Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
1.
Eur J Pharmacol ; 888: 173490, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32827538

RESUMEN

Increasing evidence shows that the intestinal tract plays an important role in maintaining urate homeostasis and might be a potential therapeutic target for hyperuricaemia. However, uric acid-lowering drugs available in the clinic do not target intestinal excretion as a therapeutic strategy. We previously reported that mangiferin had potent hypouricaemic effects in hyperuricaemic animals. However, the underlying mechanisms are not completely clear. Here, we investigated the effects of mangiferin on the intestinal excretion of urate and its underlying mechanisms. The data revealed that mangiferin concentration-dependently promoted the intestinal secretion of endogenous urate in in situ intestinal closed loops in normal and hyperuricaemic mice, as well as inhibited the absorption of exogenous uric acid perfused into the intestinal loops in rats. Administration of mangiferin not only decreased the serum urate levels in the hyperuricaemic mice but also increased the protein expression of ATP-binding cassette transporter, subfamily G, member 2 (ABCG2) and inhibited the protein expression of glucose transporter 9 (GLUT 9) in the intestine. These findings suggested that intestinal ABCG2 and GLUT9 might be pivotal and possible action sites for the observed hypouricaemic effects. Moreover, no significant changes in intestinal xanthine oxidoreductase activities were observed, suggesting that mangiferin did not affect intestinal uric acid generation in the hyperuricaemic mice. Overall, promoting intestinal elimination of urate by upregulating ABCG2 expression and downregulating GLUT9 expression might be an important mechanism underlying mangiferin lowering serum uric acid levels. Mangiferin supplementation might be beneficial for the prevention and treatment of hyperuricaemia.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/biosíntesis , Eliminación Intestinal/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/biosíntesis , Ácido Úrico/metabolismo , Xantonas/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/agonistas , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Eliminación Intestinal/fisiología , Masculino , Ratones , Proteínas de Transporte de Monosacáridos/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Xantonas/uso terapéutico
2.
Mol Cells ; 41(4): 351-361, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29487277

RESUMEN

Sucrose is a crucial compound for the growth and development of plants, and the regulation of multiple genes depends on the amount of soluble sugars present. Sucrose acts as a signaling molecule that regulates a proton-sucrose symporter, with its sensor being the sucrose transporter. Flavonoid and anthocyanin biosynthesis are regulated by sucrose, and sucrose signaling can affect flavonoid and anthocyanin accumulation. In the present study, we found a Myb transcription factor affecting accumulation of anthocyanin. AtMyb56 showed an increase in its expression in response to sucrose treatment. Under normal conditions, anthocyanin accumulation was similar between Col-0 (wild type) and atmyb56 mutant seedlings; however, under sucrose treatment, the level of anthocyanin accumulation was lower in the atmyb56 mutant plants than in Col-0 plants. Preliminary microarray analysis led to the investigation of the expression of one candidate gene, AtGPT2, in the atmyb56 mutant. The phosphate translocator, which is a plastidial phosphate antiporter family, catalyzes the import of glucose-6-phosphate (G-6-P) into the chloroplast. AtGPT2 gene expression was altered in atmyb56 seedlings in a sucrose-dependent manner in response to circadian cycle. Furthermore, the lack of AtMyb56 resulted in altered accumulation of maltose in a sucrose-dependent manner. Therefore, the sucrose responsive AtMyb56 regulates AtGPT2 gene expression in a sucrose-dependent manner to modulate maltose and anthocyanin accumulations in response to the circadian cycle.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Monosacáridos/biosíntesis , Sacarosa/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Monosacáridos/genética , Transducción de Señal , Factores de Transcripción/genética
3.
Biomed Res Int ; 2017: 5470241, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197413

RESUMEN

In recent years, multidrug resistance of Escherichia coli has become a serious problem. However, resistance to fosfomycin (FOM) has been low. We screened E. coli clinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 µg/mL) in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fos genes) and mutations in murA that underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P) transporter and sn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P of uhpT that encodes G6P transporter expression. Nucleotide sequences of the uhpT, uhpA, glpT, ptsI, and cyaA shared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction of uhpT function is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations in murA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear.


