Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(13): 7035-7048, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31114929

RESUMEN

The eIF4E-homologous protein (4EHP) is a translational repressor that competes with eIF4E for binding to the 5'-cap structure of specific mRNAs, to which it is recruited by protein factors such as the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins (GIGYF). Several experimental evidences suggest that GIGYF proteins are not merely facilitating 4EHP recruitment to transcripts but are actually required for the repressor activity of the complex. However, the underlying molecular mechanism is unknown. Here, we investigated the role of the uncharacterized Drosophila melanogaster (Dm) GIGYF protein in post-transcriptional mRNA regulation. We show that, when in complex with 4EHP, Dm GIGYF not only elicits translational repression but also promotes target mRNA decay via the recruitment of additional effector proteins. We identified the RNA helicase Me31B/DDX6, the decapping activator HPat and the CCR4-NOT deadenylase complex as binding partners of GIGYF proteins. Recruitment of Me31B and HPat via discrete binding motifs conserved among metazoan GIGYF proteins is required for downregulation of mRNA expression by the 4EHP-GIGYF complex. Our findings are consistent with a model in which GIGYF proteins additionally recruit decapping and deadenylation complexes to 4EHP-containing RNPs to induce translational repression and degradation of mRNA targets.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Factor 4E Eucariótico de Iniciación/fisiología , Regulación de la Expresión Génica , Proteínas de Unión a Caperuzas de ARN/fisiología , ARN Mensajero/genética , Proteínas Represoras/fisiología , Secuencia de Aminoácidos , Animales , Secuencia Conservada , ARN Helicasas DEAD-box/fisiología , Regulación hacia Abajo , Endopeptidasas/fisiología , Genes Reporteros , Complejos Multiproteicos , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Ribonucleasas/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
2.
Mol Biol Cell ; 23(1): 137-50, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22072789

RESUMEN

In response to osmotic stress, global translation is inhibited, but the mRNAs encoding stress-protective proteins are selectively translated to allow cell survival. To date, the mechanisms and factors involved in the specific translation of osmostress-responsive genes in Saccharomyces cerevisiae are unknown. We find that the mRNA cap-binding protein Cbc1 is important for yeast survival under osmotic stress. Our results provide new evidence supporting a role of Cbc1 in translation initiation. Cbc1 associates with polysomes, while the deletion of the CBC1 gene causes hypersensitivity to the translation inhibitor cycloheximide and yields synthetic "sickness" in cells with limiting amounts of translation initiator factor eIF4E. In cbc1Δ mutants, translation drops sharply under osmotic stress, the subsequent reinitiation of translation is retarded, and "processing bodies" containing untranslating mRNAs remain for long periods. Furthermore, osmostress-responsive mRNAs are transcriptionally induced after osmotic stress in cbc1Δ cells, but their rapid association with polysomes is delayed. However, in cells containing a thermosensitive eIF4E allele, their inability to grow at 37ºC is suppressed by hyperosmosis, and Cbc1 relocalizes from nucleus to cytoplasm. These data support a model in which eIF4E-translation could be stress-sensitive, while Cbc1-mediated translation is necessary for the rapid translation of osmostress-protective proteins under osmotic stress.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/fisiología , Biosíntesis de Proteínas , Proteínas de Unión a Caperuzas de ARN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico , Adaptación Fisiológica , Núcleo Celular/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Técnicas de Inactivación de Genes , Viabilidad Microbiana , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Presión Osmótica , Polirribosomas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Wiley Interdiscip Rev RNA ; 2(2): 277-98, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21957010

RESUMEN

The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Unión a Caperuzas de ARN/fisiología , Caperuzas de ARN/fisiología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Núcleo Celular/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Degradación de ARNm Mediada por Codón sin Sentido/genética , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Proteínas de Unión a Caperuzas de ARN/química , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Procesamiento Postranscripcional del ARN
4.
Biochim Biophys Acta ; 1813(9): 1578-92, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21029753

RESUMEN

Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin ß associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin ß via an N-terminal importin ß binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin ß can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin ß and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin ß into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , beta Carioferinas/química , beta Carioferinas/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Evolución Molecular , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/fisiología , Filogenia , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión a Caperuzas de ARN/química , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/fisiología , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/fisiología , Transducción de Señal/fisiología , beta Carioferinas/genética
5.
Neoplasia ; 12(4): 346-56, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20360945

