were highly upregulated. Heterologous expression in Saccharomyces cerevisiae MB192 revealed that PnPht1;1 and PnPht1;2 performed optimally in complementing the yeast Pi-transport defect, particularly in PnPht1;2. Cells expressing PnPht1;2 had a stronger AsV tolerance than PnPht1;1-expressing cells, and accumulated less As in cells under a high-Pi concentration. Combining with the result of plasma membrane localization, these data confirmed that transporters PnPht1;1 and PnPht1;2 were putative high-affinity H+/H2PO4- symporters, mediating the uptake of Pi and AsV. CONCLUSION: PnPht1;1 and PnPht1;2 encoded functional plasma membrane-localized transporter proteins that mediated a putative high-affinity Pi/H+ symport activity. Expression of PnPht1;1 or PnPht1;2 in mutant strains could enhance the uptake of Pi and AsV, that is probably responsible for the As accumulation in the roots of P. notoginseng.


Asunto(s)
Arseniatos/metabolismo , Panax notoginseng/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Panax notoginseng/metabolismo , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia
3.
Hum Mutat ; 39(12): 1995-2007, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30178502

RESUMEN

Recessive SLC25A46 mutations cause a spectrum of neurodegenerative disorders with optic atrophy as a core feature. We report a patient with optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy, who is on the mildest end of the phenotypic spectrum. By studying seven different nontruncating mutations, we found that the stability of the SLC25A46 protein inversely correlates with the severity of the disease and the patient's variant does not markedly destabilize the protein. SLC25A46 belongs to the mitochondrial transporter family, but it is not known to have transport function. Apart from this possible function, SLC25A46 forms molecular complexes with proteins involved in mitochondrial dynamics and cristae remodeling. We demonstrate that the patient's mutation directly affects the SLC25A46 interaction with MIC60. Furthermore, we mapped all of the reported substitutions in the protein onto a 3D model and found that half of them fall outside of the signature carrier motifs associated with transport function. We thus suggest that there are two distinct molecular mechanisms in SLC25A46-associated pathogenesis, one that destabilizes the protein while the other alters the molecular interactions of the protein. These results have the potential to inform clinical prognosis of such patients and indicate a pathway to drug target development.


Asunto(s)
Ataxia/genética , Proteínas Mitocondriales/genética , Atrofia Óptica/genética , Enfermedades del Sistema Nervioso Periférico/genética , Proteínas de Transporte de Fosfato/genética , Polimorfismo de Nucleótido Simple , Niño , Estudios de Asociación Genética , Humanos , Masculino , Dinámicas Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Linaje , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/metabolismo , Unión Proteica , Conformación Proteica
4.
J Genet ; 97(1): 225-233, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29666342

RESUMEN

The DNA sequence corresponding to the second exon of the SLC25A3 gene is duplicated in vertebrates. The second exon codes for the first transmembrane segment and parts of the immediately adjoining intermembrane and mitochondrial matrix segments. The two genomic exon 2 sequences are 84% similar in zebrafish (slc25a3b gene), 70% in chicken, 66% in mouse and 67% in human. The amino acid identity is 86% in zebrafish, 77% in chicken and 70% in mouse and human. The two copies of exon 2 are separated by an intronic interval. Translation of both exon 2 sequences would alter the reading frame of the downstream sequence, generating a modified aa sequence which would soon be truncated by a stop codon. As a matter of fact the splicing machinery is tuned in such a way that in some species only one of the two copies is expressed and the other is spliced out, while in other species both copies are expressed but only one at a time, generating two alternative protein products.


