Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Mol Biol ; 434(2): 167356, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34780780

RESUMEN

The crucial function of neurotransmitter:sodium symporters (NSS) in facilitating the reuptake of neurotransmitters into neuronal cells makes them attractive drug targets for treating multiple mental diseases. Due to the challenges in working with eukaryotic NSS proteins, LeuT, a prokaryotic amino acid transporter, has served as a model protein for studying structure-function relationships of NSS family proteins. With hydrogen-deuterium exchange mass spectrometry (HDX-MS), slow unfolding/refolding kinetics were identified in multiple regions of LeuT, suggesting that substrate translocation involves cooperative fluctuations of helical stretches. Earlier work has solely been performed at non-native temperatures (25 °C) for LeuT, which is evolutionarily adapted to function at high temperatures (85 - 95 °C). To address the effect of temperature on LeuT dynamics, we have performed HDX-MS experiments at elevated temperatures (45 °C and 60 °C). At these elevated temperatures, multiple regions in LeuT exhibited increased dynamics compared to 25 °C. Interestingly, coordinated slow unfolding/refolding of key regions could still be observed, though considerably faster. We have further investigated the conformational impact of binding the efficiently transported substrate alanine (Ala) relative to the much slower transported substrate leucine (Leu). Comparing the HDX of the Ala-bound versus Leu-bound state of LeuT, we observe distinct differences that could explain the faster transport rate (kcat) of Ala relative to Leu. Importantly, slow unfolding/refolding dynamics could still be observed in regions of Ala-bound LeuT . Overall, our work brings new insights into the conformational dynamics of LeuT and provides a better understanding of the transport mechanism of LeuT and possibly other transporters bearing the LeuT fold.


Asunto(s)
Conformación Molecular , Neurotransmisores , Simportadores/química , Temperatura , Cinética , Proteínas de la Membrana , Simulación de Dinámica Molecular , Preparaciones Farmacéuticas , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Conformación Proteica , Sodio
2.
J Biol Chem ; 296: 100609, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33811858

RESUMEN

The neurotransmitter:sodium symporter (NSS) homolog LeuT from Aquifex aeolicus has proven to be a valuable model for studying the transport mechanism of the NSS family. Crystal structures have captured LeuT in key conformations visited during the transport cycle, allowing for the construction of a nearly complete model of transport, with much of the conformational dynamics studied by computational simulations. Here, we report crystal structures of LeuT representing new intermediate conformations between the outward-facing open and occluded states. These structures, combined with binding and accessibility studies, reveal details of conformational dynamics that can follow substrate binding at the central substrate binding site (S1) of LeuT in outward-facing states, suggesting a potential competition for direction between the outward-open and outward-occluded states at this stage during substrate transport. Our structures further support an intimate interplay between the protonation state of Glu290 and binding of Na1 that may ultimately regulate the outward-open-to-occluded transition.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Sodio/metabolismo , Aquifex/metabolismo , Cristalografía por Rayos X , Leucina/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica , Simportadores/química , Simportadores/metabolismo , Termodinámica
3.
Sci Rep ; 11(1): 1636, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452333

RESUMEN

Creatine is an organic compound used as fast phosphate energy buffer to recycle ATP, important in tissues with high energy demand such as muscle or brain. Creatine is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Deficit in the endogenous synthesis or in the transport leads to Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain creatine deficiency, intellectual disability with severe speech delay, behavioral troubles such as attention deficits and/or autistic features, and epilepsy. Among CCDS, the X-linked creatine transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different mouse models of CTD were generated by doing long deletions in the Slc6a8 gene showing reduced brain creatine and cognitive deficiencies or impaired motor function. We present a new knock-in (KI) rat model of CTD holding an identical point mutation found in patients with reported lack of transporter activity. KI males showed brain creatine deficiency, increased urinary creatine/creatinine ratio, cognitive deficits and autistic-like traits. The Slc6a8Y389C KI rat fairly enriches the spectrum of CTD models and provides new data about the pathology, being the first animal model of CTD carrying a point mutation.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Animales , Secuencia de Bases , Conducta Animal , Peso Corporal , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/patología , Creatina/sangre , Creatina/deficiencia , Creatina/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Genotipo , Humanos , Masculino , Memoria a Corto Plazo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Mutación Missense , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Ratas
4.
Sci Rep ; 10(1): 6241, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277128