Asunto(s)
Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/efectos de los fármacos , Fosfomicina/administración & dosificación , Proteínas de Transporte de Monosacáridos/biosíntesis , Transferasas Alquil y Aril/genética , Secuencia de Bases , Resistencia a Múltiples Medicamentos/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glucosa-6-Fosfato/genética , Glucosa-6-Fosfato/metabolismo , Humanos , Proteínas de Transporte de Monosacáridos/genética , Mutación
4.
FEMS Microbiol Lett ; 364(2)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28108582

RESUMEN

Chronological lifespan is defined by how long a cell can survive in a non-dividing state. In yeast, it is measured by viability after entry into the stationary phase. To understand the regulatory mechanisms of chronological lifespan in Schizosaccharomyces pombe, it is necessary to identify and characterize novel factors involved in the regulation of chronological lifespan. To this end, we have screened for a long-lived mutant and identified that novel gene nnk1+ that encodes an essential protein kinase is the determinant of chronological lifespan. We showed that the expression of major glucose transporter gene, ght5+, is decreased in the isolated nnk1-35 mutant, suggesting that Nnk1 protein is involved in the regulation of ght5+ The consumption of glucose in the growth medium after saturated growth was lower in the nnk1-35 mutant than that in wild-type cell. The isolated ght5 deletion mutant showed long-lived phenotype. Based on these results, we propose that Nnk1 regulates chronological lifespan through the regulation of ght5+ Nnk1 might coordinate glucose availability and lifespan in fission yeast.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/fisiología , Proteínas Fúngicas/genética , Eliminación de Gen , Expresión Génica , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Viabilidad Microbiana , Proteínas de Transporte de Monosacáridos/biosíntesis , Mutación , Proteínas Quinasas/genética , Proteínas de Schizosaccharomyces pombe/biosíntesis
5.
Int J Mol Sci ; 17(12)2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27916945

RESUMEN

Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration.


Asunto(s)
Citocininas/biosíntesis , Germinación/genética , Pisum sativum/genética , Semillas/genética , Sistemas de Transporte de Aminoácidos/biosíntesis , Sistemas de Transporte de Aminoácidos/genética , Pared Celular/enzimología , Citocininas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Pisum sativum/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/genética , Plantones/genética , Semillas/crecimiento & desarrollo , Espectrometría de Masas en Tándem , beta-Fructofuranosidasa/biosíntesis , beta-Fructofuranosidasa/genética
6.
J Assist Reprod Genet ; 33(10): 1395-1403, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27475633

RESUMEN

PURPOSE: Despite advances in the composition of defined embryo culture media, co-culture with somatic cells is still used for bovine in vitro embryo production (IVEP) in many laboratories worldwide. Granulosa cells are most often used for this purpose, although recent work suggests that co-culture with stem cells of adult or embryonic origin or their derived biomaterials may improve mouse, cattle, and pig embryo development. MATERIALS AND METHODS: In experiment 1, in vitro produced bovine embryos were co-cultured in the presence of two concentrations of bovine adipose tissue-derived mesenchymal cells (b-ATMSCs; 103 and 104 cells/mL), in b-ATMSC preconditioned medium (SOF-Cond), or SOF alone (control). In experiment 2, co-culture with 104 b-ATMSCs/mL was compared to the traditional granulosa cell co-culture system (Gran). RESULTS: In experiment 1, co-culture with 104 b-ATMSCs/mL improved blastocyst rates in comparison to conditioned and control media (p < 0.05). Despite that it did not show difference with 103 b-ATMSCs/mL (p = 0.051), group 104 b-ATMSCs/mL yielded higher results of blastocyst production. In experiment 2, when compared to group Gran, co-culture with 104 b-ATMSCs/mL improved not only blastocyst rates but also quality as assessed by increased total cell numbers and mRNA expression levels for POU5F1 and G6PDH (p < 0.05). CONCLUSIONS: Co-culture of bovine embryos with b-ATMSCs was more beneficial than the traditional co-culture system with granulosa cells. We speculate that the microenvironmental modulatory potential of MSCs, by means of soluble substances and exosome secretions, could be responsible for the positive effects observed. Further experiments must be done to evaluate if this beneficial effect in vitro also translates to an increase in offspring following embryo transfer. Moreover, this study provides an interesting platform to study the basic requirements during preimplantation embryo development, which, in turn, may aid the improvement of embryo culture protocols in bovine and other species.