Asunto(s)
Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Empalme del ARN/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Pollos/genética , Humanos , Ratones , Péptidos/química , Proteínas de Transporte de Fosfato/metabolismo , Especificidad de la Especie , Pez Cebra/genética
5.
Acta Parasitol ; 63(1): 75-88, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29351081

RESUMEN

Inorganic phosphate (Pi) is shown to be involved in excretion of methylglyoxal (MG) in the promastigote form of Leishmania donovani parasite. Absence of Pi leads to its accumulation inside the parasite. Accumulation of MG is toxic to the parasite and utilizes glyoxylase as well as excretory pathways for its detoxification. In addition, Pi is also reported to regulate activities of ectoenzymes and energy metabolism (glucose to pyruvate) etc. Thus, it is known to cumulatively affect the growth of Leishmania parasite. Hence the transporters, which allow the movement of Pi across the membrane, can prove to be a crucial drug target. Therefore, we characterized two phosphate transporters in Leishmania (i) H+ dependent myo-inositol transporter (LdPHO84), and (ii) Na+ dependent transporter (LdPHO89), based on similar studies done previously on other lower organisms and trypanosomatids. We tried to understand the secondary structure of these two proteins and confirm modulation in their expression with the change in Pi concentration outside. Moreover, their modes of action were also measured in the presence of specific inhibitors (LiF, CCCP). Further analysis on the physiological role of these transporters in various stages of the parasite life cycle needs to be entrenched.


Asunto(s)
Leishmania donovani/enzimología , Leishmania donovani/crecimiento & desarrollo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas Protozoarias/metabolismo , Simportadores/metabolismo , Animales , Regulación de la Expresión Génica , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Piruvaldehído/metabolismo , Piruvaldehído/toxicidad , Simportadores/química , Simportadores/genética
6.
Nat Plants ; 3(10): 825-832, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28970497

RESUMEN

The triose-phosphate/phosphate translocator (TPT) catalyses the strict 1:1 exchange of triose-phosphate, 3-phosphoglycerate and inorganic phosphate across the chloroplast envelope, and plays crucial roles in photosynthesis. Despite rigorous study for more than 40 years, the molecular mechanism of TPT is poorly understood because of the lack of structural information. Here we report crystal structures of TPT bound to two different substrates, 3-phosphoglycerate and inorganic phosphate, in occluded conformations. The structures reveal that TPT adopts a 10-transmembrane drug/metabolite transporter fold. Both substrates are bound within the same central pocket, where conserved lysine, arginine and tyrosine residues recognize the shared phosphate group. A structural comparison with the outward-open conformation of the bacterial drug/metabolite transporter suggests a rocker-switch motion of helix bundles, and molecular dynamics simulations support a model in which this rocker-switch motion is tightly coupled to the substrate binding, to ensure strict 1:1 exchange. These results reveal the unique mechanism of sugar phosphate/phosphate exchange by TPT.


Asunto(s)
Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Conformación Proteica , Rhodophyta/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
7.
Plant Physiol ; 175(3): 1105-1120, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28874520

RESUMEN

In Solanaceae, the S-specific interaction between the pistil S-RNase and the pollen S-Locus F-box protein controls self-incompatibility (SI). Although this interaction defines the specificity of the pollen rejection response, the identification of three pistil essential modifier genes unlinked to the S-locus (HT-B, 120K, and NaStEP) unveils a higher degree of complexity in the pollen rejection pathway. We showed previously that NaStEP, a stigma protein with homology with Kunitz-type protease inhibitors, is essential to SI in Nicotiana spp. During pollination, NaStEP is taken up by pollen tubes, where potential interactions with pollen tube proteins might underlie its function. Here, we identified NaSIPP, a mitochondrial protein with phosphate transporter activity, as a novel NaStEP-interacting protein. Coexpression of NaStEP and NaSIPP in pollen tubes showed interaction in the mitochondria, although when expressed alone, NaStEP remains mostly cytosolic, implicating NaSIPP-mediated translocation of NaStEP into the organelle. The NaSIPP transcript is detected specifically in mature pollen of Nicotiana spp.; however, in self-compatible plants, this gene has accumulated mutations, so its coding region is unlikely to produce a functional protein. RNA interference suppression of NaSIPP in Nicotiana spp. pollen grains disrupts the SI by preventing pollen tube inhibition. Taken together, our results are consistent with a model whereby the NaStEP and NaSIPP interaction, in incompatible pollen tubes, might destabilize the mitochondria and contribute to arrest pollen tube growth.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Nicotiana/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/metabolismo , Autoincompatibilidad en las Plantas con Flores , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Mutación/genética , Proteínas de Transporte de Fosfato/química , Células Vegetales/metabolismo , Proteínas de Plantas/química , Tubo Polínico/metabolismo , Unión Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/metabolismo , Nicotiana/genética
8.
New Phytol ; 214(3): 1158-1171, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28134432