RESUMEN

Creatine is a crucial metabolite that plays a fundamental role in ATP homeostasis in tissues with high-energy demands. The creatine transporter (CreaT, SLC6A8) belongs to the solute carrier 6 (SLC6) transporters family, and more particularly to the GABA transporters (GATs) subfamily. Understanding the molecular determinants of specificity within the SLC6 transporters in general, and the GATs in particular is very challenging due to the high similarity of these proteins. In the study presented here, our efforts focused on finding key structural features involved in binding selectivity for CreaT using structure-based computational methods. Due to the lack of three-dimensional structures of SLC6A8, our approach was based on the realization of two reliable homology models of CreaT using the structures of two templates, i.e. the human serotonin transporter (hSERT) and the prokaryotic leucine transporter (LeuT). Our models reveal that an optimal complementarity between the shape of the binding site and the size of the ligands is necessary for transport. These findings provide a framework for a deeper understanding of substrate selectivity of the SLC6 family and other LeuT fold transporters.


Asunto(s)
Creatina/metabolismo , Simulación del Acoplamiento Molecular , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Aquifex , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Creatina/química , Ligandos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/ultraestructura , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/ultraestructura , Conformación Proteica en Hélice alfa , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas de Transporte de Serotonina en la Membrana Plasmática/ultraestructura , Especificidad por Sustrato
5.
Biochemistry ; 59(13): 1367-1377, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32207963

RESUMEN

More than 80 loss-of-function (LOF) mutations in the SLC6A8 creatine transporter (hCRT1) are responsible for cerebral creatine deficiency syndrome (CCDS), which gives rise to a spectrum of neurological defects, including intellectual disability, epilepsy, and autism spectrum disorder. To gain insight into the nature of the molecular defects caused by these mutations, we quantitatively profiled the cellular processing, trafficking, expression, and function of eight pathogenic CCDS variants in relation to the wild type (WT) and one neutral isoform. All eight CCDS variants exhibit measurable proteostatic deficiencies that likely contribute to the observed LOF. However, the magnitudes of their specific effects on the expression and trafficking of hCRT1 vary considerably, and we find that the LOF associated with two of these variants primarily arises from the disruption of the substrate-binding pocket. In conjunction with an analysis of structural models of the transporter, we use these data to suggest mechanistic classifications for these variants. To evaluate potential avenues for therapeutic intervention, we assessed the sensitivity of these variants to temperature and measured their response to the proteostasis regulator 4-phenylbutyrate (4-PBA). Only one of the tested variants (G132V) is sensitive to temperature, though its response to 4-PBA is negligible. Nevertheless, 4-PBA significantly enhances the activity of WT hCRT1 in HEK293T cells, which suggests it may be worth evaluating as a therapeutic for female intellectual disability patients carrying a single CCDS mutation. Together, these findings reveal that pathogenic SLC6A8 mutations cause a spectrum of molecular defects that should be taken into consideration in future efforts to develop CCDS therapeutics.


Asunto(s)
Encefalopatías Metabólicas Innatas/metabolismo , Creatina/deficiencia , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Encefalopatías Metabólicas Innatas/genética , Creatina/genética , Creatina/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación Missense , Proteínas del Tejido Nervioso/química , Fenilbutiratos/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo
6.
Nat Commun ; 11(1): 1005, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081981

RESUMEN

Neurotransmitter:sodium symporters (NSS) are conserved from bacteria to man and serve as targets for drugs, including antidepressants and psychostimulants. Here we report the X-ray structure of the prokaryotic NSS member, LeuT, in a Na+/substrate-bound, inward-facing occluded conformation. To obtain this structure, we were guided by findings from single-molecule fluorescence spectroscopy and molecular dynamics simulations indicating that L-Phe binding and mutation of the conserved N-terminal Trp8 to Ala both promote an inward-facing state. Compared to the outward-facing occluded conformation, our structure reveals a major tilting of the cytoplasmic end of transmembrane segment (TM) 5, which, together with release of the N-terminus but without coupled movement of TM1, opens a wide cavity towards the second Na+ binding site. The structure of this key intermediate in the LeuT transport cycle, in the context of other NSS structures, leads to the proposal of an intracellular release mechanism of substrate and ions in NSS proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Leucina/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Sustitución de Aminoácidos , Aquifex , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Conformación Proteica
7.
Sci Rep ; 9(1): 19479, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862903