Asunto(s)
Técnicas de Cocultivo , Medios de Cultivo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Adulto , Animales , Blastocisto/efectos de los fármacos , Bovinos , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/citología , Humanos , Ratones , Proteínas de Transporte de Monosacáridos/biosíntesis , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Embarazo
7.
Sci Rep ; 6: 30080, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27417146

RESUMEN

Genome engineering has become a powerful tool for creating useful strains in research and industry. In this study, we applied singleplex and multiplex genome engineering approaches to construct an E. coli strain for the production of L-DOPA from glucose. We first used the singleplex genome engineering approach to create an L-DOPA-producing strain, E. coli DOPA-1, by deleting transcriptional regulators (tyrosine repressor tyrR and carbon storage regulator A csrA), altering glucose transport from the phosphotransferase system (PTS) to ATP-dependent uptake and the phosphorylation system overexpressing galactose permease gene (galP) and glucokinase gene (glk), knocking out glucose-6-phosphate dehydrogenase gene (zwf) and prephenate dehydratase and its leader peptide genes (pheLA) and integrating the fusion protein chimera of the downstream pathway of chorismate. Then, multiplex automated genome engineering (MAGE) based on 23 targets was used to further improve L-DOPA production. The resulting strain, E. coli DOPA-30N, produced 8.67 g/L of L-DOPA in 60 h in a 5 L fed-batch fermentation. This titer is the highest achieved in metabolically engineered E. coli having PHAH activity from glucose.


Asunto(s)
Reactores Biológicos/microbiología , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Glucosa/metabolismo , Levodopa/biosíntesis , Proteínas Bacterianas/genética , Proteínas de Unión al Calcio/biosíntesis , Proteínas de Unión al Calcio/genética , Proteínas de Escherichia coli/genética , Glucoquinasa/genética , Glucosafosfato Deshidrogenasa/genética , Levodopa/genética , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Unión Periplasmáticas/biosíntesis , Proteínas de Unión Periplasmáticas/genética , Prefenato Deshidratasa/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
8.
Gene ; 579(2): 162-71, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26743125

RESUMEN

Sugar transporters play an essential role in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells. These genes exist as large multigene families within the insect genome. In insects, sugar transporters not only have a role in sugar transport, but may also act as receptors for virus entry. Genome-wide annotation of silkworm Bombyx mori (B. mori) revealed 100 putative sugar transporter (BmST) genes exists as a large multigene family and were classified into 11 sub families, through phylogenetic analysis. Chromosomes 27, 26 and 20 were found to possess the highest number of BmST paralogous genes, harboring 22, 7 and 6 genes, respectively. These genes occurred in clusters exhibiting the phenomenon of tandem gene duplication. The ovary, silk gland, hemocytes, midgut and malphigian tubules were the different tissues/cells enriched with BmST gene expression. The BmST gene BGIBMGA001498 had maximum EST transcripts of 134 and expressed exclusively in the malphigian tubule. The expression of EST transcripts of the BmST clustered genes on chromosome 27 was distributed in various tissues like testis, ovary, silk gland, malphigian tubule, maxillary galea, prothoracic gland, epidermis, fat body and midgut. Three sugar transporter genes (BmST) were constitutively expressed in the susceptible race and were down regulated upon BmNPV infection at 12h post infection (hpi). The expression pattern of these three genes was validated through real-time PCR in the midgut tissues at different time intervals from 0 to 30hpi. In the susceptible B. mori race, expression of sugar transporter genes was constitutively expressed making the host succumb to viral infection.