RESUMEN

The small molecule 4EGI-1 was identified as an inhibitor of cap-dependent translation initiation owing to its disruption of the eIF4E/eIF4G association through binding to eIF4E. 4EGI-1 exhibits growth-inhibitory and apoptosis-inducing activity in cancer cells; thus, we were interested in its therapeutic efficacy in human lung cancer cells. 4EGI-1, as a single agent, inhibited the growth and induced apoptosis of human lung cancer cells.When combined with the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), enhanced apoptosis-induced activity was observed. As expected, 4EGI-1 inhibited eIF4E/eIF4G interaction and reduced the levels of cyclin D1 and hypoxia-inducing factor-1alpha (HIF-1alpha), both of which are regulated by a cap-dependent translation mechanism. Moreover, 4EGI-1 induced CCAAT/enhancer-binding protein homologous protein-dependent DR5 expression and ubiquitin/proteasome- mediated degradation of cellular FLICE-inhibitory protein (c-FLIP). Small interfering RNA-mediated blockade of DR5 induction or enforced expression of c-FLIP abrogated 4EGI-1's ability to enhance TRAIL-induced apoptosis, indicating that both DR5 induction and c-FLIP down-regulation contribute to enhancement of TRAIL-induced apoptosis by 4EGI-1. However, inhibition of eIF4E/eIF4G interaction by knockdown of eIF4E effectively reduced the levels of cyclin D1 and HIF-1alpha but failed to induce DR5 expression, downregulate c-FLIP levels, or augment TRAIL-induced apoptosis. These results collectively suggest that 4EGI-1 augments TRAIL-induced apoptosis through induction of DR5 and down-regulation of c-FLIP, independent of inhibition of cap-dependent protein translation.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Nitrocompuestos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Tiazoles/farmacología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Hidrazonas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nitrocompuestos/administración & dosificación , Unión Proteica/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteínas de Unión a Caperuzas de ARN/antagonistas & inhibidores , Proteínas de Unión a Caperuzas de ARN/fisiología , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Tiazoles/administración & dosificación
6.
RNA ; 16(1): 239-50, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19934229

RESUMEN

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally through binding specific sites within the 3' untranslated regions (UTRs) of their target mRNAs. Numerous investigations have documented repressive effects of miRNAs and identified factors required for their activity. However, the precise mechanisms by which miRNAs modulate gene expression are still obscure. Here, we have examined the effects of multiple miRNAs on diverse target transcripts containing artificial or naturally occurring 3' UTRs in human cell culture. In agreement with previous studies, we report that both the 5' m(7)G cap and 3' poly(A) tail are essential for maximum miRNA repression. These cis-acting elements also conferred miRNA susceptibility to target mRNAs translating under the control of viral- and eukaryotic mRNA-derived 5' UTR structures that enable cap-independent translation. Additionally, we evaluated a role for the poly(A)-binding protein (PABP) in miRNA function utilizing multiple approaches to modulate levels of active PABP in cells. PABP expression and activity inversely correlated with the strength of miRNA silencing, in part due to antagonism of target mRNA deadenylation. Together, these findings further define the cis- and trans-acting factors that modulate miRNA efficacy.


Asunto(s)
MicroARNs/fisiología , Proteína I de Unión a Poli(A)/fisiología , Caperuzas de ARN/fisiología , Interferencia de ARN/fisiología , ARN Mensajero/fisiología , Células Cultivadas , Humanos , MicroARNs/metabolismo , Modelos Biológicos , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Poliadenilación/genética , Poliadenilación/fisiología , Proteínas de Unión a Caperuzas de ARN/metabolismo , Proteínas de Unión a Caperuzas de ARN/fisiología , Caperuzas de ARN/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transfección
7.
Trends Biochem Sci ; 34(9): 435-42, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19729311

RESUMEN

The 5'-cap structure that typifies all polymerase II-transcribed RNAs plays important roles in pre-mRNA processing and mRNA export, translation and quality control. Removal of the cap is a regulated process that is considered to be the first irreversible step in mRNA decay. An emerging view challenges this idea: mRNAs have been identified in mammalian cells that lack sequences from their 5' ends but nevertheless appear to be modified with a cap or cap-like structure. Furthermore, a cytoplasmic form of capping enzyme was recently identified that, together with a novel kinase, generates capped ends from cleaved RNAs. These and other findings provide evidence for re-capping and its possible functions.