RESUMEN

Two inorganic phosphate (Pi) uptake mechanisms operate in streptophytes and chlorophytes, the two lineages of green plants. PHOSPHATE TRANSPORTER B (PTB) proteins are hypothesized to be the Na+ /Pi symporters catalysing Pi uptake in chlorophytes, whereas PHOSPHATE TRANSPORTER 1 (PHT1) proteins are the H+ /Pi symporters that carry out Pi uptake in angiosperms. PHT1 proteins are present in all streptophyte lineages. However, Pi uptake in streptophyte algae and marine angiosperms requires Na+ influx, suggesting that Na+ /Pi symporters also function in some streptophytes. We tested the hypothesis that Na+ /Pi symporters exist in streptophytes. We identified PTB sequences in streptophyte genomes. Core PTB proteins are present at the plasma membrane of the liverwort Marchantia polymorpha. The expression of M. polymorpha core PTB proteins in the Saccharomyces cerevisiae pho2 mutant defective in high-affinity Pi transport rescues growth in low-Pi environments. Moreover, levels of core PTB mRNAs of M. polymorpha and the streptophyte alga Coleochaete nitellarum are higher in low-Pi than in Pi-replete conditions, consistent with a role in Pi uptake from the environment. We conclude that land plants inherited two Pi uptake mechanisms - mediated by the PTB and PHT1 proteins, respectively - from their streptophyte algal ancestor. Both systems operate in parallel in extant early diverging land plants.


Asunto(s)
Chlorophyta/metabolismo , Embryophyta/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Chlorophyta/efectos de los fármacos , Chlorophyta/genética , Secuencia Conservada , Embryophyta/efectos de los fármacos , Prueba de Complementación Genética , Interacciones Hidrofóbicas e Hidrofílicas , Marchantia/efectos de los fármacos , Marchantia/metabolismo , Mutación/genética , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Fosfatos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
9.
Science ; 352(6288): 986-90, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27080106

RESUMEN

Phosphorus is a macronutrient taken up by cells as inorganic phosphate (P(i)). How cells sense cellular P(i) levels is poorly characterized. Here, we report that SPX domains--which are found in eukaryotic phosphate transporters, signaling proteins, and inorganic polyphosphate polymerases--provide a basic binding surface for inositol polyphosphate signaling molecules (InsPs), the concentrations of which change in response to P(i) availability. Substitutions of critical binding surface residues impair InsP binding in vitro, inorganic polyphosphate synthesis in yeast, and P(i) transport in Arabidopsis In plants, InsPs trigger the association of SPX proteins with transcription factors to regulate P(i) starvation responses. We propose that InsPs communicate cytosolic P(i) levels to SPX domains and enable them to interact with a multitude of proteins to regulate P(i) uptake, transport, and storage in fungi, plants, and animals.


Asunto(s)
Homeostasis , Inositol/metabolismo , Proteínas de Transporte de Fosfato/química , Fósforo/metabolismo , Polifosfatos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografía por Rayos X , Citosol/metabolismo , Humanos , Proteínas de Transporte de Fosfato/genética , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
10.
BMC Plant Biol ; 15: 238, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26444389