Asunto(s)
Bombyx/genética , Proteínas de Transporte de Monosacáridos/biosíntesis , Nucleopoliedrovirus/genética , Filogenia , Animales , Bombyx/virología , Carbohidratos/genética , Cromosomas/genética , Regulación de la Expresión Génica , Genoma de los Insectos , Larva , Proteínas de Transporte de Monosacáridos/genética , Nucleopoliedrovirus/patogenicidad
9.
Appl Environ Microbiol ; 81(24): 8392-401, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26431967

RESUMEN

Metabolic engineering to increase the glucose uptake rate might be beneficial to improve microbial production of various fuels and chemicals. In this study, we enhanced the glucose uptake rate in Saccharomyces cerevisiae by overexpressing hexose transporters (HXTs). Among the 5 tested HXTs (Hxt1, Hxt2, Hxt3, Hxt4, and Hxt7), overexpression of high-affinity transporter Hxt7 was the most effective in increasing the glucose uptake rate, followed by moderate-affinity transporters Hxt2 and Hxt4. Deletion of STD1 and MTH1, encoding corepressors of HXT genes, exerted differential effects on the glucose uptake rate, depending on the culture conditions. In addition, improved cell growth and glucose uptake rates could be achieved by overexpression of GCR1, which led to increased transcription levels of HXT1 and ribosomal protein genes. All genetic modifications enhancing the glucose uptake rate also increased the ethanol production rate in wild-type S. cerevisiae. Furthermore, the growth-promoting effect of GCR1 overexpression was successfully applied to lactic acid production in an engineered lactic acid-producing strain, resulting in a significant improvement of productivity and titers of lactic acid production under acidic fermentation conditions.


Asunto(s)
Transporte Biológico Activo/genética , Proteínas de Unión al ADN/biosíntesis , Glucosa/metabolismo , Ácido Láctico/biosíntesis , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Metabolismo de los Hidratos de Carbono/genética , Proteínas de Unión al ADN/genética , Etanol/metabolismo , Fermentación/genética , Fermentación/fisiología , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional/genética
10.
J Bacteriol ; 197(24): 3788-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26416832

RESUMEN

UNLABELLED: In Corynebacterium glutamicum ATCC 31831, a LacI-type transcriptional regulator AraR, represses the expression of l-arabinose catabolism (araBDA), uptake (araE), and the regulator (araR) genes clustered on the chromosome. AraR binds to three sites: one (BSB) between the divergent operons (araBDA and galM-araR) and two (BSE1 and BSE2) upstream of araE. L-Arabinose acts as an inducer of the AraR-mediated regulation. Here, we examined the roles of these AraR-binding sites in the expression of the AraR regulon. BSB mutation resulted in derepression of both araBDA and galM-araR operons. The effects of BSE1 and/or BSE2 mutation on araE expression revealed that the two sites independently function as the cis elements, but BSE1 plays the primary role. However, AraR was shown to bind to these sites with almost the same affinity in vitro. Taken together, the expression of araBDA and araE is strongly repressed by binding of AraR to a single site immediately downstream of the respective transcriptional start sites, whereas the binding site overlapping the -10 or -35 region of the galM-araR and araE promoters is less effective in repression. Furthermore, downregulation of araBDA and araE dependent on l-arabinose catabolism observed in the BSB mutant and the AraR-independent araR promoter identified within galM-araR add complexity to regulation of the AraR regulon derepressed by L-arabinose. IMPORTANCE: Corynebacterium glutamicum has a long history as an industrial workhorse for large-scale production of amino acids. An important aspect of industrial microorganisms is the utilization of the broad range of sugars for cell growth and production process. Most C. glutamicum strains are unable to use a pentose sugar L-arabinose as a carbon source. However, genes for L-arabinose utilization and its regulation have been recently identified in C. glutamicum ATCC 31831. This study elucidates the roles of the multiple binding sites of the transcriptional repressor AraR in the derepression by L-arabinose and thereby highlights the complex regulatory feedback loops in combination with l-arabinose catabolism-dependent repression of the AraR regulon in an AraR-independent manner.