RESUMEN

Secondary active transporters use electrochemical gradient of ions to fuel the "uphill" translocation of the substrate following the alternating-access model. The coupling of ions to conformational dynamics of the protein remains one of the least characterized aspects of the transporter function. We employ extended molecular dynamics (MD) simulations to examine the Na+-binding effects on the structure and dynamics of a LeuT-fold, Na+-coupled secondary transporter (Mhp1) in its major conformational states, i.e., the outward-facing (OF) and inward-facing (IF) states, as well as on the OF ↔ IF state transition. Microsecond-long, unbiased MD simulations illustrate that Na+ stabilizes an OF conformation favorable for substrate association, by binding to a highly conserved site at the interface between the two helical bundles and restraining their relative position and motion. Furthermore, a special-protocol biased simulation for state transition suggests that Na+ binding hinders the OF ↔ IF transition. These synergistic Na+-binding effects allosterically couple the ion and substrate binding sites and modify the kinetics of state transition, collectively increasing the lifetime of an OF conformation with high substrate affinity, thereby facilitating substrate recruitment from a low-concentration environment. Based on the similarity between our findings for Mhp1 and experimental reports on LeuT, we propose that this model may represent a general Na+-coupling mechanism among LeuT-fold transporters.


Asunto(s)
Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Sodio/metabolismo
8.
Curr Opin Struct Biol ; 54: 161-170, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30921707

RESUMEN

Neurotransmitter sodium symporters (NSS) belong to the SLC6 family of solute carriers and play an essential role in neurotransmitter homeostasis throughout the body. In the past decade, structural studies employing bacterial orthologs of NSSs have provided insight into the mechanism of neurotransmitter transport. While the overall architecture of SLC6 transporters is conserved among species, in comparison to the bacterial homologs, the eukaryotic SLC6 family members harbor differences in amino acid sequence and molecular structure, which underpins their functional and pharmacological diversity, as well as their ligand specificity. Here, we review the structures and mechanisms of eukaryotic NSSs, focusing on the molecular basis for ligand recognition and on transport mechanism.


Asunto(s)
Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Animales , Sitios de Unión , Secuencia Conservada , Humanos , Terapia Molecular Dirigida , Farmacología , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química
9.
Neurosci Lett ; 700: 64-69, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29758303

RESUMEN

SLC6 neurotransmitter transporters facilitate the Na+- and Cl--dependent uptake of amino acids and amino acid derivatives into cells. Disrupting transport leads to a range of neurological disorders. However, the SLC6 substrate transport mechanism is a topic of ongoing debate. Here, we review the prominent SLC6 substrate transport mechanisms through the lens of molecular dynamics simulations. SLC6 transporters are membrane proteins, yet their transport mechanism(s) have largely been studied without considering the impacts of synaptic lipid composition, or endogenous lipid modulators, on transporter structure and function. In this review, we highlight the importance of studying membrane transporters in an appropriate membrane model, and present opportunities for the community to glean understanding and insight into SLC6 transporter structure and function-in particular transport mechanism(s)-when both membrane lipids and endogenous lipid modulators are considered.


Asunto(s)
Metabolismo de los Lípidos , Lípidos/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Animales , Transporte Biológico , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Unión Proteica , Conformación Proteica
10.
Proc Natl Acad Sci U S A ; 115(38): E8854-E8862, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181291

RESUMEN

The coupled transport of ions and substrates allows transporters to accumulate substrates using the energy of transmembrane ion gradients and electrical potentials. During transport, conformational changes that switch accessibility of substrate and ion binding sites from one side of the membrane to the other must be controlled so as to prevent uncoupled movement of ions or substrates. In the neurotransmitter:sodium symporter (NSS) family, Na+ stabilizes the transporter in an outward-open state, thus decreasing the likelihood of uncoupled Na+ transport. Substrate binding, in a step essential for coupled transport, must overcome the effect of Na+, allowing intracellular substrate and Na+ release from an inward-open state. However, the specific elements of the protein that mediate this conformational response to substrate binding are unknown. Previously, we showed that in the prokaryotic NSS transporter LeuT, the effect of Na+ on conformation requires the Na2 site, where it influences conformation by fostering interaction between two domains of the protein. Here, we used cysteine accessibility to measure conformational changes of LeuT in Escherichia coli membranes. We identified a conserved tyrosine residue in the substrate binding site required for substrate to convert LeuT to inward-open states by establishing an interaction between the two transporter domains. We further identify additional required interactions between the two transporter domains in the extracellular pathway. Together with our previous work on the conformational effect of Na+, these results identify mechanistic components underlying ion-substrate coupling in NSS transporters.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Dominios Proteicos , Sodio/metabolismo , Sitios de Unión , Cationes Monovalentes/metabolismo , Membrana Celular/metabolismo , Cisteína/química , Cisteína/metabolismo , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Mutación , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Unión Proteica , Transcitosis , Tirosina/química , Tirosina/metabolismo
11.
J Chem Inf Model ; 58(6): 1244-1252, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29851339