RESUMEN

BACKGROUND: Adenine nucleotide/phosphate carriers (APCs) from mammals and yeast are commonly known to adapt the mitochondrial adenine nucleotide pool in accordance to cellular demands. They catalyze adenine nucleotide--particularly ATP-Mg--and phosphate exchange and their activity is regulated by calcium. Our current knowledge about corresponding proteins from plants is comparably limited. Recently, the three putative APCs from Arabidopsis thaliana were shown to restore the specific growth phenotype of APC yeast loss-of-function mutants and to interact with calcium via their N-terminal EF--hand motifs in vitro. In this study, we performed biochemical characterization of all three APC isoforms from A. thaliana to gain further insights into their functional properties. RESULTS: Recombinant plant APCs were functionally reconstituted into liposomes and their biochemical characteristics were determined by transport measurements using radiolabeled substrates. All three plant APCs were capable of ATP, ADP and phosphate exchange, however, high preference for ATP-Mg, as shown for orthologous carriers, was not detectable. By contrast, the obtained data suggest that in the liposomal system the plant APCs rather favor ATP-Ca as substrate. Moreover, investigation of a representative mutant APC protein revealed that the observed calcium effects on ATP transport did not primarily/essentially involve Ca(2+)-binding to the EF-hand motifs in the N-terminal domain of the carrier. CONCLUSION: Biochemical characteristics suggest that plant APCs can mediate net transport of adenine nucleotides and hence, like their pendants from animals and yeast, might be involved in the alteration of the mitochondrial adenine nucleotide pool. Although, ATP-Ca was identified as an apparent import substrate of plant APCs in vitro it is arguable whether ATP-Ca formation and thus the corresponding transport can take place in vivo.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calcio/farmacología , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Adenosina Difosfato/metabolismo , Antiportadores/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Transporte Biológico/efectos de los fármacos , Cationes Bivalentes/farmacología , Ácido Egtácico/farmacología , Humanos , Magnesio/farmacología , Proteínas de Transporte de Fosfato/química , Estructura Terciaria de Proteína , Recombinación Genética/genética , Factores de Tiempo
11.
Biochem J ; 457(3): 391-400, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24206186

RESUMEN

The homologue of human YTHDF2, Ydr374c (Pho92), is the only protein that has a YTH (YT521-B homology) domain in Saccharomyces cerevisiae. Based on microarray analysis, genes involved in the phosphate signal transduction (PHO) pathway were up-regulated in the Δpho92 strain, as were genes regulated by Pho4, which is an important transcription factor in the PHO pathway. To identify the exact mechanism of Pho92 action with respect to phosphate metabolism, we investigated the effect of Pho92 on PHO4 expression. The half-life of PHO4 mRNA was increased in the Δpho92 strain; this phenotype was also observed in the deletion mutants UPF1 and POP2, which are components of the NMD (nonsense-mediated decay) pathway and the Pop2-Ccr4-Not deadenylase complex respectively. Pho92 interacts physically with Pop2 of the Pop2-Ccr4-Not deadenylase complex. Furthermore, Pho92 binding to the 3'-UTR of PHO4 was dependent on the phosphate concentration. Deletion of the PHO4 3'-UTR resulted in PHO4 mRNA resistance to Pho92-dependent degradation. The results of the present study indicate that Pho92 regulates Pho4 expression at the post-transcriptional level via the regulation of mRNA stability. Taken together, Pho92 participates in cellular phosphate metabolism, specifically via the regulation of PHO4 mRNA stability by binding to the 3'-UTR in a phosphate-dependent manner.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Factores de Empalme de ARN , Estabilidad del ARN , ARN Bacteriano/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribonucleasas/química , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/metabolismo
12.
Nature ; 496(7446): 533-6, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23542591

RESUMEN

Phosphate is crucial for structural and metabolic needs, including nucleotide and lipid synthesis, signalling and chemical energy storage. Proton-coupled transporters of the major facilitator superfamily (MFS) are essential for phosphate uptake in plants and fungi, and also have a function in sensing external phosphate levels as transceptors. Here we report the 2.9 Å structure of a fungal (Piriformospora indica) high-affinity phosphate transporter, PiPT, in an inward-facing occluded state, with bound phosphate visible in the membrane-buried binding site. The structure indicates both proton and phosphate exit pathways and suggests a modified asymmetrical 'rocker-switch' mechanism of phosphate transport. PiPT is related to several human transporter families, most notably the organic cation and anion transporters of the solute carrier family (SLC22), which are implicated in cancer-drug resistance. We modelled representative cation and anion SLC22 transporters based on the PiPT structure to surmise the structural basis for substrate binding and charge selectivity in this important family. The PiPT structure demonstrates and expands on principles of substrate transport by the MFS transporters and illuminates principles of phosphate uptake in particular.