Asunto(s)
Proteínas de Unión a Caperuzas de ARN/fisiología , Caperuzas de ARN/fisiología , Animales , Humanos , Caperuzas de ARN/química , Estabilidad del ARN , ARN no Traducido , Ribonucleoproteínas/metabolismo
9.
Curr Top Microbiol Immunol ; 326: 139-50, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18630751

RESUMEN

The plant hormone abscisic acid (ABA) intricately regulates a multitude of processes during plant growth and development. Recent studies have established a connection between genes participating in various steps of cellular RNA metabolism and the ABA signal transduction machinery. In this chapter we focus on the plant nuclear mRNA cap binding proteins, CBP20 and CBP80. We summarize and report recent findings on their effects on cellular signal transduction networks and mRNA processing events. ABA hypersensitive 1 (abh1) harbors a gene disruption in the Arabidopsis CBP80 gene. Loss-of-function mutation of ABH1 can also result in an early flowering phenotype in the Arabidopsis accession C24. abh1 revealed noncoding cis-natural antisense transcripts (cis-NATs) at the CONSTANS locus in wild-type plants with elevated cis-NAT expression in the mutant. abh1 also revealed an influence on the splicing of the MADS box transcription factor Flowering Locus C pre-mRNA, which may result in the regulation of flowering time. Furthermore, new experiments analyzing complementation of cpb20 with site-directed cpb20 mutants provide evidence that the CAP binding activity of CBP20 is essential for the observed cbp-associated phenotypes. In conclusion, mutants in genes participating in RNA processing provide excellent tools to uncover novel molecular mechanisms for the regulation of RNA metabolism and of signal transduction networks in wild-type plants.


Asunto(s)
Ácido Abscísico/metabolismo , Análisis por Micromatrices , Proteínas de Plantas/fisiología , Plantas/metabolismo , Proteínas de Unión a Caperuzas de ARN/fisiología , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Transducción de Señal , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Complejo Proteico Nuclear de Unión a la Caperuza/fisiología , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Proteínas de Unión al ARN
10.
J Mol Biol ; 374(4): 1129-38, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-18028944

RESUMEN

The nuclear import of assembled spliceosomal subunits, the uridine-rich small nuclear ribonucleoprotein particles (U snRNPs), is mediated by a nuclear import receptor adaptor couple of importin beta (Imp beta) and snurportin1 (SPN1). In contrast to any other characterized active nuclear import, the Imp beta/SPN1/U snRNP complex does not require RanGTP for the terminal release from the nuclear basket of the nuclear pore complex (NPC). The crystal structure of Imp beta (127-876) in complex with the Imp beta-binding (IBB) domain of SPN1 (1-65) at 2.8-A resolution reveals that Imp beta adopts an open conformation, which is unique for a functional Imp beta/cargo complex, and rather surprisingly, it resembles the conformation of the Imp beta/RanGTP complex. As binding of RanGTP to Imp beta usually triggers the release of import complexes from the NPC, we propose that by already mimicking a conformation similar to Imp beta/RanGTP the independent dissociation of Imp beta/SPN1 from the nuclear basket is energetically aided.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Unión a Caperuzas de ARN/química , Receptores Citoplasmáticos y Nucleares/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo , beta Carioferinas/química , Núcleo Celular , Cristalografía por Rayos X , Humanos , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/fisiología , Unión Proteica , Proteínas de Unión a Caperuzas de ARN/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , beta Carioferinas/fisiología , Proteína de Unión al GTP ran/química
12.
Methods Enzymol ; 431: 229-67, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17923238

RESUMEN

This chapter presents methods and protocols suitable for the identification and characterization of inhibitors of the prokaryotic and/or eukaryotic translational apparatus as a whole or targeting specific, underexploited targets of the bacterial protein synthetic machinery such as translation initiation and aminoacylation. Some of the methods described have been used successfully for the high-throughput screening of libraries of natural or synthetic compounds and make use of model "universal" mRNAs that can be translated with similar efficiency by cellfree extracts of bacterial, yeast, and HeLa cells. Other methods presented here are suitable for secondary screening tests aimed at identifying a specific target of an antibiotic within the translational pathway of prokaryotic cells.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores de la Síntesis del Ácido Nucleico/aislamiento & purificación , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Sistema Libre de Células/metabolismo , Células Cultivadas , Técnicas de Laboratorio Clínico , Humanos , Luciferasas de Renilla/genética , Luciferasas de Renilla/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico/análisis , Factor 2 Procariótico de Iniciación/antagonistas & inhibidores , Factor 2 Procariótico de Iniciación/fisiología , Proteínas de Unión a Caperuzas de ARN/fisiología , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , Aminoacilación de ARN de Transferencia/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
13.
Methods Enzymol ; 431: 269-302, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17923239