RESUMEN

Neurotransmitter:sodium symporters (NSS) terminate neurotransmission through Na+-driven reuptake of cognate neurotransmitters. Crystallographically, whereas both substrates and inhibitors have been found to bind in the central binding (S1) site of NSS, inhibitors were found to bind to a second binding (S2) site in the extracellular vestibule (EV) of transporters for leucine (LeuT) and serotonin. On the basis of computational and experimental studies, we proposed that substrates bind to the S2 site of LeuT as well and that substrate binding to the S2 site is essential for Na+-coupled symport. Recent binding experiments show that substrate (l-Trp) binding in the S2 site of MhsT, another bacterial NSS, is also central to the allosteric transport mechanism. Here, we used extensive molecular dynamics simulations combined with Markov state model analysis to investigate the interaction of l-Trp with the EV of MhsT and identified potential binding poses of l-Trp as well as induced conformational changes in the EV. Our computational findings were validated by experimental mutagenesis studies and shed light on the ligand binding characteristics of the EV of NSS, which may facilitate development of allosteric ligands targeting NSS.


Asunto(s)
Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Bacillus/química , Proteínas Bacterianas/química , Sitios de Unión , Cadenas de Markov , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
12.
J Biol Chem ; 292(18): 7372-7384, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28320858

RESUMEN

Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by the reuptake of released neurotransmitters. This active accumulation of substrate against its concentration gradient is driven by the transmembrane Na+ gradient and requires that the transporter traverses several conformational states. LeuT, a prokaryotic NSS homolog, has been crystallized in outward-open, outward-occluded, and inward-open states. Two crystal structures of another prokaryotic NSS homolog, the multihydrophobic amino acid transporter (MhsT) from Bacillus halodurans, have been resolved in novel inward-occluded states, with the extracellular vestibule closed and the intracellular portion of transmembrane segment 5 (TM5i) in either an unwound or a helical conformation. We have investigated the potential involvement of TM5i in binding and unbinding of Na2, i.e. the Na+ bound in the Na2 site, by carrying out comparative molecular dynamics simulations of the models derived from the two MhsT structures. We find that the helical TM5i conformation is associated with a higher propensity for Na2 release, which leads to the repositioning of the N terminus and transition to an inward-open state. By using comparative interaction network analysis, we also identify allosteric pathways connecting TM5i and the Na2 binding site to the extracellular and intracellular regions. Based on our combined computational and mutagenesis studies of MhsT and LeuT, we propose that TM5i plays a key role in Na2 binding and release associated with the conformational transition toward the inward-open state, a role that is likely to be shared across the NSS family.


Asunto(s)
Bacillus/química , Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Sodio/química , Regulación Alostérica , Sistemas de Transporte de Aminoácidos , Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Dominios Proteicos , Sodio/metabolismo
13.
Elife ; 62017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117663

RESUMEN

The Neurotransmitter:Sodium Symporters (NSSs) represent an important class of proteins mediating sodium-dependent uptake of neurotransmitters from the extracellular space. The substrate binding stoichiometry of the bacterial NSS protein, LeuT, and thus the principal transport mechanism, has been heavily debated. Here we used solid state NMR to specifically characterize the bound leucine ligand and probe the number of binding sites in LeuT. We were able to produce high-quality NMR spectra of substrate bound to microcrystalline LeuT samples and identify one set of sodium-dependent substrate-specific chemical shifts. Furthermore, our data show that the binding site mutants F253A and L400S, which probe the major S1 binding site and the proposed S2 binding site, respectively, retain sodium-dependent substrate binding in the S1 site similar to the wild-type protein. We conclude that under our experimental conditions there is only one detectable leucine molecule bound to LeuT.