Asunto(s)
Basidiomycota/química , Células Eucariotas/química , Proteínas de Transporte de Fosfato/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Biológicos , Modelos Moleculares , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Conformación Proteica , Protones , Relación Estructura-Actividad
13.
Planta ; 237(4): 1163-78, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23314830

RESUMEN

Several phosphate transporters (PTs) that belong to the Pht2 family have been released in bioinformatics databases, but only a few members of this family have been functionally characterized. In this study, we found that wheat TaPHT2;1 shared high identity with a subset of Pht2 in diverse plants. Expression analysis revealed that TaPHT2;1 was strongly expressed in the leaves, was up-regulated by low Pi stress, and exhibited a circadian rhythmic expression pattern. TaPHT2;1-green fluorescent protein fusions in the leaves of tobacco and wheat were specifically detected in the chloroplast envelop. TaPHT2;1 complemented the Pi transporter activities in a yeast mutant with a defect in Pi uptake. Knockdown expression of TaPHT2;1 significantly reduced Pi concentration in the chloroplast under sufficient (2 mM Pi) and deficient Pi (100 µM Pi) conditions, suggesting that TaPHT2;1 is crucial in the mediation of Pi translocation from the cytosol to the chloroplast. The down-regulated expression of TaPHT2;1 resulted in reduced photosynthetic capacities, total P contents, and accumulated P amounts in plants under sufficient and deficient Pi conditions, eventually leading to worse plant growth phenotypes. The TaPHT2;1 knockdown plants exhibited pronounced decrease in accumulated phosphorus in sufficient and deficient Pi conditions, suggesting that TaPHT2;1 is an important factor to associate with a distinct P signaling that up-regulates other PT members to control Pi acquisition and translocation within plants. Therefore, TaPHT2;1 is a key member of the Pht2 family involved in Pi translocation, and that it can function in the improvement of phosphorus usage efficiency in wheat.


Asunto(s)
Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Proteínas de Plantas/genética , Triticum/genética , Biomasa , Cloroplastos/metabolismo , Técnicas de Silenciamiento del Gen , Genes de Plantas , Prueba de Complementación Genética , Fenotipo , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/metabolismo , Fotosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Triticum/enzimología , Triticum/crecimiento & desarrollo
14.
J Basic Microbiol ; 52(4): 429-36, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22052620

RESUMEN

The full-length cDNA of a Na(+) -dependent Pi transport gene (DsSPT1) in Dunaliella salina was cloned by 3' and 5' Rapid Amplification of cDNA Ends (RACE), with an open reading frame (ORF) encoding 716 predicted amino acids, which exhibited 60.5% identity to that of Na(+) -dependent Pi transport 1 (DvSPT1) from Dunaliella viridis. Hydrophobicity and secondary structure prediction revealed 11 conserved transmembrane domains similar to those found in DvSPT1 from D. viridis and PHO89 from Saccharomyces cerevisiae. The result of real-time quantitative PCR showed that expression level of DsSPT1 was enhanced at first and reached its peak at 90 min after salt stress; however, D. salina cells rapidly absorbed extracellular inorganic phosphorus which was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) during the first 5 min under salt stress. It suggested that D. salina on the absorption of inorganic phosphorus was regulated at DsSPTI posttranslational level.