Asunto(s)
Sitios de Unión/genética , Corynebacterium glutamicum/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Arabinosa/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas de Unión al ADN/metabolismo , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/biosíntesis
11.
Metab Eng ; 30: 79-88, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25944766

RESUMEN

Efficient and specific transporters may enhance pentose uptake and metabolism by Saccharomyces cerevisiae. Eight heterologous sugar transporters were characterized in S. cerevisiae. The transporter Mgt05196p from Meyerozyma guilliermondii showed the highest xylose transport activity among them. Several key amino acid residues of Mgt05196p were suggested by structural and sequence analysis and characterized by site-directed mutagenesis. A conserved aromatic residue-rich motif (YFFYY, position 332-336) in the seventh trans-membrane span plays an important role in D-xylose transport activity. The phenyl ring of the residue at position 336 may take the function to prevent D-xylose from escaping during uptake. F432A and N360S mutations enhanced the D-xylose transport activities of Mgt05196p. Furthermore, mutant N360F specifically transported D-xylose without any glucose-inhibition, high lighting its potential application in constructing glucose-xylose co-fermentation strains for biomass refining.


Asunto(s)
Sustitución de Aminoácidos , Clonación Molecular , Proteínas Fúngicas , Proteínas de Transporte de Monosacáridos , Saccharomyces cerevisiae , Xilosa/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Expresión Génica , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Mutación Missense , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilosa/genética
12.
Biochem J ; 464(2): 193-201, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25164149

RESUMEN

The members of the solute carrier 45 (SLC45) family have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). However, apart from SLC45A1, a proton-associated glucose transporter, the function of these proteins is still largely unknown, although sequence similarities to plant sucrose transporters mark them as a putative sucrose transporter family. Heterologous expression of the three members SLC45A2, SLC45A3 and SLC45A4 in Saccharomyces cerevisiae confirmed that they are indeed sucrose transporters. [(14)C]Sucrose-uptake measurements revealed intermediate transport affinities with Km values of approximately 5 mM. Transport activities were best under slightly acidic conditions and were inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone, demonstrating an H(+)-coupled transport mechanism. Na(+), on the other hand, had no effect on sucrose transport. Competitive inhibition assays indicated a possible transport also of glucose and fructose. Real-time PCR of mouse tissues confirmed mRNA expression of SLC45A2 in eyes and skin and of SLC45A3 primarily in the prostate, but also in other tissues, whereas SLC45A4 showed a predominantly ubiquitous expression. Altogether the results provide new insights into the physiological significance of SLC45 family members and challenge existing concepts of mammalian sugar transport, as they (i) transport a disaccharide, and (ii) perform secondary active transport in a proton-dependent manner.


Asunto(s)
Transporte Biológico/genética , Proteínas de la Membrana/biosíntesis , Proteínas de Transporte de Monosacáridos/biosíntesis , Sacarosa/metabolismo , Simportadores/biosíntesis , Secuencia de Aminoácidos , Animales , Ojo/metabolismo , Regulación Fúngica de la Expresión Génica , Ratones , Proteínas de Transporte de Monosacáridos/metabolismo , Protones , Saccharomyces cerevisiae , Piel/metabolismo , Sacarosa/química
13.
DNA Res ; 21(6): 613-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25030463