Asunto(s)
Leucina/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Bacterias/enzimología , Sitios de Unión , Espectroscopía de Resonancia Magnética , Unión Proteica
14.
ACS Chem Neurosci ; 8(3): 619-628, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27966884

RESUMEN

The human monoamine transporters (MATs) facilitate the reuptake of monoamine neurotransmitters from the synaptic cleft. MATs are linked to a number of neurological diseases and are the targets of both therapeutic and illicit drugs. Until recently, no high-resolution structures of the human MATs existed, and therefore, studies of this transporter family have relied on investigations of the homologues bacterial transporters such as the leucine transporter LeuT, which has been crystallized in several conformational states. A two-substrate transport mechanism has been suggested for this transporter family, which entails that high-affinity binding of a second substrate in an extracellular site is necessary for the substrate in the central binding site to be transported. Compelling evidence for this mechanism has been presented, however, a number of equally compelling accounts suggest that the transporters function through a mechanism involving only a single substrate and a single high-affinity site. To shed light on this apparent contradiction, we have performed extensive molecular dynamics simulations of LeuT in the outward-occluded conformation with either one or two substrates bound to the transporter. We have also calculated the substrate binding affinity in each of the two proposed binding sites through rigorous free energy simulations. Results show that substrate binding is unstable in the extracellular vestibule and the substrate binding affinity within the suggested extracellular site is very low (0.2 and 3.3 M for the two dominant binding modes) compared to the central substrate binding site (14 nM). This suggests that for LeuT in the outward-occluded conformation only a single high-affinity substrate binding site exists.


Asunto(s)
Leucina/química , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Espacio Extracelular/metabolismo , Humanos , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Análisis de Componente Principal , Conformación Proteica
15.
Amino Acids ; 48(8): 2049-55, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26951207

RESUMEN

Creatine (Cr) and phosphocreatine constitute an energy shuttle that links ATP production in mitochondria to subcellular locations of ATP consumption. Cells in tissues that are reliant on this energy shuttle, such as myocytes and neurons, appear to have very limited ability to synthesize creatine. Therefore, these cells depend on Cr uptake across the cell membrane by a specialized creatine transporter (CrT solute carrier SLC6A8) in order to maintain intracellular creatine levels. Cr supplementation has been shown to have a beneficial effect in numerous in vitro and in vivo models, particularly in cases of oxidative stress, and is also widely used by athletes as a performance enhancement nutraceutical. Intracellular creatine content is maintained within narrow limits. However, the physiological and cellular mechanisms that mediate Cr transport during health and disease (such as cardiac failure) are not understood. In this narrative mini-review, we summarize the last three decades of research on CrT structure, function and regulation.


Asunto(s)
Creatina/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Animales , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Células Musculares/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Relación Estructura-Actividad
16.
J Biol Chem ; 291(3): 1456-71, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26582198

RESUMEN

In LeuT, a prokaryotic homolog of neurotransmitter transporters, Na(+) stabilizes outward-open conformational states. We examined how each of the two LeuT Na(+) binding sites contributes to Na(+)-dependent closure of the cytoplasmic pathway using biochemical and biophysical assays of conformation. Mutating either of two residues that contribute to the Na2 site completely prevented cytoplasmic closure in response to Na(+), suggesting that Na2 is essential for this conformational change, whereas Na1 mutants retained Na(+) responsiveness. However, mutation of Na1 residues also influenced the Na(+)-dependent conformational change in ways that varied depending on the position mutated. Computational analyses suggest those mutants influence the ability of Na1 binding to hydrate the substrate pathway and perturb an interaction network leading to the extracellular gate. Overall, the results demonstrate that occupation of Na2 stabilizes outward-facing conformations presumably through a direct interaction between Na(+) and transmembrane helices 1 and 8, whereas Na(+) binding at Na1 influences conformational change through a network of intermediary interactions. The results also provide evidence that N-terminal release and helix motions represent distinct steps in cytoplasmic pathway opening.


Asunto(s)
Sistemas de Transporte de Aminoácidos/química , Organismos Acuáticos/metabolismo , Proteínas Bacterianas/química , Bacterias Gramnegativas/metabolismo , Modelos Moleculares , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Sodio/metabolismo , Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cisteína/química , Ligandos , Liposomas , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteolípidos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
J Biol Chem ; 290(44): 26725-38, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26363074

RESUMEN

Neurotransmitter:sodium symporters (NSSs) mediate reuptake of neurotransmitters from the synaptic cleft and are targets for several therapeutics and psychostimulants. The prokaryotic NSS homologue, LeuT, represents a principal structural model for Na(+)-coupled transport catalyzed by these proteins. Here, we used site-directed fluorescence quenching spectroscopy to identify in LeuT a substrate-induced conformational rearrangement at the inner gate conceivably leading to formation of a structural intermediate preceding transition to the inward-open conformation. The substrate-induced, Na(+)-dependent change required an intact primary substrate-binding site and involved increased water exposure of the cytoplasmic end of transmembrane segment 5. The findings were supported by simulations predicting disruption of an intracellular interaction network leading to a discrete rotation of transmembrane segment 5 and the adjacent intracellular loop 2. The magnitude of the spectroscopic response correlated inversely with the transport rate for different substrates, suggesting that stability of the intermediate represents an unrecognized rate-limiting barrier in the NSS transport mechanism.