Asunto(s)
Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Volvocida/genética , Volvocida/metabolismo , Clonación Molecular , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Perfilación de la Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Sistemas de Lectura Abierta , Proteínas de Transporte de Fosfato/química , Fósforo/metabolismo , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Espectrofotometría Atómica
15.
Mol Plant ; 4(6): 1105-22, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21832284

RESUMEN

Plant phosphate transporter (PT) genes comprise a large family with important roles in various physiological and biochemical processes. In this study, a database search yielded 26 potential PT family genes in rice (Oryza sativa). Analysis of these genes led to identification of eight conserved motifs and 5-12 trans-membrane segments, most of them conserved. A total of 237 putative cis elements were found in the 2-kb upstream region of these genes. Of these, a majority were Pi-response and other stress-related cis regulatory elements, such as PHO-like, TATA-box-like, PHR1, or Helix-loop-helix elements, and WRKY1 and ABRE elements, suggesting gene regulation by these signals. Comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA from 27 tissues covering the entire lifecycle from three rice genotypes: Minghui 63, Zhenshan 97, and Shanyou 63. Real-time PCR analysis confirmed that three rice PT genes are preferentially expressed in stamen at 1 d before flowering, two in panicle at the heading stage, and two in flag leaf at 14 d after the heading stage. Hormone-treatment experiments revealed differential up-regulation or down-regulation of 11 rice PT genes in seedlings exposed to five hormones, respectively. These results will be useful for elucidating the roles of these genes in the growth, development, and stress response of the rice plant.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Familia de Multigenes/genética , Oryza/crecimiento & desarrollo , Oryza/genética , Proteínas de Transporte de Fosfato/genética , Análisis de Secuencia de ADN/métodos , Secuencias de Aminoácidos , Regulación de la Expresión Génica de las Plantas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/efectos de los fármacos , Proteínas de Transporte de Fosfato/química , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Secuencias Reguladoras de Ácidos Nucleicos/genética
16.
PLoS One ; 6(6): e19752, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21698287

RESUMEN

BACKGROUND: Phosphorus is one of the macronutrients essential for plant growth and development. The acquisition and translocation of phosphate are pivotal processes of plant growth. In a large number of plants, phosphate uptake by roots and translocation within the plant are presumed to occur via a phosphate/proton cotransport mechanism. PRINCIPAL FINDINGS: We cloned two cDNAs from soybean (Glycine max), GmPT1 and GmPT2, which show homology to the phosphate/proton cotransporter PHO84 from the budding yeast Saccharomyces cerevisiae. The amino acid sequence of the products predicted from GmPT1 and GmPT2 share 61% and 63% identity, respectively, with the PHO84 in amino acid sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass values are ∼58.7 kDa for GmPT1 and ∼58.6 kDa for GmPT2. Transiently expressed GFP-protein fusions provide direct evidence that the two Pi transporters are located in the plasma membrane. Uptake of radioactive orthophosphate by the yeast mutant MB192 showed that GmPT1 and GmPT2 are dependent on pH and uptake is reduced by the addition of uncouplers of oxidative phosphorylation. The K(m) for phosphate uptake by GmPT1 and GmPT2 is 6.65 mM and 6.63 mM, respectively. A quantitative real time RT-PCR assay indicated that these two genes are expressed in the roots and shoots of seedlings whether they are phosphate-deficient or not. Deficiency of phosphorus caused a slight change of the expression levels of GmPT1 and GmPT2. CONCLUSIONS: The results of our experiments show that the two phosphate transporters have low affinity and the corresponding genes are constitutively expressed. Thereby, the two phosphate transporters can perform translocation of phosphate within the plant.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario , Datos de Secuencia Molecular , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Glycine max/genética , Fracciones Subcelulares/metabolismo
17.
Plant Physiol ; 156(4): 2141-54, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21705655