RESUMEN

In eukaryotes, translation initiation is rate-limiting with much regulation exerted at the ribosome recruitment and ternary complex (eIF2.GTP.Met-tRNA(i)(Met)) formation steps. Although small molecule inhibitors have been extremely useful for chemically dissecting translation, there is a dearth of compounds available to study the initiation phase in vitro and in vivo. In this chapter, we describe reverse and forward chemical genetic screens developed to identify new inhibitors of translation. The ability to manipulate cell extracts biochemically, and to compare the activity of small molecules on translation of mRNA templates that differ in their factor requirements for ribosome recruitment, facilitates identification of the relevant target.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/análisis , Algoritmos , Animales , Centrifugación por Gradiente de Densidad , Técnicas de Laboratorio Clínico , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas de Unión a Caperuzas de ARN/metabolismo , Proteínas de Unión a Caperuzas de ARN/fisiología , Proteínas de Unión al ARN/análisis , Proteínas Recombinantes/síntesis química , Proyectos de Investigación , Ribosomas/metabolismo
14.
Am J Physiol Endocrinol Metab ; 293(2): E453-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17505052

RESUMEN

Prolonged sepsis and exposure to an inflammatory milieu decreases muscle protein synthesis and reduces muscle mass. As a result of its ability to integrate diverse signals, including hormones and nutrients, the mammalian target of rapamycin (mTOR) is a dominant regulator in the translational control of protein synthesis. Under postabsorptive conditions, sepsis decreases mTOR kinase activity in muscle, as evidenced by reduced phosphorylation of both eukaryotic initiation factor (eIF)4E-binding protein (BP)-1 and ribosomal S6 kinase (S6K)1. These sepsis-induced changes, along with the redistribution of eIF4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex, are preventable by neutralization of tumor necrosis factor (TNF)-alpha but not by antagonizing glucocorticoid action. Although the ability of mTOR to respond to insulin-like growth factor (IGF)-I is not disrupted by sepsis, the ability of leucine to increase 4E-BP1 and S6K1 phosphorylation is greatly attenuated. This "leucine resistance" results from a cooperative interaction between both TNF-alpha and glucocorticoids. Finally, although septic animals are not IGF-I resistant, the anabolic actions of IGF-I are nonetheless reduced because of the development of growth hormone resistance, which decreases both circulating and muscle IGF-I. Herein, we highlight recent advances in the mTOR signaling network and emphasize their connection to the atrophic response observed in skeletal muscle during sepsis. Although many unanswered questions remain, understanding the cellular basis of the sepsis-induced decrease in translational activity will contribute to the rational development of therapeutic interventions and thereby minimize the debilitating affects of the atrophic response that impairs patient recovery.


Asunto(s)
Regulación de la Expresión Génica , Inflamación/genética , Proteínas Musculares/genética , Biosíntesis de Proteínas/fisiología , Sepsis/genética , Aminoácidos/fisiología , Animales , Humanos , Inflamación/metabolismo , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Proteínas Musculares/metabolismo , Fenómenos Fisiológicos de la Nutrición , Factores de Iniciación de Péptidos/fisiología , Proteínas Quinasas/fisiología , Proteínas de Unión a Caperuzas de ARN/metabolismo , Proteínas de Unión a Caperuzas de ARN/fisiología , Proteína S6 Ribosómica/metabolismo , Sepsis/metabolismo , Serina-Treonina Quinasas TOR
15.
Genes Dev ; 21(3): 255-60, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17289916

RESUMEN

The expression of the ubiquitin-like molecule ISG15 and protein modification by ISG15 (ISGylation) are strongly activated by interferon, genotoxic stress, and pathogen infection, suggesting that ISG15 plays an important role in innate immune responses. 4EHP is an mRNA 5' cap structure-binding protein and acts as a translation suppressor by competing with eIF4E for binding to the cap structure. Here, we report that 4EHP is modified by ISG15 and ISGylated 4EHP has a much higher cap structure-binding activity. These data suggest that ISGylation of 4EHP may play an important role in cap structure-dependent translation control in immune responses.