Asunto(s)
Proteínas Bacterianas/química , Norepinefrina/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Sodio/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Dominio Catalítico , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Liposomas/química , Liposomas/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Norepinefrina/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Sodio/metabolismo , Espectrometría de Fluorescencia/métodos
18.
Methods Enzymol ; 557: 167-98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25950965

RESUMEN

Ion-coupled secondary transport is utilized by multiple integral membrane proteins as a means of achieving the thermodynamically unfavorable translocation of solute molecules across the lipid bilayer. The chemical nature of these molecules is diverse and includes sugars, amino acids, neurotransmitters, and other ions. LeuT is a sodium-coupled, nonpolar amino acid symporter and eubacterial member of the solute carrier 6 (SLC6) family of Na(+)/Cl(-)-dependent neurotransmitter transporters. Eukaryotic counterparts encompass the clinically and pharmacologically significant transporters for γ-aminobutyric acid (GABA), glycine, serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), and norepinephrine (NE). Since the crystal structure of LeuT was first solved in 2005, subsequent crystallographic, binding, flux, and spectroscopic studies, complemented with homology modeling and molecular dynamic simulations, have allowed this protein to emerge as a remarkable mechanistic paradigm for both the SLC6 class as well as several other sequence-unrelated SLCs whose members possess astonishingly similar architectures. Despite yielding groundbreaking conceptual advances, this vast treasure trove of data has also been the source of contentious hypotheses. This chapter will present a historical scientific overview of SLC6s; recount how the initial and subsequent LeuT structures were solved, describing the insights they each provided; detail the accompanying functional techniques, emphasizing how they either supported or refuted the static crystallographic data; and assemble these individual findings into a mechanism of transport and inhibition.


Asunto(s)
Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Biología Computacional/métodos , Cristalización/métodos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Modelos Moleculares , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Conformación Proteica
19.
J Biol Chem ; 290(22): 13992-4003, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25869126

RESUMEN

Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na(+)-dependent reuptake of released neurotransmitters. Previous studies suggested that Na(+)-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na(+) binding and transport (i.e. replacing Na(+) with Li(+) or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na(+) cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na(+) dependence. Thus, the detailed AIN generated from our method is shown to connect Na(+) binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na(+) binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.


Asunto(s)
Neurotransmisores/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Sodio/química , Sitio Alostérico , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Escherichia coli/metabolismo , Humanos , Iones , Ligandos , Litio/química , Metales/química , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica
20.
Biophys J ; 108(6): 1390-1399, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25809252

RESUMEN

The leucine transporter (LeuT) is a bacterial homolog of the human monoamine transporters, which are important pharmaceutical targets. There are no high-resolution structures of the human transporters available; however, LeuT has been crystallized in several different conformational states. Recently, an inward-facing conformation of LeuT was solved revealing an unexpectedly large movement of transmembrane helix 1a (TM1a). We have performed molecular dynamics simulations of the mutated and wild-type transporter, with and without the cocrystallized Fab antibody fragment, to investigate the properties of this inward-facing conformation in relation to transport by LeuT within the membrane environment. In all of the simulations, local conformational changes with respect to the crystal structure are consistently observed, especially in TM1a. Umbrella sampling revealed a soft potential for TM1a tilting. Furthermore, simulations of inward-facing LeuT with Na(+) ions and substrate bound suggest that one of the Na(+) ion binding sites is fully disrupted. Release of alanine and the second Na(+) ion is also observed, giving insight into the final stage of the translocation process in atomistic detail.


Asunto(s)
Sistemas de Transporte de Aminoácidos/química , Proteínas Bacterianas/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Alanina/química , Proteínas Bacterianas/genética , Sitios de Unión , Iones/química , Simulación de Dinámica Molecular , Mutación , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Conformación Proteica , Estabilidad Proteica , Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...