RESUMEN

Breeding new varieties with low seed glucosinolate (GS) concentrations has long been a prime target in Brassica napus. In this study, a novel association mapping methodology termed 'associative transcriptomics' (AT) was applied to a panel of 101 B. napus lines to define genetic regions and also candidate genes controlling total seed GS contents. Over 100,000 informative single-nucleotide polymorphisms (SNPs) and gene expression markers (GEMs) were developed for AT analysis, which led to the identification of 10 SNP and 7 GEM association peaks. Within these peaks, 26 genes were inferred to be involved in GS biosynthesis. A weighted gene co-expression network analysis provided additional 40 candidate genes. The transcript abundance in leaves of two candidate genes, BnaA.GTR2a located on chromosome A2 and BnaC.HAG3b on C9, was correlated with seed GS content, explaining 18.8 and 16.8% of phenotypic variation, respectively. Resequencing of genomic regions revealed six new SNPs in BnaA.GTR2a and four insertions or deletions in BnaC.HAG3b. These deletion polymorphisms were then successfully converted into polymerase chain reaction-based diagnostic markers that can, due to high linkage disequilibrium observed in these regions of the genome, be used for marker-assisted breeding for low seed GS lines.


Asunto(s)
Brassica napus , Cromosomas de las Plantas/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Glucosinolatos , Polimorfismo de Nucleótido Simple , Semillas , Brassica napus/genética , Brassica napus/metabolismo , Mapeo Cromosómico , Perfilación de la Expresión Génica , Glucosinolatos/biosíntesis , Glucosinolatos/genética , Desequilibrio de Ligamiento/fisiología , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Semillas/genética , Semillas/metabolismo
14.
J Biol Chem ; 289(10): 7247-7256, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24451370

RESUMEN

Sensing and signaling the presence of extracellular glucose is crucial for the yeast Saccharomyces cerevisiae because of its fermentative metabolism, characterized by high glucose flux through glycolysis. The yeast senses glucose through the cell surface glucose sensors Rgt2 and Snf3, which serve as glucose receptors that generate the signal for induction of genes involved in glucose uptake and metabolism. Rgt2 and Snf3 detect high and low glucose concentrations, respectively, perhaps because of their different affinities for glucose. Here, we provide evidence that cell surface levels of glucose sensors are regulated by ubiquitination and degradation. The glucose sensors are removed from the plasma membrane through endocytosis and targeted to the vacuole for degradation upon glucose depletion. The turnover of the glucose sensors is inhibited in endocytosis defective mutants, and the sensor proteins with a mutation at their putative ubiquitin-acceptor lysine residues are resistant to degradation. Of note, the low affinity glucose sensor Rgt2 remains stable only in high glucose grown cells, and the high affinity glucose sensor Snf3 is stable only in cells grown in low glucose. In addition, constitutively active, signaling forms of glucose sensors do not undergo endocytosis, whereas signaling defective sensors are constitutively targeted for degradation, suggesting that the stability of the glucose sensors may be associated with their ability to sense glucose. Therefore, our findings demonstrate that the amount of glucose available dictates the cell surface levels of the glucose sensors and that the regulation of glucose sensors by glucose concentration may enable yeast cells to maintain glucose sensing activity at the cell surface over a wide range of glucose concentrations.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucosa/deficiencia , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Biosíntesis de Proteínas , Proteolisis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Ubiquitinación , Vacuolas/metabolismo
15.
J Ind Microbiol Biotechnol ; 40(9): 1039-50, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23748446