Asunto(s)
Citocinas/fisiología , Procesamiento Proteico-Postraduccional , Proteínas de Unión a Caperuzas de ARN/metabolismo , Ubiquitinas/fisiología , Secuencia de Aminoácidos , Células Cultivadas , Factor 4E Eucariótico de Iniciación , Humanos , Inmunidad Innata , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Proteínas de Unión a Caperuzas de ARN/química , Proteínas de Unión a Caperuzas de ARN/fisiología , Caperuzas de ARN/metabolismo
16.
Mol Cell Biol ; 25(6): 2216-26, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15743819

RESUMEN

One of the unique aspects of RNA processing in trypanosomatid protozoa is the presence of a cap 4 structure (m7Gpppm2(6)AmpAmpCmpm3Um) at the 5' end of all mRNAs. The cap 4 becomes part of the mRNA through trans-splicing of a 39-nucleotide-long sequence donated by the spliced leader RNA. Although the cap 4 modifications are required for trans-splicing to occur, the underlying mechanism remains to be determined. We now describe an unconventional nuclear cap binding complex (CBC) in Trypanosoma brucei with an apparent molecular mass of 300 kDa and consisting of five protein components: the known CBC subunits CBP20 and importin-alpha and three novel proteins that are only present in organisms featuring a cap 4 structure and trans-splicing. Competitive binding studies are consistent with a specific interaction between the CBC and the cap 4 structure. Downregulation of several individual components of the T. brucei CBC by RNA interference demonstrated an essential function at an early step in trans-splicing. Thus, our studies are consistent with the CBC providing a mechanistic link between cap 4 modifications and trans-splicing.


Asunto(s)
Proteínas Protozoarias/fisiología , Proteínas de Unión a Caperuzas de ARN/fisiología , ARN Protozoario/metabolismo , Ribonucleoproteínas/fisiología , Trans-Empalme/fisiología , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Animales , Unión Competitiva/genética , Unión Competitiva/fisiología , Datos de Secuencia Molecular , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Lider Empalmado/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Trans-Empalme/genética , Trypanosoma brucei brucei/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , alfa Carioferinas/fisiología
17.
J Vet Sci ; 5(4): 369-78, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15613822

RESUMEN

Evidences show that eukaryotic mRNAs can perform protein translation through internal ribosome entry sites (IRES). 5'-Untranslated region of the mRNA encoding apoptotic protease-activating factor 1 (Apaf-1) contains IRES, and, thus, can be translated in a cap-independent manner. Effects of changes in protein translation pattern through rapamycin pretreatment on 4-(methylnitrosamino)-1-(3-pyridyl)-butanone(NNK, tobacco-specific lung carcinogen)-induced apoptosis in human bronchial epithelial cells were examined by caspase assay, FACS analysis, Western blotting, and transient transfection. Results showed that NNK induced apoptosis in concentration- and time-dependent manners. NNK-induced apoptosis occurred initially through cap-independent protein translation, which during later stage was replaced by cap-dependent protein translation. Our data may be applicable as the mechanical basis of lung cancer treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Bronquios/patología , Carcinógenos/farmacología , Células Epiteliales/patología , Nitrosaminas/farmacología , Proteínas de Unión a Caperuzas de ARN/fisiología , Antibióticos Antineoplásicos/farmacología , Factor Apoptótico 1 Activador de Proteasas , Proteína Proapoptótica que Interacciona Mediante Dominios BH3 , Western Blotting , Bronquios/metabolismo , Proteínas Portadoras/metabolismo , Caspasas/metabolismo , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Citometría de Flujo , Humanos , Biosíntesis de Proteínas , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sirolimus/farmacología , Factores de Tiempo , Proteína X Asociada a bcl-2
18.
Nat Struct Mol Biol ; 11(6): 503-11, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15164008

RESUMEN

Eukaryotic initiation factor 4E (eIF4E) has central roles in the control of several aspects of post-transcriptional gene expression and thereby affects developmental processes. It is also implicated in human diseases. This review explores the relationship between structural, biochemical and biophysical aspects of eIF4E and its function in vivo, including both long-established roles in translation and newly emerging ones in nuclear export and mRNA decay pathways.