RESUMEN

Gene networks involved in inorganic phosphate (Pi) acquisition and homeostasis in woody perennial species able to form mycorrhizal symbioses are poorly known. Here, we describe the features of the 12 genes coding for Pi transporters of the Pht1 family in poplar (Populus trichocarpa). Individual Pht1 transporters play distinct roles in acquiring and translocating Pi in different tissues of mycorrhizal and nonmycorrhizal poplar during different growth conditions and developmental stages. Pi starvation triggered the up-regulation of most members of the Pht1 family, especially PtPT9 and PtPT11. PtPT9 and PtPT12 showed a striking up-regulation in ectomycorrhizas and endomycorrhizas, whereas PtPT1 and PtPT11 were strongly down-regulated. PtPT10 transcripts were highly abundant in arbuscular mycorrhiza (AM) roots only. PtPT8 and PtPT10 are phylogenetically associated to the AM-inducible Pht1 subfamily I. The analysis of promoter sequences revealed conserved motifs similar to other AM-inducible orthologs in PtPT10 only. To gain more insight into gene regulatory mechanisms governing the AM symbiosis in woody plant species, the activation of the poplar PtPT10 promoter was investigated and detected in AM of potato (Solanum tuberosum) roots. These results indicated that the regulation of AM-inducible Pi transporter genes is conserved between perennial woody and herbaceous plant species. Moreover, poplar has developed an alternative Pi uptake pathway distinct from AM plants, allowing ectomycorrhizal poplar to recruit PtPT9 and PtPT12 to cope with limiting Pi concentrations in forest soils.


Asunto(s)
Perfilación de la Expresión Génica , Familia de Multigenes/genética , Micorrizas/fisiología , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Populus/genética , Populus/microbiología , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Genotipo , Glomeromycota/efectos de los fármacos , Glomeromycota/crecimiento & desarrollo , Glomeromycota/fisiología , Glucuronidasa/metabolismo , Anotación de Secuencia Molecular , Micorrizas/efectos de los fármacos , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/farmacología , Filogenia , Plantas Modificadas Genéticamente , Populus/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
18.
Plant Cell ; 23(4): 1523-35, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21521698

RESUMEN

In Arabidopsis thaliana, the PHOSPHATE TRANSPORTER1 (PHT1) family encodes the high-affinity phosphate transporters. They are transcriptionally induced by phosphate starvation and require PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR (PHF1) to exit the endoplasmic reticulum (ER), indicating intracellular traffic as an additional level of regulation of PHT1 activity. Our study revealed that PHF1 acts on PHT1, upstream of vesicle coat protein COPII formation, and that additional regulatory events occur during PHT1 trafficking and determine its ER exit and plasma membrane stability. Phosphoproteomic and mutagenesis analyses revealed modulation of PHT1;1 ER export by Ser-514 phosphorylation status. Confocal microscopy analysis of root tip cells showed that PHT1;1 is localized to the plasma membrane and is present in intracellular endocytic compartments. More precisely, PHT1;1 was localized to sorting endosomes associated with prevacuolar compartments. Kinetic analysis of PHT1;1 stability and targeting suggested a modulation of PHT1 internalization from the plasma membrane to the endosomes, followed by either subsequent recycling (in low Pi) or vacuolar degradation (in high Pi). For the latter condition, we identified a rapid mechanism that reduces the pool of PHT1 proteins present at the plasma membrane. This mechanism is regulated by the Pi concentration in the medium and appears to be independent of degradation mechanisms potentially regulated by the PHO2 ubiquitin conjugase. We propose a model for differential trafficking of PHT1 to the plasma membrane or vacuole as a function of phosphate concentration.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Fosfato/metabolismo , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Compartimento Celular , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Espacio Intracelular/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Proteínas de Transporte de Fosfato/química , Fosfatos/deficiencia , Fosfatos/metabolismo , Fosforilación , Estabilidad Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
19.
Phytopathology ; 101(6): 687-95, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21244225