RESUMEN

Agricultural residues comprising lignocellulosic materials are excellent sources of pentose sugar, which can be converted to ethanol as fuel. Ethanol production via consolidated bioprocessing requires a suitable microorganism to withstand the harsh fermentation environment of high temperature, high ethanol concentration, and exposure to inhibitors. We genetically enhanced an industrial Saccharomyces cerevisiae strain, sun049, enabling it to uptake xylose as the sole carbon source at high fermentation temperature. This strain was able to produce 13.9 g/l ethanol from 50 g/l xylose at 38 °C. To better understand the xylose consumption ability during long-term, high-temperature conditions, we compared by transcriptomics two fermentation conditions: high temperature (38 °C) and control temperature (30 °C) during the first 12 h of fermentation. This is the first long-term, time-based transcriptomics approach, and it allowed us to discover the role of heat-responsive genes when xylose is the sole carbon source. The results suggest that genes related to amino acid, cell wall, and ribosomal protein synthesis are down-regulated under heat stress. To allow cell stability and continuous xylose uptake in order to produce ethanol, hexose transporter HXT5, heat shock proteins, ubiquitin proteins, and proteolysis were all induced at high temperature. We also speculate that the strong relationship between high temperature and increased xylitol accumulation represents the cell's mechanism to protect itself from heat degradation.


Asunto(s)
Etanol/metabolismo , Regulación Fúngica de la Expresión Génica , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura , Transcriptoma/genética , Xilosa/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Fermentación , Perfilación de la Expresión Génica , Genes Fúngicos/genética , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Calor , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Familia de Multigenes/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Ubiquitina/biosíntesis , Ubiquitina/genética , Xilitol/biosíntesis , Xilitol/metabolismo
16.
Bioprocess Biosyst Eng ; 36(6): 809-17, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23411871

RESUMEN

Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was selected because of its high affinity for xylose and was codon-optimized for functional expression in C. tropicalis. The codon-optimized gene was placed under the control of the GAPDH promoter and was integrated into the genome of C. tropicalis strain LXU1 which is xyl2-disrupted and NXRG (codon-optimized Neurospora crassa xylose reductase) introduced. The xylose uptake rate was increased by 37-73 % in the transporter expression-enhanced strains depending on the glucose/xylose mixture ratio. The recombinant strain LXT2 in 500-mL flask culture using glucose/xylose mixtures showed a xylose uptake rate that was 29 % higher and a xylitol volumetric productivity (1.14 g/L/h) that was 25 % higher than the corresponding rates for control strain LXU1. Membrane protein extraction and Western blot analysis confirmed the successful heterologous expression and membrane localization of the xylose transporter in C. tropicalis.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/enzimología , Candida tropicalis/enzimología , Proteínas de Transporte de Monosacáridos/biosíntesis , Xilitol/biosíntesis , Xilosa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Candida tropicalis/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Xilitol/genética
17.
Metab Eng ; 14(5): 569-78, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22677452

RESUMEN

Clostridium beijerinckii is an attractive butanol-producing microbe for its advantage in co-fermenting hexose and pentose sugars. However, this Clostridium strain exhibits undesired efficiency in utilizing D-xylose, one of the major building blocks contained in lignocellulosic materials. Here, we reported a useful metabolic engineering strategy to improve D-xylose consumption by C. beijerinckii. Gene cbei2385, encoding a putative D-xylose repressor XylR, was first disrupted in the C. beijerinckii NCIMB 8052, resulting in a significant increase in D-xylose consumption. A D-xylose proton-symporter (encoded by gene cbei0109) was identified and then overexpressed to further optimize D-xylose utilization, yielding an engineered strain 8052xylR-xylT(ptb) (xylR inactivation plus xylT overexpression driven by ptb promoter). We investigated the strain 8052xylR-xylT(ptb) in fermenting xylose mother liquid, an abundant by-product from industrial-scale xylose preparation from corncob and rich in D-xylose, finally achieving a 35% higher Acetone, Butanol and Ethanol (ABE) solvent titer (16.91 g/L) and a 38% higher yield (0.29 g/g) over those of the wild-type strain. The strategy used in this study enables C. beijerinckii more suitable for butanol production from lignocellulosic materials.