Asunto(s)
Factor 4E Eucariótico de Iniciación/fisiología , Regulación de la Expresión Génica , Proteínas de Unión a Caperuzas de ARN/fisiología , Transporte Activo de Núcleo Celular , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Proteínas de Unión a Caperuzas de ARN/química , Proteínas de Unión a Caperuzas de ARN/metabolismo , Estabilidad del ARN
19.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-79776

RESUMEN

Evidences show that eukaryotic mRNAs can perform protein translation through internal ribosome entry sites (IRES). 5'-Untranslated region of the mRNA encoding apoptotic protease-activating factor 1 (Apaf-1) contains IRES, and, thus, can be translated in a cap-independent manner. Effects of changes in protein translation pattern through rapamycin pretreatment on 4-(methylnitrosamino)-1-(3-pyridyl)-butanone(NNK, tobacco-specific lung carcinogen)-induced apoptosis in human bronchial epithelial cells were examined by caspase assay, FACS analysis, Western blotting, and transient transfection. Results showed that NNK induced apoptosis in concentration- and time-dependent manners. NNK-induced apoptosis occurred initially through cap-independent protein translation, which during later stage was replaced by cap-dependent protein translation. Our data may be pplicable as the mechanical basis of lung cancer treatment.


Asunto(s)
Humanos , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Factor Apoptótico 1 Activador de Proteasas , Proteína Proapoptótica que Interacciona Mediante Dominios BH3 , Western Blotting , Bronquios/metabolismo , Carcinógenos/farmacología , Proteínas Portadoras/metabolismo , Caspasas/metabolismo , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Citometría de Flujo , Nitrosaminas/farmacología , Biosíntesis de Proteínas , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Unión a Caperuzas de ARN/fisiología , Sirolimus/farmacología , Factores de Tiempo , Proteína X Asociada a bcl-2
20.
Plant Physiol ; 130(3): 1276-87, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12427994

RESUMEN

Abscisic acid (ABA) regulates developmental processes and abiotic stress responses in plants. We recently characterized a new Arabidopsis mutant, abh1, which shows ABA-hypersensitive regulation of seed germination, stomatal closing, and cytosolic calcium increases in guard cells (V. Hugouvieux, J.M. Kwak, J.I. Schroeder [2001] Cell 106: 477-487). ABH1 encodes the large subunit of a dimeric Arabidopsis mRNA cap-binding complex and in expression profiling experiments was shown to affect mRNA levels of a subset of genes. Here, we show that the dimeric ABH1 and AtCBP20 subunits are ubiquitously expressed. Whole-plant growth phenotypes of abh1 are described and properties of ABH1 in guard cells are further analyzed. Complemented abh1 lines expressing a green fluorescent protein-ABH1 fusion protein demonstrate that ABH1 mainly localizes in guard cell nuclei. Stomatal apertures were smaller in abh1 compared with wild type (WT) when plants were grown at 40% humidity, and similar at 95% humidity. Correlated with stomatal apertures from plants grown at 40% humidity, slow anion channel currents were enhanced and inward potassium channel currents were decreased in abh1 guard cells compared with WT. Gas exchange measurements showed similar primary humidity responses in abh1 and WT, which together with results from abh1/abi1-1 double-mutant analyses suggest that abh1 shows enhanced sensitivity to endogenous ABA. Double-mutant analyses of the ABA-hypersensitive signaling mutants, era1-2 and abh1, showed complex genetic interactions, suggesting that ABH1 and ERA1 do not modulate the same negative regulator in ABA signaling. Mutations in the RNA-binding protein sad1 showed hypersensitive ABA-induced stomatal closing, whereas hyl1 did not affect this response. These data provide evidence for the model that the mRNA-processing proteins ABH1 and SAD1 function as negative regulators in guard cell ABA signaling.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Canales Iónicos/genética , Proteínas de Unión a Caperuzas de ARN/genética , Transducción de Señal/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , Mutación , Fosfoproteínas Fosfatasas/efectos de los fármacos , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas de Unión a Caperuzas de ARN/efectos de los fármacos , Proteínas de Unión a Caperuzas de ARN/metabolismo , Proteínas de Unión a Caperuzas de ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear/genética , ARN Nuclear/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...