RESUMEN

Gibberella zeae, the principal cause of Fusarium head blight (FHB) of barley, contaminates grains with several mycotoxins, which creates a serious problem for the malting barley industry in the United States, China, and Europe. However, limited studies have been conducted on the trichothecene profiles and population genetic structure of G. zeae isolates collected from barley in the United States. Trichothecene biosynthesis gene (TRI)-based polymerase chain reaction (PCR) assays and 10 variable number tandem repeat (VNTR) markers were used to determine the genetic diversity and compare the trichothecene profiles of an older population (n = 115 isolates) of G. zeae collected in 1997 to 2000 with a newer population (n = 147 isolates) collected in 2008. Samples were from across the major barley-growing regions in North Dakota and Minnesota. The results of TRI-based PCR assays were further validated using a subset of 32 and 28 isolates of G. zeae by sequence analysis and gas chromatography, respectively. TRI-based PCR assays revealed that all the G. zeae isolates in both populations had markers for deoxynivalenol (DON), and the frequencies of isolates with a 3-acetyldeoxynivalenol (3-ADON) marker in the newer population were ≈11-fold higher than those among isolates in the older population. G. zeae populations from barley in the Midwest of the United States showed no spatial structure, and all the isolates were solidly in clade 7 of G. zeae, which is quite different from other barley-growing areas of world, where multiple species of G. zeae are commonly found in close proximity and display spatial structure. VNTR analysis showed high gene diversity (H = 0.82 to 0.83) and genotypic diversity but low linkage disequilibrium (LD = 0.02 to 0.07) in both populations. Low genetic differentiation (F(ST) = 0.013) and high gene flow (Nm = 36.84) was observed between the two populations and among subpopulations within the same population (Nm = 12.77 to 29.97), suggesting that temporal and spatial variations had little influence on population differentiation in the Upper Midwest. Similarly, low F(ST) (0.02) was observed between 3-ADON and 15-acetyldeoxynivalenol populations, indicating minor influence of the chemotype of G. zeae isolates on population subdivision, although there was a rapid increase in the frequencies of isolates with the 3-ADON marker in the Upper Midwest between the older collection made in 1997 to 2000 and the newer collection made in 2008. This study provides information to barley-breeding programs for their selection of isolates of G. zeae for evaluating barley genotypes for resistance to FHB and DON accumulation.


Asunto(s)
Genética de Población , Gibberella/química , Gibberella/genética , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Tricotecenos/análisis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Flujo Génico/genética , Marcadores Genéticos/genética , Variación Genética/genética , Genética de Población/estadística & datos numéricos , Genotipo , Gibberella/clasificación , Gibberella/patogenicidad , Desequilibrio de Ligamiento/genética , Repeticiones de Minisatélite/genética , Minnesota , North Dakota , Proteínas de Transporte de Fosfato/química , Proteínas de Transporte de Fosfato/genética , Enfermedades de las Plantas/estadística & datos numéricos , Reacción en Cadena de la Polimerasa/métodos , Tricotecenos/genética
20.
Biochemistry ; 49(30): 6430-9, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20565143

RESUMEN

The anion transporter 1 (ANTR1) from Arabidopsis thaliana, homologous to the mammalian members of the solute carrier 17 (SLC17) family, is located in the chloroplast thylakoid membrane. When expressed heterologously in Escherichia coli, ANTR1 mediates a Na(+)-dependent active transport of inorganic phosphate (P(i)). The aim of this study was to identify amino acid residues involved in P(i) binding and translocation by ANTR1 and in the Na(+) dependence of its activity. A three-dimensional structural model of ANTR1 was constructed using the crystal structure of glycerol 3-phosphate/phosphate antiporter from E. coli as a template. Based on this model and multiple sequence alignments, five highly conserved residues in plant ANTRs and mammalian SLC17 homologues have been selected for site-directed mutagenesis, namely, Arg-120, Ser-124, and Arg-201 inside the putative translocation pathway and Arg-228 and Asp-382 exposed at the cytoplasmic surface of the protein. The activities of the wild-type and mutant proteins have been analyzed using expression in E. coli and radioactive P(i) transport assays and compared with bacterial cells carrying an empty plasmid. The results from P(i)- and Na(+)-dependent kinetics indicate the following: (i) Arg-120 and Arg-201 may be important for binding and translocation of the substrate; (ii) Ser-124 may function as a transient binding site for Na(+) ions in close proximity to the periplasmic side; (iii) Arg-228 and Asp-382 may participate in interactions associated with protein conformational changes required for full transport activity. Functional characterization of ANTR1 should provide useful insights into the function of other plant and mammalian SLC17 homologous transporters.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Transporte de Fosfato/química , Homología Estructural de Proteína , Tilacoides/metabolismo , Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/genética , Sitios de Unión , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas de Transporte de Fosfato/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...