Asunto(s)
Proteínas Bacterianas , Clostridium , Ingeniería Metabólica , Proteínas de Transporte de Monosacáridos , Solventes/metabolismo , Simportadores , Xilosa , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Clostridium/enzimología , Clostridium/genética , Clostridium/crecimiento & desarrollo , Técnicas de Silenciamiento del Gen , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Simportadores/biosíntesis , Simportadores/genética , Xilosa/genética , Xilosa/metabolismo
18.
Neuroscience ; 213: 29-37, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22521588

RESUMEN

Oligodendrocytes generate large amounts of myelin by extension of their cell membranes. Though lipid is the major component of myelin, detailed lipid metabolism in the maintenance of myelin is not understood. We reported previously that miR-32 might be involved in myelin maintenance (Shin et al., 2009). Here we demonstrate a novel role for miR-32 in oligodendrocyte function and development through the regulation of SLC45A3 (solute carrier family 45, member 3) and other downstream targets such as CLDN-11. miR-32 is highly expressed in the myelin-enriched regions of the brain and mature oligodendrocytes, and it promotes myelin protein expression. We found that miR-32 directly regulates the expression of SLC45A3 by binding to the complementary sequence on the 3'UTR of cldn11 and slc45a3. As a myelin-enriched putative sugar transporter, SLC45A3 enhances intracellular glucose levels and the synthesis of long-chain fatty acids. Therefore, overexpression of SLC45A3 triggers neutral lipid accumulation. Interestingly, both overexpression and suppression of SLC45A3 reduces myelin protein expression in mature oligodendrocytes and alters oligodendrocyte morphology, indicating that tight regulation of SLC45A3 expression is necessary for the proper maintenance of myelin proteins and structure. Taken together, our data suggest that miR-32 and its downstream target SLC45A3 play important roles in myelin maintenance by modulating glucose and lipid metabolism and myelin protein expression in oligodendrocytes.


Asunto(s)
Metabolismo de los Lípidos/genética , Proteínas de Transporte de Membrana/biosíntesis , MicroARNs/metabolismo , Proteínas de Transporte de Monosacáridos/biosíntesis , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Western Blotting , Regulación de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Microscopía Electrónica de Transmisión , Proteínas de Transporte de Monosacáridos/genética , Mutagénesis Sitio-Dirigida , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Plant Sci ; 182: 101-11, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22118621

RESUMEN

A metabolic depletion syndrome was discovered at early vegetative stages in roots of salt sensitive rice cultivars after prolonged exposure to 100mM NaCl. Metabolite profiling analyses demonstrate that this syndrome is part of the terminal stages of the rice salt response. The phenotype encompasses depletion of at least 30 primary metabolites including sucrose, glucose, fructose, glucose-6-P, fructose-6P, organic- and amino-acids. Based on these observations we reason that sucrose allocation to the root may modify the rice response to high salt. This hypothesis was tested using antisense lines of the salt responsive OsSUT1 gene in the salt sensitive Taipei 309 cultivar. Contrary to our expectations of a plant system impaired in one component of sucrose transport, we find improved gas exchange and photosynthetic performance as well as maintenance of sucrose levels in the root under high salinity. Two independent OsSUT1 lines with an antisense inhibition similar to the naturally occurring salt induced reduction of OsSUT1 gene expression showed these phenomena but not a more extreme antisense inhibition line. We investigated the metabolic depletion syndrome by metabolomic and physiological approaches and discuss our results with regard to the potential role of sucrose transporters and sucrose transport for rice salt acclimation.


Asunto(s)
Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Adaptación Fisiológica , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Metabolómica , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Salinidad , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Sacarosa/metabolismo
20.
Metab Eng ; 13(6): 694-703, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21963484

RESUMEN

Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.


Asunto(s)
Etanol/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sacarosa/metabolismo , beta-Fructofuranosidasa/genética , Evolución Biológica , Eliminación de Gen , Perfilación de la Expresión Génica , Proteínas de Transporte de Monosacáridos/biosíntesis , Regiones Promotoras Genéticas , Ingeniería de Proteínas , Proteínas de Saccharomyces cerevisiae/biosíntesis , Simportadores/biosíntesis , beta-Fructofuranosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...